Synthesis of the Algorithm of Adaptive Compensation of Nonlinear Distortions for Informational Systems

Olesandr Shefer\textsuperscript{1,2}, Oleksandr Shulha \textsuperscript{1}, Nataliia Ichanska\textsuperscript{1}, Caterina Kozelkova\textsuperscript{2}

\textsuperscript{1}Poltava National Technical Yuri Kondratyuk University, Ukraine
\textsuperscript{2}State University of Telecommunication, Ukraine
\textsuperscript{*Corresponding author E-mail: avs075@ukr.net

Abstract

An adaptive method of compensation of non-linear distortions was created in informational systems on the basis of usage the synthesized non-linear adaptive compensators for the expansion of a linear dynamic diapason of radio receiving devices that differs from the well-known ones, because it doesn’t lead to reduction of reliability of telecommunication systems both in apparatus and in functional meaning that allowed to increase the quality of their functioning. The usage of non-linear adaptive compensators allows getting the necessary meanings of parameters and the methods of connection of devices that are set to depress the non-linear distortions in those mentioned systems that will allow increasing the reliability of functioning of informational systems in 12\% in general.

Keywords: telecommunication system, dynamic diapason, non-linear adaptive compensation, noise immunity, non-linear dispatching function.

1. Introduction

The opportunities of practical realisation of potential characteristics of telecommunication systems are substantially limited by a number of internal (relatively low reliability of equipment and non-stability of dynamic diapason of receiving devices of telecommunication systems) and external factors (non-stationary of conditions of expansion of radio waves in time, deviation of a satellite – a carrier of telecommunication systems from uniform rectilinear motion, the intrusion of obstacles on the entrance of radio receiving devices of telecommunication systems). This, first of all, explains available at present time lagging of real indices of quality of telecommunication systems from their potential opportunities. The weightiest factor that has an essential influence on the quality of functioning of telecommunication systems and their noise-immunity in condition of their radio electronic counteraction is a limitedness of dynamic diapason of real radio receiving devices as a consequence of non-linearity of their amplitude characteristics \cite{1}. An effect of limitedness of dynamic diapason of radio receiving devices exceeds the activity of other factors in a raw of occasions. Especially it is seen during the influence of obstacles of various kinds on these radio receiving devices \cite{2}. The practical realization of potential opportunities of telecommunication systems that are currently rapidly higher than their real accessible technical characteristics – is one of the main tasks of modern theory and practice of telecommunication systems. It is needed to pay attention to the fact that non-linear processes in these real radio receiving devices are poorly learned and are the processes that cannot be easily removed. Furthermore, they have a substantial and many-sided influence on the quality of functioning of telecommunication systems and they are insufficiently accessible to severe and exact description and calculation in general. According to this, one of the most important and actual task that is directed to increase the indices of quality of telecommunication systems is an expansion of dynamic diapason of their radio receiving devices. It is important to mark that the increase of degree of linearity of an amplitude characteristic of radio electronic devices has extremely valuable meaning for the improvement of systems of automatic management. In particular, non-linearity of an amplitude characteristic of real radio electronic devices is the main obstacle on the way to creation of invariant systems of automatic management to the situation of presence of the obstacles. However, well-known methods of expansion of linear dynamic diapason of radio receiving devices that includes, first of all, schemes of automatic regulation of strengthening, systems of adaptive regulation of sensitivity and also functional magnifiers with non-linear amplitude characteristic that are not completely suitable for increasing of the indices of quality of telecommunication systems in conditions of their radio electronic counteraction. These methods are grounded on non-linear concordance of dynamic diapason of re-entrant influences with the relatively narrow dynamic diapason of re-entrant signals. Consequently, their usage is accompanied with unalterable losses of a part of the information, reduction of the farness of activities of telecommunication systems and considerable amplitude and phase non-linear distortions. This leads to a considerable reduction of indices of quality of telecommunication systems (in a raw of occurrences their exactness is considerably lower that the exactness of telecommunication systems with linear radio receiving device due to the non-linearity of of an amplitude characteristic) and also to a considerable worsening of their noise immunity. On the other hand, for the expansion of dynamic diapason of radio receiving devices of telecommunication systems methods that are grounded on the usage of schemes with the negative linear feedback are of the little use. This is conditioned with the reduction of a coefficient of transmission of radio receiving devices and consequently with the reduction of its sensitivity that leads to the reduc-
tion of farness of activities of telecommunication systems and the loss of of the information about some weak radio local purposes. A group character of radio local signals considerably limits the opportunities of using this method that is grounded on a usage of a linear area of amplitude characteristic of radio electronic devices that is repeated and sequent in time. At the same time, optimal in a principle relation well-known linear methods of expansion of dy

amic diapason of radio receiving devices that are grounded on the usage of of the schemes of compensation, correction of non-linear distortions and also schemes with non-linear negative feedback that belongs to strict (that is to say, constantly turned on) methods of conservation, since the determinational filters with apriori determined and constant in time parameters are used. In this connection, it is worthwhile mentioning that these methods are very sensitive to the inevitable errors of adjustion, apparatus realization and temporary non-stationarity of parameters of real radio devices. As a consequence, some well-known linear methods have insuffi
cient exactness of depression of non-linear distortions and satisfactorily function only in a relatively narrow dynamic diapason of input influences and outside them they are not effective and can create some additional distortions.

