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Abstract 
 
A Hybrid Dynamic-Evolutionary Programming (HDPEP) is proposed to find an optimal solution formulti-objective power generation 
mix model. The present contribution is intended to develop a method to facilitate simultaneous modelling of multi-objective optimization 
considering the cost of power generation, carbon emission and power system reliability. The study introduces the implementation of 
Evolutionary Programming (EP) via weighted sum method (WSM) approach within the HDPEP framework to optimize the weighted 
coefficient in providing accurate decision for generation mix planning. The EP-WSM reduces ‘discrimination’ when choosing the weight 
values of each objective function. The proposed HDPEP were compared with non-optimal weighted approach. Results show that the 
HDPEP model provides a better performance in providing the lowest Multi-Objectives Index (MOI)in solving multi-objective power 

generation mix problem. 
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1. Introduction 

Sustainable power generation mix planning are designed to meet 
various objectives and involve analyzing and managing various 

information such as economy, environment, technology, risk, 
reliability and society(Sadeghi, Rashidinejad, & Abdollahi, 2016). 
In practice, power generation mix planning comprises of decision-
making problems to simultaneously achieve some objectives such 
as minimizing risk, maximizing system reliability and minimizing 
costs(Pereira & Saraiva, 2013) To serve such purpose, multi-
objective optimization (MOO)has been widely used in energy 
resource allocation, energy planning and electric utility 
applications. Traditionally, the generation mix problem was solved 

at least cost such as reported by many researchers in the literature 
(Afful-Dadzie, Afful-Dadzie, Iddrisu, & Banuro, 2017; Aliyu, 
Ramli, & Saleh, 2013; Dehghan, Amjady, & Kazemi, 2014; 
Georgiou, 2016; Ghaderi, Parsa Moghaddam, & Sheikh-El-
Eslami, 2014; Hemmati, Hooshmand, & Khodabakhshian, 2013; 
M. Jadidoleslam, Bijami, Amiri, Ebrahimi, & Askari, 2012; 
Morteza Jadidoleslam & Ebrahimi, 2015; Khodaei & 
Shahidehpour, 2013; Koltsaklis, Dagoumas, Kopanos, 

Pistikopoulos, & Georgiadis, 2014; Mohd Shokri, Dahlan, & 
Ahmad, 2015; Pereira & Saraiva, 2013; Pineda, Morales, Ding, & 
Stergaard, 2014; Venkatachary, Prasad, & Samikannu, 2017; 
Yoza, Yona, Senjyu, & Funabashi, 2014). 
 
However, given the adverse impact of electricity generation on 
environment and the demand from consumers to have a reliable 
system, the lowest cost objective alone is no longer appropriate. In 

this case, Multi-Objectives Optimization (MOO) has been 
introduced to solve power generation mix problem integrating 
various decision techniques to trade-off between the conflicting 
objectives. Moreover, the mathematical model becomes more 
realistic if distinct evaluation aspects are explicitly considered by 

giving them an explicit role as objective functions rather than 
aggregating them in a single economic indicator objective 
function. 
Numerous studies have modelled generation mix planning as 
MOOproblems considering trade-offs between economic and 
environmental impact for sustainable energy planning as presented 

in(Habib & Chungpaibulpatana, 2014; Leibowicz & Larsen, 2013; 
Majewski, Wirtz, Lampe, & Bardow, 2017; Majidi, Nojavan, & 
Zare, 2017; Mohd Shokri & Dahlan, 2014; Nazemi, Ghaderi, 
Moghadam, &Farsaei, 2016; Priya & Bandyopadhyay, 2017; 
Promjiraprawat & Limmeechokchai, 2013; Zhu, Luo, Zhang, & 
Chen, 2017)(Mohd Shokri & Dahlan, 2014). On the other hand, 
works in (Abon, Dahlan, & Mat Yassin, 2015; Aghaei, Akbari, 
Roosta, & Baharvandi, 2013b; Mohd Shokri, Dahlan, & 
Mohamad, 2017; Mutalib et al., 2014)consider cost, environment 

and reliability as the objectives. The multi-objectives generation 
mix models have shown a better performance than the single 
objective model in term of its ability to: 1) identify many 
alternative solutions and 2) provide more realistic results (Abon, 
Dahlan, & Mat Yassin, 2015. 
 
