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Abstract 
 
By caching dirty pages in memory space of a buffering pool, a database system can reduce expensive physical I/O’s required in page updates. 
If any data page cached has constant updates on itself, it seems to stay long in the buffering pool without flushing-out. Although the existence 
of such aged dirty pages can reduce the amount of physical updates in storage, it is apt to prolong time taken for recovery procedure after 
system failure. To prevent such a delayed recovery time, database systems usually take an approach of flushing aged dirty pages in a 
background mode. Even though the approach may be beneficial in the case of HDD storage, this may not be the case for flash storage because 
of its high update costs. To solve this problem, we proposed a new logging scheme and a recovery algorithm running with it. Since aged dirty 
pages in our method are written into a dedicated log file, rather than into data area in storage, we can evade frequent updating of them. To 
reduce the amount of log data written for that purpose, our logging scheme uses a small size of snapshot log. Since the write of a snapshot log 
record can put the redo start point forwards, we can guarantee the fast recovery procedure, while reducing the number of page updates. Due to 
reduced update workloads, our method can improve the overall throughput of flash storage. 
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1. Introduction 

Thanks to a distinguished I/O advantage in random reads, flash 
memory has been regarded as a promising storage media, 
superseding the hard disk drive (HDD) (Baumann, Nijs, Strobel & 
Sattler, 2010; Colgrove et al., 2015). In particular, as the price per bit 
gets cheaper at a fast rate, flash storage seems to be used for large-
scale database systems in the future. In this light, many researches 
have been done for the purpose of adopting NAND flash for those 
systems. Most of those researches are devoted to efficiently handling 
the inherent poor performance of random updates in flash memory 
(Ganim, Mihaila, Bhattacharjee, Ross & Lang, 2010; Do, Zhang, 
Patel, DeWitt, Naughton & Halverson, 2011; Gupta, Kim & 
Urgaonkar, 2009; Jeong, Kim & Lim, 2015; Moon, Lim, Park & Lee, 
2011; Lee & Moon, 2007; Lim, 2016; Wang, Goda & Kitsuregawa, 
2009; Wu, Kuo & Chang, 2007)  
To reduce the occurrences of costly update I/O’s in flash storage, the 
previous researches take two different approaches, that is, a logging 
based approach (Gupta, Kim & Urgaonkar, 2009; Moon et al., 2011; 
Wang, Goda & Kitsuregawa, 2009) and a buffering based approach 
(Do et al., 2011; Ganim et al., 2010; Jeong, Kim & Lim, 2015; Li, 
He, Yang, Luo Y Yi, 2010; Lim, 2016; Xu et al., 2010;). In the 
former approach, histories of updates in databases are recorded as 
log data without physical reflections on storage directly. Then, a 
collection of updates are flushed into storage at once before their 
involved log data are cleaned. Since the I/O cost for storing log data 

and doing batch-style updates is usually cheaper than that for 
executing individual updates, that approach gains I/O advantages in 
flash storage.  In the case of the latter approach, extra space is 
reserved in main memory for the use of a buffering area. By 
updating data within the buffering memory, the approach diminishes 
the number of I/O’s needed for hot pages. Although the buffering 
based approach demands the usage of extra memory, it is reported to 
be very efficient for handling updates in B-trees stored in flash 
storage (Li et al., 2010; Xu et al., 2010;).  
Unlike the earlier approaches, for less update workload we pay 
attention to the way a recovery algorithm works. This research point 
has not been a major interest in previous researches. Modern 
recovery algorithms are usually based on the WAL (write-ahead-
logging) protocol and the NO-FORCE policy in buffer management 
(Kornacker, Mohan & Hellerstein, 1997; Mohan & Levine, 1992; 
Lim, 2016). Therefore, hot pages are repeatedly updated in a 
buffering pool, without being written (or flushed) to storage. The 
existence of such dirty pages long staying in a buffering pool is apt 
to delay the recovery time after system failure because of more redo 
actions performed. To avoid such a delay of the recovery time, 
periodic flushing of dirty pages is acceptable. Note that flushing of 
dirty pages normally arises at buffer replacement times. Although 
such background-mode flushing does not impair the performance of 
HDD-based database systems, it can be not true in flash storage 
because of asymmetric performance between updates and other sorts 
of I/O’s (Baumann et al., 2010; Colgrove et al., 2015; Do et al., 
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2011; Lee & Moon, 20017; Ganim et al., 2010; Wang, Goda & 
Kitsuregawa, 2009)  
To solve this problem, we propose new logging and recovery 
schemes that can guarantee the fast recovery time without flushing 
of aged dirty pages. To this end, we made some modifications to the 
conventional logging scheme so that it creates snapshot log for aged 
dirty pages and uses those log data for physical redos during the 
recovery time. By storing the snapshot log in a log file, we can put 
forward the redo start point of the redo process. Since the writing of 
snapshot log does not incur updates in storage, we can reduce the 
number of page update operations needed for flushing dirty pages. 
Since the snapshot log size recorded for an aged dirty page is less 
than half its page size, we can save overall I/O bandwidth during the 
normal processing time. Additionally, because the physical redos are 
used for restoring aged dirty pages, our method can enhance the redo 
time. Those benefits are evaluated based on a storage cost model that 
is proposed in the paper. 
This paper is organized as follows. In Section 2, we introduce some 
background knowledge about the conventional logging and recovery 
schemes. In Section 3, we sketch the idea of the proposed method 
and address the detailed algorithms needed for writing log data and 
recovering a failed system. The performance advantages of the 
proposed method are estimated in Section 4. Then, we conclude this 
paper in Section 5. 

