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Abstract 
 

The conjugate gradient method has been widely used for finding solution for the large-scale unconstrained optimization. Fields such as 

computer science and engineering are the two most frequently engaged, because of its simplicity, the speed of getting the solution and the 

minimal storage requirement. This study presents an extended conjugate gradient method of Polak-Ribière-Polyak with the strong Wolfe-

Powell (SWP) line search satisfying some properties such as sufficient descent and global convergence. For the purpose of experimenta-

tion, a set of 141 test problems have been used. The results showed that our proposed method has surpass the others in terms of efficien-

cy and robustness. 
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1. Introduction 

Conjugate gradient (CG) method is a line search algorithm mostly 

known for its wide application in solving unconstrained optimiza-

tion problems. Its low memory requirements and global conver-

gence properties makes it one of the most preferred method in real 

life application such as in economics, engineering and physics [1]. 

They are designed to solve problem of the form: 

 

                                                                     (1) 

 

where  is continuously differentiable function. The 

 is the gradient. For an initial point , the 

nonlinear CG method generates a sequence by using the recur-

rence relation 

 

                                     (2) 

 

where  is the current iteration point,  is a step length 

obtained by a line search and.  is the search direction which 

defined by: 

                                                                                                   

                                        (3) 

 

where the scalar  is known as the conjugate gradient coefficient 

and . There are two categories of line search that are 

exact and inexact line search, which can be used to compute 𝛼k. 

The following is the definition for an exact line search. 

 

.                        (4) 

 

By and large, exact line search requires the step length to have an 

exact value and as such drives the rise in the computational power. 

To address this problem, researchers typically employ inexact line 

search. One that is commonly known inexact line search is the 

strong Wolfe-Powell (SWP).  

 

The method relies heavily on the function reduction and it search-

es for 𝛼k via narrowing the search area. This way, 𝛼k becomes 

nearer to the local minimum.. SWP can be defined as follows:                                                  

 

                                     (5)  

 

                                             (6) 

 

where . 

 

The SWP is a modified of a line search called weak Wolfe-Powell 

(WWP) which is given in (5) and 

 

                                                 (7) 

 

The scalar 𝛽k comes with different formulas such that found in 

Hestenes-Stiefel (HS) [2], Fletcher-Reeves (FR) [3], Polak-

Ribière-Polyak (PRP) [4], Gilbert and Nocedal (PRP+) [5], Con-

jugate Descent (CD) [6], Liu and Storey (LS) [7], Dai-Yuan (DY) 

[8], Wei et al. (WYL) [9], defined as follows: 

 ,                                                                            (8) 

 ,                                                                             (9) 
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 ,                                                                          (13) 

 

where . 

 

  ,                                                                (14) 

                                                         (15) 

 

Initially, Hestenes-Stiefel formula [2] was proposed in 1952 to be 

used for solving the quadratic functions. This is followed by 

Fletcher and Reeves [3] which was introduced in 1964 specifically 

for nonlinear functions. Zoutendijk [10] initiated the study on the 

convergence properties of FR method, followed by another work 

from Al-Baali [11] and Guanghui et al. in [12] using the SWP line 

search with .  

 

Using an exact line search, Elijah and Ribiere [4] proved that PRP 

method is globally convergent. However, in later time, Powell 

[13] proved that there could be a non-convex function that could 

drive PRP method to not globally converge by using a counterex-

ample. As a result, Powell introduced nonnegative PRP method 

(PRP+), which was later studied by Gilbert and Nocedal [5] 

proved to be globally convergence with , 

under complicated line searches. However, for a general nonlinear 

function, the convergence of PRP+ under the SWP line search 

cannot be guaranteed. Consequently, Wei et al. [9] proposed a 

positive conjugate gradient method that imitates the original PRP 

method. Further improvement from this idea can be found in [14–

15]. 

 

                                                           (16) 

                                                       (17) 

 

where . 

 

Following to that, based on a modified version of , Zhang 

[16] proposed the following 

 

                                                       (18) 

 

Many other studies CG formulas which focus on the robustness 

and the efficiency, see [17–20]. The structure of this paper is as 

follows. Section 2 describes our new CG formula and the algo-

rithm. In Section 3, the convergence analysis presented. Numeri-

cal results are done in Section 4. Finally in section 5 we conclude 

our findings. 

2. The Newly Proposed Algorithm 

This section introduces  an extended version to  and 

 method. It is known as DMAR method. The idea of the 

newly proposed formula mainly comes from Zhang [16]. DMAR 

denotes Dawahdeh, Mustafa, Ahmad, and Rivaie, and its formula 

is given in (19). 

                                                        

                (19) 

 

where is the Euclidean norm. We define  as 

 

   . 

 

It is worth noting that 

 

 and so,    

 

.                                                                     (20)  

 

Hence, according to the argument presented in [5],  will 

inherit all of the advantages and properties of  

 

Algorithm 1 

S1: Select the initial point . Set the initial search direction 

 and let . 