List of Symbols, Set and Constants 

i  state optimization 

t  time interval (year) index considered in the time horizon 

T a lifetime of the new plant (optimization horizon) 

TC the total cost of generation mix over the simulation horizon [$] 

PCall,t total production cost of all the generating units in the system at 

year t [$] 

ICt the total investment cost of the new investments at year t [$] 

Xt cumulative capacity vector in year t [MW] 

Ut capacity addition vector in year t [MW] 

FOMall,t total fixed O&M cost of all the generating units at year t [$] 

VOMall,t total variable O&M cost of all the generating units at year t [$] 

CCt total carbon emission cost of coal and combined cycle 

technologies at year t [$] 

MCBj the marginal cost of generating unit j 

Pj,s the power produced by generating unit j at segment s [MW} 

TCO2 total carbon emission of generation mix over the simulation 

http://www.sciencepubco.com/index.php/IJET
mailto:maryam.mohdshokri@yahoo.com


53
7 

International Journal of Engineering & Technology 537 

 

 

horizon [tc] 

CI Amount of CO2 generated by coal and combined cycle 

technologies in time period t [ton/MW] 

Cj actual capacity for unit j  [MW] 

Ca capacity outage [MW] 

Pd load demand [MW] 

d duration for each segment [hours] 

  the actual value of the objective function 

     the minimum value of objective function 

     maximum value of the objective function 

fnorm Normalized objective function 

Kt capacity retirement[MW] 

Xt generation capacity[MW] 

R reserve margin 

     minimum reserve requirement each year 

     maximum reserve requirement each year 

 

Various generation mix models have been proposed in the 
literature for solving MOO by integrating different decision 
techniques such as weighted sum method (WSM)(Mohd Shokri et 
al., 2017),analytical hierarchy process (AHP)(Mavalizadeh & 
Ahmadi, 2014; Zhu et al., 2017), fuzzy set theory (A.R. Abbasi & 
Seifi, 2014; Ali Reza Abbasi & Seifi, 2014; Javadi, Mashhadi, 
Saniei, & Gutiérrez-Alcaraz, 2013; Majidi, Nojavan, Esfetanaj, 
Najafi-Ghalelou, & Zare, 2017), normal boundary 
intersection(NBI) (Aghaei et al., 2013b; Gitizadeh, Kaji, & 

Aghaei, 2013), graphical illustration using trade-offs curve, (Mohd 
Shokri & Dahlan, 2014; Zhang, Mclellan, Tezuka, & Ishihara, 
2013) and fractional programming, (Chen, Huang, & Fan, 2015).In 
MOO, different methods are often used to generate a set of 
efficient solutions from which the decision maker can choose. 
Each of the methods discussed above has advantages and 
disadvantages and many of them can be adapted for specific 
problems. However, there is still no general ‘best’ method that can 

be used to solve MOO problems. 
In general, WSM-decision technique is simple to implement but 
the results obtained are highly dependent on the weights used, 
which must be specified before the optimization process begins. 
Several researchers use WSM as a base technique to solve MOO 
by manually varying the weight, thencombine it with other 
decision techniques. Authors in (Aghaei, Akbari, Roosta, & 
Baharvandi, 2013a; Majidi, Nojavan, Esfetanaj, et al., 2017)solve 

the multi-objective functions using WSM approach and selects the 
best solution by employing fuzzy satisfying approach. Authors in 
(Cacchiani & D ’ambrosio, 2016)solve multiple objective 
problems using branch-and-bound algorithm, which integrate the 
WSM and the ε-constraint approaches. 
This paper proposes Hybrid Dynamic-Evolutionary Programming 
(HDPEP) technique to improved MOO for power generation mix 
problem. The role of Dynamic Programming (DP) is to find the 

optimal long-term multi-objectives generation mix which 
simultaneously optimize cost, carbon emission and the loss of load 
expectation (LOLE). On the other hand, EP is implemented via 
WSM approach within the HDPEP framework to find the optimal 
weighted coefficient by minimizing a weighted sum called multi-
objective index (MOI).The weighted coefficient attributes to the 
importance of the objective function in power generation mix 
planning. The proposed technique is compared with non-optimal 
WSM.  