Thus, a development of adaptive methods of expansion of a linear dynamic diapason of radio receiving devices of telecommunication systems that will be free from mentioned above drawbacks of well-known determined linear methods. Followin\[1\] all of this, it will be expedient and will have a lot of perspectives from the practi
cal point of view to have a synthesis of adaptive schemes of compensation of non-linear distortions. This is conditioned with the fact that these schemes are the simplest and have the highest potential characteristics of exactness and they do not reduce the reliability of telecommunication systems since the put out of the action of a compensating filter does not lead to the refusal of radio receiving devices in contrast to the well-known adaptive compensators in the linear radio receiving devices that are condi
tionally called linear in this context.

It is obvious that the possibilitie sof increasing of indices of quality of telecommunication systems on the basis of synthesis of non-linear adaptive compensators can be successfully practically imple
mented only on the basis of an adequate conception and exact analysis of non-linear processes in radio receiving devices taking into consideration the frequently-dependent character of its non-linear channel characteristics. Furthermore, for the determina
tion of scientifically-grounded demands to the width of a linear dynamic diapason of radio receiving devices in general as well as its separate cascades for the set conditions of usage of telecommu
nication systems it is needed to carry out a constructive investiga
tion of the influence of non-linearity of amplitude characteristics of real multiscrades radio receiving devices on the indices of quality of telecommunication systems. Herewith, the authenticity of finding out the optimal variants of construction of non-linear adaptive compensators and the ways of their connection to the radio receiving devices can be significantly determined with the possibility of demonstrative representation of the radio devices that were being investigated on different levels of their distillati
zation and the convenience of a methodic of analysis for analytic investigations and numeral calculation the usage of computers.

Nowadays, the influence of non-linearity of amplitude characteristics of radio receiving devices on the quality of functioning of telecommunication systems is not sufficiently learned. In particular, a real opportunity of integrally evaluating the influence of non-linear processes in radio receiving devices directly on the indices of quality of telecommunication systems that are reasonable only for the relatively narrow raw comparing to some simple one-cascade inertial radio receiving devices is absent. On the other hand, in a process of analysing the noise immunity of telecommu
nication systems the scientists suppose, as a rule, from the assump
tions about linearity of radio receiving devices. However, non-linear influence of obstacles and a fight with them are really complicated in comparison with the methods of investigation and increasing of noise-immunity of linear radio receiving devices of telecommunication system. Received at a current time results of the analysis of the influence of the obstacles on telecommunica
tion systems with non-linear radio receiving devices have, as a rule, really limited sphere of utilization and a qualitative character, in general[1].

Till the present day, investigations were carried out with the condi
tions of making really serious assumptions about simplification and they were not fully considering the specific peculiarities of origin of a mixture of radio local signals and obstacles in compli
cated multi-cascade radio receiving devices. The comparison of the results with the data of the analysis in a linear approaching that were received with the use of different methods in a raw of oc
cassions is really complicated. Some of the results are not suffi
ciently well-combined with the criteria of estimation of non-linear properties of radio receiving devices that were practically used. Consequently, the purpose of the article is to theoretically ground and create a method of increasing of quality of functioning of on-
board radio local systems on the basis of improvement of adaptive methods of compenensation of non-linear distortions.

2. Synthesis of an adaptive method of depression of non-linear distortions

Let’s create some exact practical recommendations about the im
provement of telecommunication systems on the basis of ground
ing and utilizing the daptive ways of expansion of the linear dy
namic diapason of their radio receiving devices. First of all, it is
needed to carry out a synthesis of adaptive method of depression of non-linear distortions in a radio device. It is expedient to bring
the conditions of this task to the accordance with the classic for
mulation of the task of an adaptive compensation of these obstac
les in the linear radio receiving devices [2,3]. Well-known linear adaptive compensators can be characterized with the presence of the main and supportive entrances in which the mixture of a signal and an obstacle (correspondingly) come in [4]. With all of this, an obstacle in the main entrance is correlated only with the signal of an obstacle and it is not statistically connected (or poorly correlat
ed) with the beneficial signal. To have an opportunity to immedi
ately use the mathematic apparatus of the theory of adaptive sys
tems [5] and with the purpose of formalization of a task of adaptive compensation of non-linear distortions, let’s conditionally imagine the exit and the entrance of the monodimensional radio device as both the main and the supportive entrances of non-linear adaptive compensator, correspondingly.

All the methods mentioned above we will call the adaptive com
pensators of non-linear distortions [6]. Then, the general structural scheme of a monodimensional adaptive compensator of non-linear distortions (fig. 1) is equivalent to the classic linear adaptive compensator.