S2: Calculate  from (3) and (19). 

S3: Calculate  from  (5) and (6). 

S4: Recalculate  from (2). 

S5: If  then exit; else let  and go to S2. 

3. Global Convergence Analysis 

This section is dedicated to the study of the convergence proper-

ties of . Keep in mind that the search direction must satisfy 

sufficient descent condition as a basis for proving global conver-

gence. Consider the following  

 

                                                                             

 

Then, we have   . If it is extended to the following, 

 

 
  , when , .                                  (21)  

 

We said that (21) satisfies sufficient descent condition. Now, con-

sider the coefficient  satisfies the following 

 

 

                                                               (22) 

 

Lemma 1: Given  and with  then , we have 

 

 

 
                                                                   (23) 

 

Proof: We prove using mathematical induction. Obviously the 

statement is true for . Suppose that (23) also holds true for 

some , then  

 

                  
                  =  

 

Since   we deduce 

that 

 

=

   

 

which implies that  

 

 . 

 

Applying the SWP conditions and  from (22), we 
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come to the relation 

 

 . 

 

Next we substitute (22) and apply Cauchy-Schwartz inequality to 

obtain 

 
 

, 

 

which implies 

 

  

=  

 

By applying the induction hypothesis in (23), we have 

 
 

 

=  

 ,  

 

which means that 

 

 . 

 

Hence, 

  
  

 

Since , we get 

 

  ,  

 

which implies that 

 

   . 

 

Therefore, 

 

 , whenever , and then 

 

 ,              

 

That guarantee (23) is true for . As such, the proof is com-

pleted. 

Based on Lemma 1,   and  with , is somehow relat-

ed as  

 

, or  , for all .                      (24) 

 

Based on sufficient descent property found in (21), the coming 

theorem leads the way to global convergence. 

 

Theorem 1: Given  and with , then for all  , 

we have a relation  

 

                                                                (25) 

 

Proof: Using mathematical induction. Obviously, the statement is 

true when . Let assume (25) is true, for some , it fol-

lows that 

 

   

which implies 

                    

 

                                                   (26) 

 

From the SWP condition, we have 

 

, 

 

which together with that  we get 

                                                        

         (27) 

 

Combining (26) with (27), we come to the relation  

 

 

 

                                         

Since  we apply induction hypothesis (25) to obtain 

 

 

                                        

 
 

Hence,   

 

 
 

This shows that the statement holds for , and thus concludes 

the proof. When working with global convergence analysis of the 

CG method with SWP line search, we frequently assume the fol-

lowing assumption, which we would consider hold throughout our 

studies unless otherwise stated: 

i) The  is a bounded level set. 

ii) The  is continuously differentiable function with Lipschitz 

gradient, also continuous within neighborhood  of , that 

is,  such that  

   

,  

 

The following lemma was proved by Zoutendijk in [10], it is used 

to analyze the global convergence of the CG method. 

 

Lemma 2: For any CG method of the form (2) and (3), with  

and  obtained via one-dimensional search direction, the follow-

ing Zoutendijk condition holds 

                                                                          

                                                      (28) 

 

where  is the angle between  and , given by 

  

  .                                                                   (29) 

 

See [10] for the proof of Lemma 2. 

 

Lemma 3: Consider a sequence ,  with , we 

have  
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Proof: Multiplying (25) by  and by using (29), we get 

  

  , for all ,                             (30) 

 

where  and . 

Combining (28) and (30) together, we have the relation   

 

 
 

Therefore, this proof is completed. 

 

Theorem 2: Consider a sequence with . By assume 

that Assumption 1 holds, we have  

 

.  

 

Proof: Suppose the opposite, hence  which is a constant 

and integer  s.t.  

 

 , 

 

which means 

 

  , for all  and .                               (31) 

 

Rewriting (3) as  = , and squaring it we get 

   

 
 

 then, 

 

   

 

Applying Theorem 1, we have 

             

 

 

which leads to 

                                       

                   (32) 

 

By substituting (22) into (32), we obtain  

                                               

                         (33) 

 

By multiplying both sides of (33) by  we get 

 

 

            

                            (34) 

 

From (23), we have , so (34) becomes 

 

 

          .                                (35) 

    

Combining (31) and (35) together, we have  

 

 for all ,  

 

which means that 

 

        for all .                              (36) 

 

Since (36) is true for all , then 

 

 

                                                          (37) 

 

From (37), we get 

 

                                                         

 

 

However, this is contradictory to Lemma 3. Hence, the proof is 

concluded. 

4. Results and Discussion 

This section aims at evaluating our methods against other existing 

methods such as the WYL and NPRP, using some standard test 

function as shown in Table 1 [21-23]. There are four different 

parameters considered namely the time taken by the CPU, the 

number of iterations, the number of function evaluations and the 

number of gradient evaluations. 

 

 
Fig. 1: The number of iterations 

 

Let , ., and  is chosen to be . Here, 

 is set to hold the stopping criteria. Any success is 

recorded for having the iterations number of not more than 1000. 