Our motivation is to develop specific conditions for the weighted 
coefficients. The goal is to improve the WSM decision technique. 
Contribution of this study is to develop HDPEP multi-objective 
decision technique that optimize weighted coefficient for WSM 
approach of MOO problem. Solving the HDPEP multi-objective 
generation mixreduces ‘discrimination’ when choosing the weight 
values. This proposed technique combines mathematical and 
intelligence approach that will overall improve the MOO-based 

generation mix. 
The paper is organized as follows. Section 2 presents the overview 
of HDPEP in multi-objective power generation mix model. 
Section 3 describes problem formulation of DP multi-objective. 
Section 4 presents the implementation of EP algorithm via WSM 

approach. The computational results and discussion are described 
in section 5. Finally, we draw some conclusions in Section 6. 

2. Overview of Hybrid DP-EP Multi 

Objectives Generation Mix Model 

Error! Reference source not found. represents the overview 
framework of hybrid DP-EP (HDPEP) multi-objectives generation 

mix model. The required input data for solving the generation mix 
problem are load growth and characteristics of new and existing 
units such as operation and investment cost, emission rate and 
forced outage rate. 
In DP-generation mix model, there is N unit of candidate plants 
can be selected 
 yearly in stage t for T years. State consists of existing units plus 
the new units each year. At stage 1, the feasible states are built by 

the combination of 2N. Path is the selected new generations each 
year from stage 1 to T. DP will save the combinations’ transition 

path (e.g.
11 , T

ijij aa ) of the lowest MOI with an optimal weight 

coefficient for each year until the end year of the planning. Then, 
it traces back from the saved feasible path to find the lowest MOI 
path as the multi-objective generation mix problem solution. 
We model the MOO to get a set of MOI that represent the state of 
the process in each year. WSM-decision making is used within the 
MOO in the generation mix problem. The MOI was defined by 
transforming the multi-objective into a single objective function. 

The optimal weighted coefficient is determined for each objective 
by implementating EP optimization technique via the WSM 
approach. Detail description on EP-WSM will be discussed in the 
next section. 

3. Mathematical Model 

3.1 Multiple Objective functions 

Multi-objective model is developed by minimizing the MOI 
combining three objective functions. The objective functions are: 
1) economic, 2) environmental and 3) reliability of the system. In 
the following, a detailed description of objective and constraints of 

the gen mix problem is presented. 

3.1.1 Economic objective 

The economic objective is developed to minimize the total cost of 
generation expansion over the planning horizon as shown in 
equation 1. This objective function includes the production cost 
for all generating units, investment cost for new generation units, 
fixed and variable operation and maintenance cost for all 
generating units and carbon emission cost of coal and gas 

technologies. 
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Economic dispatch (equation 2) is modelled in the DP-based 
generation mix to determine the power dispatch by the generating 
unit in the system and production cost of each unit. This is a short-
term determination of the optimal output of a number of electricity 
generation facilities to meet the system load at the lowest possible 
cost. 
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Fig. 1: Framework hybrid DP-EP (HDPEP) multi-objective generation mix 

model 
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(2)  

3.1.2 Environmental objective 

This objective function is to minimize the total carbon emission. It 
is determined based on the carbon content of the fossil-fuel 
generating unit. 
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3.1.3 Reliability objective 

In power supply industry, generator outage occurs due to planned 
maintenance or mechanical failure that may leave the system with 
insufficient generating capacity to meet load demand. The loss of 
load probability (LOLP) and loss of load expectation (LOLE) of 

the system are given by the following equation: 
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3.1.4 Combine objective function 

In the mathematical term, a general MOO problem is given as 
follows: 

T
k xfxfxf )}(),...,({)(min 1

       

                          

          
(6) 

where x  is the decision variable of the problem, at 2k .To 

solve the MOO problem, the WSM is used in this study. 