Actually, an input signal X is statistically connected only with the output signal Y and does not correlate with the internal noises of N of mentioned devices. It is obvious that a structure of an adaptive compensator of non-linear distortions can be fully determined with the method of description of the processes of radio devices [1] and with the algorithm of solving the task of adaptive compensation of non-linear distortions.

The output signal of a monodimensional non-linear radio device in an appearance of a tapered be the first m parts of Volterra series according to the work [7], can be showed as it is presented below:

$$Y(f_1,\ldots,f_n)=Y(f_{\ldots, f_n})+N(f) = 
\sum_{k=1}^{\infty} H_k(f_{\ldots, f_n}) \prod_{i=1}^{k} X(f_i) + N(f). \quad (1)$$

Then, according to method of the modified structural matrixes of systems [8] follows from a method of nonlinear entrance signals that for one-dimensional radio devices the general basic entrance of the adaptive compensator of nonlinear distortions separates in
the shaper of basic signals on \( m \) of basic entrances, each of which is influenced by a separate basic signal of a look [8]

\[
X_i = X_i(f_1, \ldots, f_m) = \prod_{j=1}^{k} X(f_j), \quad k=1,2,\ldots, m. \tag{2}
\]

It is possible to show that the basic signal of \( X(\cdot) \) is rather strongly correlated only from \( k \)-go component about a day off of a signal of the radio device, that is \( Y_i(f_1, \ldots, f_m) = H_i(f_1, \ldots, f_m) \prod_{j=1}^{k} X(f_j) \) and is significantly interconnected, in statistical sense, with other components of an output signal of \( Y(\cdot) \) [9]. Therefore on an entrance of the adaptive compensator of nonlinear distortions there is full (to within an error of truncation of kernels of Voltaire the first \( m \) members) an oppression alarm components of an output signal of \( Y(\cdot) \) while internal noise of \( N(\cdot) \) take place without changes [10]. It should be noted that requirement of full statistical independence of signals is excessively rigid and unjustified [5]. As show results of experiments, adaptive compensators rather well work at strongly correlated signals generally and basic entrances [11]. If the component of \( n \)-go of an order of its output signal is useful reaction of the radio device, then removing from the adaptive compensator of nonlinear distortions the adaptive filter which the basic signal \( X_{in}(\cdot) \) of influences, at the exit of the adaptive compensator of nonlinear distortions, except internal noise of the radio device \( N(\cdot) \), we have as well signal \( Y_{as}(\cdot) \). Physically it means suppression (compensation) of nonlinear distortions in this radio device. The structure of the adaptive compensator of nonlinear distortions can be significantly simplified if to remove also all adaptive filters, besides, on which the basic signal \( X_{i}(\cdot) \) of arrives, where \( 1 \) - an order of the nonlinear distortions, most dangerous to this radio device [11].

It should be noted that the optimal solution of a problem of adaptive compensation, as a rule, cannot physically be realized as it assumes instant measurements and averagings on time of a significant amount of coefficients of autocorrelation of entrance influences of their mutual correlation with mistake signals (reference signals), and also addresses of a matrix high an order that is very difficult [12]. In this regard scientific and practical interest represents definition quasioptimum (that is approximately optimum) decisions which together with comparable simplicity are implemented physically, has bystry convergence in time to the optimal solution [6, 12].

Let’s find a quasioptimum algorithm of the solution of a problem of adaptive compensation of nonlinear distortions. For this purpose we will present an output signal of the adaptive device which essentially is nonlinear system with non-stationary parameters in time, in the form of Voltaire's number truncated by the first \( m \) members parametrical [13, 14]

\[
\sum_{k=1}^{m} W_k(f_1, \ldots, f_m) \prod_{j=1}^{k} X(f_j) = \sum_{k=1}^{m} W_k(t)X_k, \tag{3}
\]

where \( W_k(\cdot) \) - the parametrical transfer \( k \)-go function of an order (the transfer \( k \)-go function of the adaptive filter). At the exit of the adaptive compensator of nonlinear distortions the mistake signal \( \epsilon(\cdot) \) which, in the assumption of a relative trifle of noise \( N(\cdot) \), is equal [6]

\[
\epsilon(t,f_1,\ldots) = \epsilon(t) = Y(t) - \sum_{k=1}^{m} W_k(t)X_k \equiv Y(t) - \sum_{k=1}^{m} W_k(t)X_k. \tag{4}
\]

Now one of the most effective, from the practical point of view, in the theory of adaptive systems is the method of a minimum of an average square of a mistake [6]. This method can be considered as a special case of a gradient method of the fastest descent at assessment of a gradient of an average square of a mistake on its instant value [13]. It is possible to show that the specified assessment is sufficient and not displaced, and also significantly simplifies hardware realization of the synthesized adaptive device. Considering that all sizes in a formula (4) are complex, in the course of regulation of the transfer \( k \)-go function \( (k = 1, 2, \ldots, m) \) the active filter in a complex differential form of record has the following appearance [6, 13]

\[
\frac{dW_k(t,f_1,\ldots,f_m)}{dt} = \frac{dW_k(t)}{dt} = 2\epsilon_k \mu(t)X_k^* \tag{5},
\]

where \( \epsilon - \) a positive constant (coefficient of transfer of a chain of feedback) which defines stability and speed of reorganization of adaptive compensation of nonlinear distortions; \( \epsilon_k - \) proportionality coefficient, is in number equal to unit; the sign \( \epsilon - \) designates in a complex interfaced size.