Our experimentation is done with Matlab R2017a subroutine run-

ning on a PC powered by an  Intel R Core TM, i5-2410 processor 

having 3 GB of memory.  

 

We use the idea of performance profile introduced by Dolan and 

Mor´ [24], the results are shown in Fig. 1 through Fig. 4. From the 

figure, we can determine the best method as the one with high 

values of ps(t) or observably located in the  upper right corner of 

the plot. The ps(t) tells the rate of successfully solving the test 

problem. Clearly from Figures 1, 3 and 4, DMAR method signifi-
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cantly outclassed the other two methods in terms of the number of 

iterations, the number of gradient evaluations and the number of 

function evaluations. Whereas, in Figure 2, somewhere after it 

begins, WYL has slightly outperformed DMAR for some values 

of input, whereas at all other times, DMAR performed the best.  

 

 
Fig. 2: The CPU time 

 

 
Fig. 3: The gradient evaluation 

 

 
Fig. 4: The function evaluation 

 
Table 1: Test functions 

N     Function Dimension Initial Points 

1  GENROSEN2 
2  QUARTC 

 

 
3  Extended Block 

Diagonal 

4  Sphere 
 

2 
2,500,1000, 

5000,10000 

 
2,500, 

1000,5000 

2,500,1000, 
5000,10000 

(2,2) 
(2, 2, . . ., 2), (5, 5, . .., 5) 

(10, 10, . ., 10) (15, 15,..) 

 
(0.1, 0.1, . . ., 0.1) 

 

(1, 1, . . ., 1), 
(5, 5, . . ., 5) 

5  Generalized Quar-

tic GQ1 
6  Diagonal  4 

 

7  EDENSCH 
 

8  DENSCHNB 

 
9  DENSCHNC 

 

10  Extended 
DENSCHNB 

11  Generlized Tridi-

agonal 2 
12  EXTROSNB 

13  Raydan 2 

 
14  HIMMELBC 

 

15  DIXMAANA 
 

16  DIXMAANB 

 
17  BIGGSB1 

18  EG2 

 
19  DENSCHNF 

 

20  HIMMELBH 
21  LIARWHD 

 

22  TRIDIA 
23  Six Hump 

24  EG3 

25  A Quadratic QF2 
26  FLETCHCR 

27  Diagonal 1 
 

28  Hager 

29  Booth 
30  Zettl 

31  Tridiagonal Dou-

ble Borded 
32 STAIRCASES1 

33  Raydan 1 

34   Extended Trigo-
nometric 

35   ENGVAL8 

2,500,1000, 

5000,10000 
2,500,1000, 

5000,10000 

2,500,1000, 
5000,10000 

2,500,1000, 

5000,10000 
2,500, 

1000,10000 

2,500,1000, 
5000,10000 

2 

 
2 

2,500,1000, 

5000,10000 
2,500,1000, 

5000,10000 

6000,9000, 
12000 

300,6000, 

9000,12000 
2 

2,1000, 

5000,10000 
2,500,1000, 

5000,10000 

2 
2,1000, 

5000,10000 

2 
2 

2 

2 
 

2 
2 

 

2 
2 

2 

2 
 

2 

2 
2 

 

2 
 

(1, 1, . . ., 1) 

 
(1, 1, . . ., 1) 

 

(0, 0, . . ., 0) 
 

(1, 1, . . ., 1) 

 
(2,2, . . ., 2) 

 

(1, 1, . . ., 1), 
(5, 5, . . ., 5) 

(10, 10) 

 
(1.5, 1.5) 

(1, 1, . . ., 1), 

(10, 10, . . .,10) 
(1, 1, . . ., 1) 

 

(2, 2, . . ., 2) 
 

(2, 2, . . ., 2) 

 
(0.5, 0.5) 

(1, 1, . . ., 1), (2, 2, .  ., 2) 

 
(1.5, 1.5, . . ., 1.5) 

 

(1.5, 1.5) 
(4, 4, . . ., 4) 

 

(1, 1) 
(1, 1), (10, 10), (15, 15) 

(1, 1) 

(0.5, 0.5),  (1, 1) 
 

(0.5, 0.5), (5, 5) 
(0, 0),(1, 1), 

(2, 2) ,(3, 3) 

(1, 1) 
(1, 1), (3, 3) 

(0, 0) 

(-1, -1) 
 

(1, 1) 

(1, 1) 
 

(0.2, 0.2) 

(2, 2) 

36   DESCHANA 
2,500,1000, 

5000,10000 
(1, 1, . . ., 1) 

5. Conclusion  

Many areas of computer science and engineering make use of 

conjugate gradient methods [25–29]. This study introduced a new 

breed of coefficient for a CG algorithm. The experimental results 

revealed the superiority over existing methods. Moreover, we 

proved the globally converged properties of DMAR method with 

the strong Wolf Powell (SWP) line search. 
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