The MOO is first determined by normalizing the objective 
function for each stage. All columns represent a set of feasible 

states for the objective functions which is formulated as: 
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where     are the feasible states for the k -th objective function 

and j -th state. Each individual objective has different units and 

scales; therefore, the objective is formulated as normalized values 
of these three objective cases. The normalized index of the multi-

objective function is given by the following equation: 

minmax

min
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ff
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(8)

 

The normalized objective function,      are scaled between zero 

and one. For each of the three case objectives, a minimum and 
maximum value,      and      are determined. The new 

normalized objective function form defined as below:  
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(9) 

The least MOI normalized is equal to the summation of three 
normalized objective functions multiplied by a weighted 
coefficient. The MOI is given by the following equation: 





k

i

iiT fwxf
1

min)(

            
          

                           

(10) 

where 
iw  is weighted coefficient for the objective functionk , 

if

is the normalized objective function for objective function k . The

)(xfT
is summation of weighted coefficient multiplied by the 

normalized objective function. 

3.2 Constraints 

The MOO is to minimize the MOI subject to a set of constraints as 
follows. 

3.2.1 Cumulative generation constraints 

The cumulative generation capacity at year t is equal to the 
capacity of the previous year, plus the new capacity built at year t, 
minus the capacity retirement happening at year t. 

TtKUXX tttt   ,1       

                 

           
(11) 

3.2.2 Reserve margin limit 

Reserve margin lies between the minimum and maximum reserve, 
the installed capacity to be within the minimum and maximum 
reserve requirements allowed in the system. 

  TtRXRR t  ,maxmin

        

                         
 
    

(12) 

3.2.3 Generation capacity 

Generation capacity larger than demand capacity plus some 
reserve margin 

TtXRPdX tt  ),(
       

                               
 
         

(13) 
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3.2.4 Capacity addition constraints 

The capacity addition in each year is subjected to investment 
availability in year t.   

TtCU tt  ,
     

                                        

            
(14) 

 

3.2.5 Non-negativity constraints 

TtKUX ttt  ,0,,
                                                 

(15) 

3.2.6 Weighted coefficient constraints 

There are two constraints considered in WSM; 1) total weighted 
coefficient must equal to 1 and 2) weighted coefficient must be 
larger than zero These constraints are shown in the following: 

1
1




k

i

iw

               
                                   

                              

(16) 

 
0iw

                                                                                
(17)

 
In the most cases involve weights of objective function, setting 
one or more of the weights to zero can result in weak Pareto 
optimality(Marler & Arora, 2004) The relative value of the 
weights reflects the relative importance of the objectives. Each set 
is then used to form an independent weighted sum function with a 
unique set of the weighted coefficient, and in this way, the number 

of original objective functions is reduced. 

4. EP-WSM 

Figure 3 shows the EP-WSM flowchart within the HDPEP.EP is 
implemented via WSM approachto find the optimal weighted 

coefficient   of each objective function )(xf
i

by minimizing the 

MOI. This minimization is an approach to trade-offs the objective 
functions that combine the total cost, carbon emission and 
reliability of the system.  
A flowchart for the EP-WSM optimization is illustrated in 

Error! Reference source not found..In the first stage, the 

HDPEP along with the EP optimization is evaluated using a set of 

normalized objective function
1n

f , 
2nf  and 

3nf with several test 

functions (5, 10, 20, 30, 64 options). In this experiment, we 
simulated 5 evaluations with 1,000 iterations to ensure the 
consistency of the weighted coefficient of MOI minimization. 
In practice, the EP optimization is implemented as follow: first, 

the initialization part. A random number were generated to 
represent the weighted coefficient. Initially a series of random 
number,    is generated using a uniform distribution number, 

where; 