Generalizing the algorithm received above in case of multidimensional adaptive compensation of nonlinear distortions, it is possible to claim unambiguously that the structure of multidimensional adaptive compensation of nonlinear distortions and its shaper of basic signals unambiguously is defined by methods of nonlinear entrance signals and the modified stukturny matrices of systems. Similarly it is possible to find discrete option of a kvaziotimalny method of a minimum of an average square of an error of creation of adaptive compensation of nonlinear distortions which complex form of record looks [6]

\[
W_k(j+1,z_1,\ldots,z_m) = W_k(j,z_1,\ldots,z_m) + 2\epsilon_k \mu(t)X_k^*, \tag{6}
\]

where \( j - \) discrete time; \( z_i (i=1,2,\ldots) - \) arguments of multidimensional \( z \)-transformation.

Considering advantages of analog adaptive compensators of nonlinear distortions which allow to suppress nonlinear distortions directly in the radio-receiving devices in real time, but not in the course of further processing [10], it is expedient to pay the main attention to analog adaptive compensators of nonlinear distortions. For discrete adaptive compensators of nonlinear distortions all results can be received similarly [7, 8]. Let’s define an error of compensation of the adaptive compensator of nonlinear distortions in the following look

\[
V_k(t,f_1,\ldots,f_m) = V_k(t) = H_k(t,f_1,\ldots,f_m) - W_k(t,f_1,\ldots,f_m). \tag{7}
\]

Repeating the reasonings similar provided in work [15] and lowering intermediate calculations, it is easy to see that

\[
\lim_{t \to \infty} V_k(t) = 0, \quad \forall k \in [1,\ldots, m]. \tag{8}
\]

In turn it means that...
\[
\lim_{t \to \infty} W_k(t_1, \ldots, t_m) = H_k(t_1, \ldots, t_m), \quad \forall k \in [1, \ldots, m].
\]

So, transfer functions of adaptive filters of adaptive compensators of nonlinear distortions meet in time in nonlinear transfer functions of the radio device. It is possible to show that effective convergence is observed at least until internal noise of the adaptive compensator of nonlinear distortions do not exceed those nonlinear distortions which are compensated in size.

The synthesized adaptive compensators of nonlinear distortions can be used for improvement of qualitative characteristics of a wide class of information systems, in particular - for improvement of spectral characteristics of the radio-transmitting devices, multipliers and synthesizers of frequency, for increase in amplitude characteristics of the radio-receiving devices and repeaters of different function and for optimization of systems of automatic control by criteria of nonlinearity [15]. Besides, developments on the basis of the adaptive compensator of nonlinear distortions of the adaptive measuring installations of essentially new type intended for carrying out direct measurements of nonlinear distortions, and also identification in broad and narrow sense of nonlinear dynamic systems [13, 15] are expedient. As a result of the carried-out synthesis basic confirmation of an opportunity adaptive the solution of a problem of compensation of distortions in radio devices [6] is received. But, from the practical point of view also assessment of characteristics of accuracy and dynamic characteristics of adaptive compensation of nonlinear distortions which are constructed on the known base [16] of radiotelementry is important. Therefore for the reasoned answer to a question of real opportunities of the adaptive compensator of nonlinear distortions for expansion of dynamic range of the radio-receiving devices of telecommunication systems, for the purpose of development of an evidence-based technique of design, it is necessary to conduct a research of their qualitative characteristics.

3. Assessment of dynamic characteristics and the accuracy of adaptive compensation of nonlinear distortions taking into account internal noise and not ideality of parameters of their elements

With a research objective of physical capacity of realization and real opportunities of adaptive compensation of nonlinear distortions, and also for development of an evidence-based technique of their design concerning a problem of expansion of linear dynamic range of the radio-receiving devices of telecommunication systems we will carry out the analysis of qualitative characteristics of the adaptive compensator of nonlinear distortions constructed on the basis of the real "rustling" elements with imperfect, generally, parameters.

Dynamic properties of adaptive compensators are, as a rule, characterized by a constant of time of adaptation (reorganization) of adaptive filters \( \tau \) [16]. According to [6] it is possible to show that usually reorganization happens under the exponential law, and the constant of time of adaptation of the adaptive compensator of nonlinear distortions is defined by the following expression

\[
\tau_{ACND} = \frac{k_{mP}}{4\mu P_N}, \tag{8}
\]

where \( P_N \) – compensation power nonlinear distortion; \( k_{mP} \) – coefficient of proportionality.