2. Preliminaries 

In modern database systems, a logging mechanism is vital for 
preserving the ACID properties of transactions. For this, the WAL 
protocol is usually implemented along with a buffering scheme used 
for caching update operations in memory (Do et al., 2011; Li et al., 
2010, On, Hu, Li & Xu, 2010). Since the buffering scheme works 
with the NO-FORCE policy for fast processing of transactions, some 
dirty pages may not be written for a long period of time because of 
their frequent references. Although the existence of such aged dirty 
pages can be useful for reducing I/O workloads, it adversely affects 
the recovery time in face of system failure.  This is because we have 
to pay more time for redoing abrupt updates involved with the aged 
dirty pages.  

To understand that, one needs to know about the redo process during 
a recovery time. Note that a recovery algorithm performs a redo 
process for redoing failed updates after it has analyzed a log file for 
recovery. Most of recovery algorithms like ARIES  (Kornacker, 
Mohan & Hellerstein, 1997; Mohan & Levine, 1992).  make 
periodically checkpoints to capture the states of a buffering pool and 
in-progress transactions. As checkpoint data for dirty pages in the 
buffering pool, ARIES-style logging schemes save page ID’s of 

dirty pages and LSNs (Log Sequence Numbers) of recovery log 
records of them. Note that the log file location of the recovery log 
record is used as its LSN (Mohan & Levine, 1992).  

To see the notion of the recovery log record, consider a page X that 
was buffered at time t1. Then, if page X is first updated at time t2 (t2 
> t1), then a log record recording the update at t2 is referred to the 
recovery log record for X. If page X is written to storage, then it is 
removed from a dirty page table (DPT) along with the information 
about its recovery log record. Because every log record R preceding 
the recovery record at time t2 has been already reflected on storage, 
there is no need for redoing log R. In other words, the redo process 
is performed from the recovery log record. Therefore, we can move 
the redo start point forwards by flushing a dirty page whose recovery 
log record is oldest. Since the redo time accounts for a majority of 
the recovery time, it is fundamental to put forwards the redo start 
point.  

To this end, previous recovery algorithms usually flush aged dirty 
pages in a background mod. Such background flushing of dirty 
pages may not be problematic in the case of traditional HDD 
storage. However, this is not the case for flash storage because of its 
high update costs. To prevent delay of the redo process without 
recovery-purpose flushing, we devise a new logging scheme that can 
put forward the redo start point without flushing of dirty pages. 

3. Proposed Method 

3.1. Proposed Logging Scheme 

To prevent update workloads caused by background-mode flushing 
of dirty pages, as described before, we store physical redo logs for 
aged dirty pages, rather than flushing those dirty pages. The physical 
redo log for such a purpose is called the snapshot log. In general, a 
log record made in a database contains both of redo log data and 
undo log data for each update. In the case of redo log data, 
physiological redo data is common for the considerations of log 
sizes and locking granularity (Lee & Moon, 2007; Kornacker, 
Mohan & Hellerstein, 1997; Mohan & Levine, 1992).  Unlike the 
traditional logging scheme, we save only redo log data in a snapshot 
log record, since it is not used for doing undos. In addition, log data 
in a snapshot log record is physical log data that saves the after-
image covering updated data area in a page.  