T

piiii wwww },...,,{ ,2,1,
                                          

(18) 

where   is variable number that is weighted coefficient number,   

is the population size from a set of random distributions with 
constraints considered are as in equation (16) and (17).The random 
number represents the new weighted coefficient, which functioned 
as the control variables. The number of variables depends on the 
number of objective functions are considered. The random 
numbers generated during initialization are called as initial 
population. Normally 20 populations are required during 

initialization process.  
The second step is fitness calculation. The fitness is MOI as 
presented in equation (10). In the third step, mutation is performed 
on the random number,    to produce offspring. The mutation 

process is computed based on the following equation: 

..3,2,1)];)((,0[
max

minmax,,  j
ft

ft
wwNww i

jjjijmi 

  

(19)

 

Where: 
       = mutated parents (offspring) 

     = parents 

  = Gaussian random variable with mean,   and variance,    

  = mutation scale,       

      = maximum random number for every variable 

      = minimum random number for every variable 

    = fitness for the     random number 

      = maximum fitness 

 
The fifth step is selection process. In this process, the offspring 
produced from the mutation process is combined with the parents 

to identify the candidates that can be transcribed into the next 

evaluation. The combined population equal to matrix size     x 
 ], where    is the number of rows or number of population, 

while    is the number of variables.  

There are two ways to implement the process namely pair-wise 
comparison and priority ranking. In this study, the priority ranking 
technique was selected (to solve the MOI / for the tournament 
selection). In the priority ranking approach, the populations are 
sorted in ascending order according to their fitness values. The 
first half of the populations are transcribed to the next iteration 
evaluation. Pair-wise selection technique can also be used as an 
alternative selection technique.  

The pair-wise comparison selection technique was found less 
accurate in the literature (Talib, Musirin, & Kalil, 2007)due to its 
randomized criteria, therefore is not considered in this study. 
Finally, is the convergence test The stopping criterion determines 
the convergence of the optimization process to achieve the optimal 
solution. The convergence criterion is set using the following 
equation: 

0001.0minmax  ftft
   

                              
                      (20) 

If the criterion is not met, the entire process will be repeated. 
Then, the optimally weighted coefficient for each state. 

5. Numerical Results 

The HDPEP power generation mix model has been tested on 

Malaysia’s Power System. The planning period was set for 
eighteen years. The candidates’ technology for additional capacity 
are coal, gas, hydro and RE. The more detail data input can be 
found in.(Mohd Shokri, Dahlan, & Mohamad, 2017) The proposed 
HDPEP MOOmodel has been implemented in Matlab 
programming software. The computer model is HP 
Pavilionslimline 400 PC series. 
The ranking of technology according to economic, environmental 
and reliability objectives are shown in Error! Reference source 

not found. The optimal power generation mix is to minimize the 
MOI. The result of proposed HDPEP model that optimized the 
weighted coefficient at minimum MOI is presented. The result of 
the proposed model is compared with two DP models: 1) classical 
WSM approach named Dynamic Programming Non-Preference 
Method (DPNPM), and 2) Dynamic Programming Preference 
Method (DPPM). In DPNPM, it is assumed that the objective 
functions have similar weight, which is set at 0.33 for each 

objective. On the other hand, in DPPM, it is assumed that the 
economic cost objective has more weight than environmental and 
reliability objective. The weigh coefficient for economic cost, 
environmental and reliability objective are set to 0.5,0.25 
respectively. 
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Fig. 2: EP implementation on the optimally weighted coefficient WSM framework 
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Fig. 3: Flowchart of proposed HDPEP decision-making technique 
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Fig. 4: Ranking of technologies according to economic, environmental and reliability objectives 

 

5.1 Multi-objective optimization 

Table 1shows the initial value of the randomized weighted 
coefficient for 20 populations. Each weight is higher than zero and 
sum of three weight is equal to one. The optimally weighted 
coefficient, normalized objective functions and MOI for each 
option are given in  
Table 2. From the results, S25 is the optimal option that give the 
lowest MOI of 0.0903 with optimal weighted coefficient of w1 = 

0.19, w2 = 0.02 and w3 = 0.79. The optimum option is used to 
trace back the combinations’ transition path of each state-stage. 
The set of options represents a group of different options to 
generation mix problem. 