Other main characteristic of quality of adaptive compensators is the accuracy of adaptation which is limited to a gradient assessment error \( \sigma_{\delta 1} \), and also compensation errors owing to delay of reorganization of adaptive filters \( \sigma_{\delta 2} \) [9]. For the adaptive compensator of nonlinear distortions the specified mistakes can be defined, respectively, from formulas of a look [7]

\[
\sigma_1 = k_{mP}\mu P_N, \quad \sigma_2 = \frac{k_{mP}\sigma_m^2}{4\mu \sigma_{\mu min}}, \tag{9}
\]

Really achievable an adaptation time constant \( \tau \) the compensator of nonlinear distortions are, as a rule, ranging from units and tens of nanoseconds to microsec units that it is usually enough for telecommunication systems [16]. Therefore when developing the adaptive compensator of nonlinear distortions the main attention needs to be paid to providing the set requirements to characteristics of accuracy of the adaptive compensator of nonlinear distortions [15].

In the known works devoted to a research of influence of not ideality of elements of adaptive compensators on quality of their work only errors performance of a ratio of mathematical operations [8] were considered generally. It is shown, in particular, that integration errors have significant effect. Rather adaptive compensator of nonlinear distortions the integration error in k-m the channel leads to an error of compensation which is defined by the following formula [8]

\[
\lim_{t \to \infty} W_k(t) = H_k + \Delta H_k, \tag{11}
\]

where \( \Delta H_k \) - the mistake proportional to an integration error.

Thus, requirements to the accuracy of performance of mathematical operations by elements of the adaptive compensator of nonlinear distortions need to be put, proceeding from the most admissible error of compensation of nonlinear distortions for this task in the radio-receiving devices of telecommunication systems.

In the course of the research of efficiency of adaptive compensators influence only external uncorrelated influences of the nonideal optimum adaptive filter (Winer's filter) is considered, as a rule, [13]. However, all real radioelements is "noisy" [1] that causes relevance of the analysis of influence of internal noise of the adaptive compensator of nonlinear distortions on its efficiency [16].

For this purpose we will enter the following designations

\[
\nu_{\text{nch}} = \frac{P_e}{P_N}, \tag{12}
\]

\[
\nu_{\text{ne}} = \frac{P_n}{P_N}, \tag{13}
\]

where \( P_N \) – power, internal noise of the radio device at its exit (on the "main" entrance of the adaptive compensator of nonlinear distortions); \( P_{\omega n} \) – power of internal noise of actually adaptive
As an indicator of efficiency of the real adaptive compensator of nonlinear distortions which "rattles" we will choose size

\[ \Theta = \frac{V_{n+1}}{V_{n} \sqrt{P_{n}}} \]  \hspace{1cm} (14)

where \( P_{n} \) – the power of an alarm component of an output signal of the radio device; \( P_{N} \) – the power of nonlinear distortions on the "main" entrance and an exit of the adaptive compensator of nonlinear distortions, is compensated respectively.

As internal noise \( P_{n} \) and \( P_{N} \) are also not correlated with entrance and output signals of the adaptive compensator of nonlinear distortions, expression for its efficiency coincides with a formula for efficiency of linear adaptive compensators, on condition of influence on their entrances of external uncorrelated signals [1], that is

\[ \Theta = \frac{V_{n+1} + V_{n}}{V_{n} \sqrt{P_{n}}} \]  \hspace{1cm} (15)

Expression (15) allows to estimate influence of internal noise of the adaptive compensator of nonlinear distortions on its efficiency, it allows to draw an important practical conclusion that internal noise of the adaptive compensator of nonlinear distortions do not lead to decline in quality of functioning of the radio device [17].

When internal noise of the adaptive compensator of nonlinear spo- creations exceed nonlinear distortions on level, are suppressed, size \( \Theta = 1 \) which is physically equivalent to automatic shutdown of the adaptive compensator of nonlinear distortions and respectively, to the autonomous mode of the radio device.

It should be noted that the accounting of not ideality of parameters of elements of adaptive compensators, generally, is not exhausted by the analysis of influence of errors of performance of functional mathematical operations [18]. The significant effect on qualitative characteristics of adaptive compensators is carried out by inevitable nonlinear properties of real elements. Special value has it for adaptive compensators of nonlinear distortions which are directly intended for suppression of nonlinear distortions in radio devices. Considering insufficient extent of studying of these questions in the known literature, it is necessary to carry out the analysis of influence of nonlinearity of amplitude characteristics of real elements of the adaptive compensator on qualitative characteristics [2]. Let's present output signals of real devices having reduced to k-y of degree, the amplifier of a chain of feedback and remultipliers of adaptive filters in the form of Voltaire's ranks [14]