 
Table 3presents the optimum weight coefficient of option S25 for 
the path transition at each state-stage. The weighted coefficient for 

each objective (w1, w2, w3)affects DP evaluation of the candidate 
technologies. The three-dimensional (3D) trade-offs plot between 
the three objectives cases is shown graphically in Fig. The points 
represent the feasible options at year 18. 
There are 64 alternative solutions found by HDPEP that met all the 
constraints set in the multi-objectives generation mix model.  The 
optimal generation mix is option S25as circled in Figure 5 and 
highlighted in Table 2. 

 
Table 1: EP Initialization 

Count          

1 0.48 0.07 0.45 

2 0.52 0.41 0.07 

3 0.37 0.25 0.38 

4 0.02 0.6 0.38 

5 0.38 0.42 0.2 

6 0.49 0.04 0.47 

7 0.33 0.08 0.59 

8 0.18 0.68 0.14 

9 0.02 0.28 0.7 

10 0.44 0.49 0.07 

11 0.19 0.02 0.79 

12 0.06 0.12 0.82 

13 0.42 0.4 0.18 

14 0.17 0.17 0.66 

15 0.36 0.5 0.14 

16 0.2 0.25 0.55 

17 0.56 0.41 0.03 

18 0.35 0.32 0.33 

19 0.29 0.44 0.27 

20 0.04 0.29 0.67 

 

Table 2: Option results of multi-objective index by hybrid EP-DP method 

Options (Sj) 
Weighted Coefficient Normalized Values of Objectives MOI 

                     

S1 0.70 0.1 0.29 0.3111 0.5764 0.5993 0.5440 

S2 0.49 0.04 0.47 0.0834 0.8647 0.2368 0.2201 

S3 0.49 0.04 0.47 0.1008 0.7212 0.1618 0.1613 

S4 0.49 0.04 0.47 0.1561 0.9039 0.2367 0.2347 

S5 0.49 0.04 0.47 0.0722 0.7211 0.1840 0.1734 

S6 0.19 0.02 0.79 0.3247 0.5114 0.2008 0.2305 

S7 0.19 0.02 0.79 0.1661 0.7729 0.1835 0.1919 

S8 0.19 0.02 0.79 0.2929 0.8280 0.1838 0.2173 

S9 0.56 0.41 0.03 0.0013 0.6964 0.6557 0.5321 

S10 0.49 0.04 0.47 0.1538 0.8641 0.2368 0.2335 

S11 0.49 0.04 0.47 0.0000 0.7766 0.3291 0.2755 

S12 0.19 0.02 0.79 0.2892 0.7576 0.1583 0.1951 

S13 0.49 0.04 0.47 0.0068 0.6405 0.3017 0.2524 
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S14 0.18 0.68 0.14 0.3878 0.2984 0.5176 0.4885 