\[ (x_{1}) = \beta_{1}x + \beta_{2}x^{2} + ... + \beta_{k}x^{k} + ..., \]  \hspace{1cm} (16)

\[ (\mu x) = \mu_{1}e + \mu_{2}e^{2} + ..., \]  \hspace{1cm} (17)

\[ (Z_{1}) = a_{0}(x_{1}) + a_{1}(\mu x) + a_{2}(x_{1})^{2} + a_{3}(\mu x) + a_{4}(\mu x)^{2} + ... \]  \hspace{1cm} (18)

\[ (Z_{2}) = b_{0}(y_{1}) + b_{1}(y_{1}) + b_{2}(y_{1}) + b_{3}(y_{1}) + b_{4}(y_{1}) + ... \]  \hspace{1cm} (19)

where \( (x_{1}) \), \( (\mu x) \), \( (y_{1}) \), \( (y_{1}) \), \( (Z_{1}) \) – output signals of real devices of construction in k-yu degree, the amplifier of a chain of feedback, the first remultiplier of k-go of the adaptive filter, respectively; \( \beta_{1}, \mu_{1}, a_{i}, b_{j} \) – nonlinear transfer functions of the specified elements of the adapt-ny compensator of nonlinear distortions respectively.

As appears from expression (17), nonlinearity of amplitude characteristics of the amplifier of a chain of feedback lead to restriction of the upper bound of dynamic range with an exit of the adaptive compensator of nonlinear distortions \( s_{\text{max}} \) [11]. Admissible level of nonlinear distortions in the amplifier of a chain of feedback can be determined from the set top level of dynamic range with an exit of the adaptive compensator of nonlinear distortions \( s_{\text{max}} \), for the narrow-band amplifier we have

\[ |u_{1}| \leq \frac{1}{P_{\text{max set}}} \]  \hspace{1cm} (18)

for the broadband amplifier

\[ |u_{2}| \leq \frac{1}{k_{p}P_{\text{max set}}} \]  \hspace{1cm} (19)

where \( k_{p} \) – the coefficient defining a ratio between admissible levels of nonlinear distortions of the second and third orders (0 \( \leq k_{p} \leq 1 \)) also depends on width of bandwidth of the amplifier of a circle of feedback.

Nonlinear characteristics of the device of construction in k-yu lead degree to distortion of an output signal of k-go of the adaptive filter [15]. Follows from a formula (16) that

\[ (W(t)) = W_{1}(t) + \Delta W_{1}(t) \equiv W_{1}(t) + \sum_{i=1}^{n} L_{i}W_{1}(t), \]  \hspace{1cm} (20)

where \( L_{i} \) - nonlinear transfer function t - ro about makes substantial sense.

It should be noted that the member \( k_{p}L_{i}W_{1}(t) \) defines restrictions of dynamic range of the adaptive compensator of nonlinear distortions on its entrance; the component \( L_{i}W_{1}(t) \) causes distortion of an output signal of j-go (neighboring) canal of the adaptive compensator of nonlinear distortions; a component \( L_{i}W_{1}(t) \) leads to distortion of a useful component of an output signal of the radio device, components \( L_{i}W_{1}(t) \) (i.e., k+2,n,i) increase internal noise of the adaptive compensator of nonlinear distortions [7]. Additional level of noise can be found with the subsequent formula [1, 15]

\[ \Delta N_{k} = \sum_{i=1}^{m} L_{i}W_{1}(t)X_{i}, \]  \hspace{1cm} (21)

where \( i \) - number of the channel of the adaptive compensator of nonlinear distortions; \( \beta_{i} \) – the nonlinear transfer l-go function of one of the mechanism of construction in l-m degree of l-go of the channel of the adaptive compensator of nonlinear distortions.

The error which is brought in k-go of the channel of the adaptive compensator of nonlinear distortions at the expense of other its channels, is defined as follows [12]

\[ \Delta W_{k}(t) \equiv \sum_{i=k+1}^{n} L_{i}W_{1}(t) \]  \hspace{1cm} (22)

Follows from expression (20) also that the upper bound of its range with an entrance of the adaptive compensator of nonlinear distortions \( X_{\text{max}} \) (on nonlinear to distortions of k of an order)
taking into account influence of all its channels depends on size
\[ \Delta W_i(t) = \sum_{i=1}^{n} \beta_i W_i(t) \]
From here it is possible to define requirements to nonlinearity
\[ \sum_{i=1}^{n} \beta_i \leq \frac{H_i(t)^{\Delta_i}}{H_i(t)} \leq \frac{1}{[X_{\max}]^{\Delta_i}}. \]  
(22)

For assessment of distortion of an alarm component of an output
signal of the radio device we will define the relation signal / noise in
a basic entrance of the adaptive compensator of nonlinear
distortions \( \rho_{m \text{ue}} \) so
\[ \rho_{m \text{ue}} = \frac{\sum_{i=1}^{n} \beta_i W_i(t) X_i}{\sum_{i=1}^{n} \beta_i W_i(t) X_i}. \]  
(23)
Then the relation signal / noise at the exit is equal [6]
\[ \rho_{\text{sup}} = \frac{1}{\rho_{m \text{ue}}}. \]  
(24)
Respectively, distortions of an alarm component of an output signal
of the radio device at the exit of the adaptive compensator of nonlinear
distortions can be defined as
\[ e = \frac{\rho_{m \text{ue}}}{\rho_{m \text{ake}}}, \]  
(25)
where \( \rho_{m \text{ake}} = \rho_{m \text{ue}} \) - the relation signal / noise at the exit of the
radio device which is determined, in this case, by a formula
\[ \rho_{m \text{ake}} = \frac{H_i X_i}{\sum_{i=1}^{n} H_i X_i}. \]  
(26)
The alarm component in a basic entrance of the adaptive compensator
of nonlinear distortions causes also change of a range of nonlinear
distortions which are compensated, and [6]
\[ \{S_{\sup}\} = \{S_{\text{ake}}\} \rho_{m \text{ake}} \rho_{m \text{ue}}. \]  
(27)
where \( \{S_{\sup}\}, \{S_{\text{ake}}\} \) - a range of nonlinear distortions which
are compensated at the exit of the adaptive compensator of nonlinear
distortions and at the radio device exit respectively.
Requirements to the level of nonlinear distortions \( k \)-go of an order
can be defined from the most admissible size \( \rho_{m H_1} \) as in [6]
\[ |\beta_k| \leq \rho_{m H_1}. \]  
(28)
It is possible to show that requirements to the level of nonlinear
distortions of a remultiplier of adaptive filters are significantly
lower than relevant requirements to nonlinearity of amplitude
characteristics of devices of exponentiation. Taking into account
that devices of exponentiation it is more convenient to realize on
the basis of a remultiplier [6, 12], there are all bases in order that
requirements to the level of nonlinear distortions of all
telephone-systems were identical and conformed to requirements
which are imposed to devices of exponentiation.
It should be noted that the results received above can be used not
only to adaptive compensation of nonlinear distortions, but also to
the analysis of qualitative characteristics of a wide class of the
adaptive and self-adjusted systems with the doctrine of internal
noise and nonlinear properties of their elements [1].
On put in this dissertation work of tasks we will use results of a
research of characteristics of accuracy and dynamic characteristics
of real adaptive compensators of nonlinear distortions for develop-
ment of an evidence-based technique of their design for the
purpose of expansion of linear dynamic range of the radio-
receiving devices of telecommunication systems.
Let the linear dynamic range of the radio device it is equal
\[ D_x = D_{\text{sup}} = 20 \log \frac{X_{\max}}{X_{\min}} \leq D_{\text{ake}} = 20 \log \frac{Y_{\max}}{Y_{\min}}, \]  
(29)
where \( |X_{\max}|, |Y_{\max}|, (|X_{\min}|, |Y_{\min}|) \) – the lower (top) bound of
dynamic range of the radio device to an entrance and an exit,
respectively.
Let's assume that it is necessary to expand the dynamic range of the
radio device to size \( D > D_1 \), where
\[ D = D_{\text{ext}} = 20 \log \frac{X_{\max}}{X_{\min}} \leq D_{\text{sup}} = 20 \log \frac{Y_{\max}}{Y_{\min}}, \]  
\[ \frac{X_{\max}}{X_{\min}} \geq \frac{Y_{\max}}{Y_{\min}} > 1. \]  
(30)
It is expedient to begin design of the adaptive compensator of
nonlinear distortions with the choice of the adder (the subtraction
device) which dynamic range of \( D \) has to be not less than \( D_1 \), that
is \( D_2 \geq D_1 \), and
\[ \frac{\sum_{\text{min}} |Y_{\max}| |X_{\min}|, \frac{\sum_{\text{max}} |Y_{\max}| |X_{\max}|}. \]  
(31)
Where \( \frac{\sum_{\text{min}} (|X_{\min}|, |X_{\max}|) \) – the lower (top) bound of range of the
adder (the subtraction device).
Let's define requirements to integration accuracy \( \Delta_1H_{\text{min}}. \) As practically
and it is expedient to suppress nonlinear distortions of \( k \)-go of an
order only to within nonlinear distortions of the highest (first of all
(\( k + 2 \)) orders, for cascades of the radio-receiving devices of
telecommunication systems
\[ \Delta_{\text{min}} \leq \Delta H_{\text{min}} \leq |H_1|. \]  
(32)
and for coherent detectors and converters of frequency
\[ \Delta_{\text{min}} \leq \Delta H_{\text{min}} \leq |H_{\text{1k}}|. \]  
(33)
Let's define requirements to parameters of devices of exponentia-
tion and a remultiplier of the adaptive compensator of nonlinear
distortions. Considering single-channel adaptive compensation of
nonlinear distortions, from expressions (22) and (28) it is possible
to define admissible degree of nonlinearity of a multiplier of in-
tensifying cascades of the radio-receiving devices of telecommunication systems
\[ |\beta_i| = |\beta_j| = \left| \frac{H_i}{H_j} \right| \frac{1}{|\lambda_{max}|}; \]  
(34)
and also for coherent detectors and converters of frequency
\[ |\beta_i| = |\beta_j| = \left| \frac{H_i}{H_j} \right| \frac{1}{|\lambda_{max}|}; \]  
(35)
where \( i \neq j \neq 2 \); \( \lambda_{max} \) – amplitude of a basic signal (a heterodyne signal).
Requirements to admissible nonlinearity of amplitude characteristics of the amplifier of a circle of feedback can be set from necessary size \( |X_{max}| \leq |X_{max,ut}| + |\lambda_{max}| \) according to formulas (18) and (19). At the same time the coefficient of transfer of the amplifier of a chain of feedback should be found from the accuracy, necessary for this task, and speed of adaptation on formulas (9) and (10) [15]. In some cases optimum value \( u_{opt} = u_{seq} \) lies ranging from 0.1 to 10, and for cascades \( \mu_{opt} \leq 1 \), and for final and converting \( \mu_{opt} \geq 1 \) cascades [16].