S15 0.06 0.12 0.82 0.4890 0.5709 0.0060 0.1090 

S16 0.18 0.68 0.14 0.4797 0.3379 0.5177 0.5068 

S17 0.02 0.60 0.38 0.6937 0.3002 0.4081 0.4601 

S18 0.19 0.02 0.79 0.3712 0.7529 0.3514 0.3631 

S19 0.49 0.04 0.47 0.2362 1.0000 0.3766 0.3623 

S20 0.19 0.02 0.79 0.4398 0.7921 0.3513 0.3768 

S21 0.19 0.02 0.79 0.3490 0.5966 0.2915 0.3084 

S22 0.19 0.02 0.79 0.4413 0.6513 0.2920 0.3274 

S23 0.19 0.02 0.79 0.4327 0.5666 0.0064 0.0985 

S24 0.19 0.02 0.79 0.5111 0.6908 0.2915 0.3411 

S25 0.19 0.02 0.79 0.3222 0.6034 0.0216 0.0903 

S26 0.19 0.02 0.79 0.3972 0.7267 0.3450 0.3624 

S27 0.19 0.02 0.79 0.3692 0.4822 0.1685 0.2128 

S28 0.06 0.12 0.82 0.5025 0.6404 0.0000 0.1082 

S29 0.19 0.02 0.79 0.3898 0.5960 0.2898 0.3148 

S30 0.19 0.02 0.79 0.4830 0.6509 0.2903 0.3340 

S31 0.18 0.68 0.14 0.7517 0.2893 0.5992 0.6218 

S32 0.19 0.02 0.79 0.5532 0.6905 0.2898 0.3477 

S33 0.18 0.68 0.14 0.5320 0.3007 0.6185 0.5956 

S34 0.49 0.04 0.47 0.0989 0.8591 0.2368 0.2229 

S35 0.56 0.41 0.03 0.1332 0.8241 0.7671 0.6477 

S36 0.49 0.04 0.47 0.2347 0.8789 0.7659 0.6671 

S37 0.56 0.41 0.03 0.1959 0.4855 0.6924 0.5938 

S38 0.56 0.41 0.03 0.2950 0.5401 0.6920 0.6134 

S39 0.56 0.41 0.03 0.4945 0.5304 0.5790 0.5619 

S40 0.56 0.41 0.03 0.3695 0.5795 0.6924 0.6286 

S41 0.49 0.04 0.47 0.1706 0.5965 0.4451 0.3959 

S42 0.49 0.04 0.47 0.2686 0.6508 0.4452 0.4156 

S43 0.49 0.04 0.47 0.2400 0.6352 0.4451 0.4098 

S44 0.49 0.04 0.47 0.3428 0.6903 0.4451 0.4304 

S45 0.49 0.04 0.47 0.2329 0.5955 0.4470 0.4092 

S46 0.49 0.04 0.47 0.3329 0.6502 0.4471 0.4294 

S47 0.19 0.02 0.79 0.3906 0.4863 0.1740 0.2213 

S48 0.49 0.04 0.47 0.4080 0.6898 0.4470 0.4443 

S49 0.18 0.68 0.14 0.9029 0.0000 1.0000 0.9614 

S50 0.49 0.04 0.47 0.4896 0.6485 0.6051 0.5839 

S51 0.56 0.41 0.03 0.4521 0.6278 0.6056 0.5767 

S52 0.49 0.04 0.47 0.5553 0.6828 0.6056 0.5974 

S53 0.06 0.12 0.82 0.5430 0.3864 0.3109 0.3564 

S54 0.06 0.12 0.82 0.6432 0.4412 0.3109 0.3765 

S55 0.56 0.41 0.03 0.5253 0.5258 0.5790 0.5676 

S56 0.02 0.60 0.38 1.0000 0.3849 0.4146 0.5251 

S57 0.56 0.41 0.03 0.4096 0.5627 0.5993 0.5624 

S58 0.49 0.04 0.47 0.5090 0.6173 0.5996 0.5826 

S59 0.06 0.12 0.82 0.8293 0.4573 0.2218 0.3419 

S60 0.49 0.04 0.47 0.5842 0.6568 0.5993 0.5974 

S61 0.18 0.68 0.14 0.7800 0.2289 0.9746 0.9226 

S62 0.06 0.12 0.82 0.6866 0.4408 0.3079 0.3824 

S63 0.18 0.68 0.14 0.8522 0.2682 0.9746 0.9371 

S64 0.06 0.12 0.82 0.6497 0.6563 0.6043 0.6138 

 
Table 3: Optimum weight coefficient of option S25 for path transition at each state-stage 