Apparently from a formula (15), internal noise should not a feather-vyshat on level nonlinear distortions are compensated [8]. So, not to impose unreasonably overestimated requirements to fluctuation characteristics of elements of the adaptive compensator of nonlinear distortions, it is necessary to provide performance of the following condition [15]
\[ |X_{max}| \leq |X_{max}|. \]
(36)
where \( |X_{max}| \) – the lower bound of dynamic range of adaptive compensation of nonlinear distortions.
Then \( D_2 \) can be necessary the dynamic range of the adaptive compensator of nonlinear distortions is defined from the following ratio [15]
\[ D_2 \geq D - D_1. \]
(37)
Important practical conclusion that creation of adaptive compensation of nonlinear distortions on problems of expansion of linear dynamic range of the radio-receiving devices of telecommunication systems does not require silent elements with ideal parameters and those which cannot be realized physically is a consequence of it. So, the synthesized adaptive method of compensation of nonlinear distortions physically is implemented on the basis of the known radioelements.

4. Conclusions

Introduction of artificial main and basic entrances to the scheme of nonlinear adaptive compensators allowed to apply the general theory of adaptive systems to their synthesis. Practical use of the adaptive compensators of nonlinear distortions synthesized by such principle according to the developed recommendations, allows to raise significantly indicators of quality of telecommunication systems in actual practice of their application in comparison with known.
Application the offered practical recommendations does not lead to decrease in reliability of telecommunication systems, as in hardware (failure of the adaptive compensator of nonlinear distortions does not involve failure of the radio-receiving devices), and in functional sense (adaptivem compensators of nonlinear distortions are automatically disconnected when their application does not allow to improve the relation signal / noise in the radio-receiving devices).

Additional benefit of the offered adaptive way of expansion of linear dynamic range of the radio-receiving devices is improvement of all-weather capability of telecommunication systems and increase in probability of identification of the radar district maps removed in different conditions without additional perenalshtuvan. Besides, the flexible stock on a noise stability of telecommunication systems is at the same time provided, allows to consider possible improvements of means of radioelektronny counteraction for the presumable period of operation of an information system.

The adaptive way of expansion of linear dynamic range of the radio-receiving devices is developed allows to add the known technical actions for increase in a noise stability of telecommunication systems, it completely corresponds to the general modern methodology of providing a noise stability of work of an information system.

The synthesized adaptive compensators of nonlinear distortions substantially are free from many shortcomings of the linear determined ways of expansion of dynamic range of the radio-receiving devices, and also have simpler hardware realization. Besides, in the course of design of adaptive compensators of nonlinear distortions it is necessary significantly the smaller volume of aprioristic information on parameters of the radio-receiving devices for calculation of schemes of suppression of nonlinear distortions.

Transfer functions of adaptive filters of adaptive compensators of nonlinear distortions quickly enough meet to nonlinear transfer function of the radio device, and effective convergence is observed in the presence of internal noise to a last resort until they do not exceed the level of nonlinear distortions which are compensated.

Qualitative characteristics of adaptive compensators of nonlinear distortions unambiguously are defined by the level of internal noise and degree of nonideal parameters of real elements of adaptive compensators of nonlinear distortions. As internal noise of adaptive compensators of nonlinear distortions do not lead to additional deterioration of operation of the radio-receiving devices, in comparison with its car-nomnim functioning, extremely achieveable dynamic range of adaptive compensators of nonlinear distortions is equal to the sum of dynamic ranges of radio devices and actual adaptive compensator of nonlinear distortions.

The adaptive method of compensation of nonlinear distortions in radio devices which demands considerably the smaller volume of aprioristic information on parameters of radio devices is developed and entered into the theory and practice and in many respects raises indicators of quality of onboard radar-tracking systems.

References