Path          

a1,2 0.48 0.07 0.45 

a2,3 0.52 0.41 0.07 

a3,4 0.37 0.25 0.38 

a4,5 0.02 0.6 0.38 

a5,6 0.38 0.42 0.2 

a6,7 0.49 0.04 0.47 

a7,8 0.33 0.08 0.59 

a8,9 0.18 0.68 0.14 

a9,10 0.02 0.28 0.7 

a10,11 0.44 0.49 0.07 

a11,12 0.19 0.02 0.79 

a12,13 0.06 0.12 0.82 

a13,14 0.42 0.4 0.18 

a14,15 0.17 0.17 0.66 

a15,16 0.36 0.5 0.14 

a16,17 0.2 0.25 0.55 

a17,18 0.56 0.41 0.03 
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Fig. 5: Trade-o-ffs between the three-objective cases 

 

5.2 Generation mix optimization 

Fig shows the new generation installed capacity and scheduled 

retired capacity each year by HDPEP multi-objectives. It is 
interesting to note that at optimum weight, with higher weight for 
reliability objective, gas technology has been chosen as the 
favourable technology throughout the years. 

Fig. 6: Number of newly introduced technologies by hybrid DP-EP 

multi-objective 
 

shows the resulting generation mix evolution over the planning 
period. Apparently, the gas and hydro technologies are selected 
extensively by the proposed model in the case where the weighted 
coefficient is optimized. Oil technology is retiredin year 13 and 
been replaced by Hydro and RE. The optimum generation mix at 
the end of the planning period is 45.11% from gas, 35.34% from 
coal, 9.82% from RE and 9.73% from hydro.  

Table 4shows the comparison of proposed HDPEP model with 
other two DP models namely DPNPM and DPPM in term of MOI, 
installed capacity for each technology, total cost, total CO2 and 
LOLE. 
Results show that, the proposed HDPEP model produces the 
lowest MOIi.e. 0.0903, followed by DPPM with 0.2378 and 

DPNPM with 0.4171. The highest installed capacity by technology 
in generation mix by HDPEP in year 18 is contributed by gas with 
13,910 MW followed by coal with 10,900 MW, RE with 3,029 
MW and hydro with3,000 MW. The installed capacity from gas, 
hydro and RE technologies by HDPEP model are found higher 
than the mix provided by DPNPM and DPPM. These technologies 
significantly reduce the amounts of coal. The optimum total cost, 
carbon emission and LOLE over the 18 years planning period 

simulated by the proposed HDPEP is $106.84 billion, 415 million 
tCO2, and 0.0496 days per year respectively. 

 

 
Fig. 6: Number of newly introduced technologies by hybrid DP-EP multi-objective 
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Fig. 7: Evolution of generation mix by HDPEP for 18-year planning period and percentage generation mix at year 18 

 
Table 4: Optimum multi-objective index, installed capacity, total cost, total CO2 and LOLE for proposed HDPEP model and two DP model 

Solution 

Method 

Normalize 

Index 

Coal 

(MW) 

Gas 

(MW) 

Hydro 

(MW) 

RE 

(MW) 
Total Cost ($) 

Total Carbon 

Emission      
LOLE 

(days/year) 

DPNPM 0.4171 15,200 12,710 2,101 1,030 104,032,930,775.29 447,424,628.73 0.0031 

DPPM 0.2378 15,901 12,710 1,201 1,229 102,572,822,242.93 454,874,577.62 0.0080 

HDPEP 0.0903 10,900 13,910 3,000 3,029 106,837,117,927.57 415,171,586.03 0.0496 

 

6. Conclusion 

This paper presents the development of a new efficient HDPEP 
method as an alternative method to solve multi-objectives 
generation mix problem. The result shows that Malaysia optimum 
generation mix at year 18 is 45.11% from gas, 35.34% from coal, 
9.82% from RE and 9.73% from hydro. The proposed HDPEP 

multi-objectives yields a better solution in term of providing the 
lowest multi objective index (MOI) as compared to the non-
optimal WSM DP model.  
The proposed HDPEP multi-objectives model could be further 
extended too their heuristic technique for a better multi-objectives 
performance hence accurate generation mix. 
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