To explain the notion of the snapshot log record, we use Figure 1. In 
the figure, the notation of U[s, e] represents the existence of updates 
in an area of a buffer frame. Here, integral numbers s and e are 
offsets within a buffer frame caching involved updates. By 

Fig. 1: Use of an update area for covering updates in a buffer frame. 
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increasing the update area of U[s, e], we can locate a wider range of 
updated data. To see this, let us assume that three times of updates 
have occurred in frame X of Figure 1. When the i-th update is 
denoted by ui, and its update area is expressed with U[si, ei]. In the 
figure, the update area is finally set to U(s2, e3), which covers the 
update ranges of u1, u2, and u3.  At that case, we save the binary 
image between U[s2, e3] in a snapshot log record for frame X. When 
update positions of u1, u2, and u3 are scattered, area U[s, e] 
inevitably includes many non-updated areas, thereby increasing the 
sizes of snapshot records. To reduce such an undesirable increase of 
snapshot log, we use two different update areas for each frame, that 
is, one for updates in the data area and the other for updates in the 
metadata area. By saving log data for two different areas each, we 
can reduce the sizes of snapshot log records being stored. 

To elaborate the usage of the snapshot log record, we use Figure 2, 
where a buffering pool contains three dirty pages of X, Y, and Z. In 
the DPT, the LSNs of their recovery log records are saved as rec-lsn. 
Here, the value of ‘normal’ means the corresponding dirty page has 
no snapshot log record. In this figure, the redo start point equals the 

LSN of X’s recovery log record. If any traditional recovery scheme 
attempts to put the redo start point forwards, then it flushes page X 
and deletes it from the DPT. Then, LSN z is used as new restart 
point. 

Unlike that, our logging scheme saves a snapshot log record for page 
X, At the same time, we update its values of rec-type and rec-lsn 
with ‘snapshot’ and the LSN of the newly created snapshot log 
record, respectively. Note that the new rec-lsn is always greater than 
y of Figure 2. In our scheme, the page X is not deleted from the 
DPT, because its in-frame image has not been written to storage. 
Therefore, if page X has to be evicted from the buffering pool at a 
buffer replacement time, then its in-frame image will be written to 
storage and it is removed from the DPT. 

Figure 3 shows the algorithm that is periodically executed to put 
forwards the redo start point. When the algorithm is invoked, it 
receives the LSN of the latest log record, that is, lsn of Figure 3. 
Then, for each dirty page existing in the DPT its rec-len is compared 
with lsn in line 2. For exposition convenience, we denote that dirty 
page in comparison by N. If the LSN gap is  

Fig 2: Algorithm for saving snapshot log records for aged dirty pages. 

 

 
Fig. 2: Manipulation of a DPT that saves the LSNs of recovery log records. 

larger than max_lag, then page N needs either flushing or logging 
for the fast redo process.   For that decision between flushing or logging, the overall size of two 

update areas is calculated in line 4. If that size is greater than half the 
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frame size, then node N is flushed as in lines 6 to 7; otherwise, a 
snapshot log record is made for N and its DPT entry is updated as in 
lines 9 to 13. Then, two update areas of N are copied into a snapshot 
log record. After this logging, the value of rec-lsn of N is modified 
with the LSN of a newly created snapshot record.  With this 
algorithm, we can put the redo star point forwards for very cheap I/O 
costs. 

3.2. Recovery Algorithm 

To recover from system failure, our recovery procedure begins with 
reading the latest checkpoint record in a log file. After rebuilding a 
DPT using the log data saved in that checkpoint record, log analysis 
is conducted by scanning the log file. Then, the processes for doing 
redos and undos are performed in this order. Since our method for 
the undo process is very similar to the traditional one (Jeong, Kim & 

Lim, 2015; Kornacker, Mohan & Hellerstein, 1997; Lee & Moon, 
2007; Mohan & Levine, 1992).  , we mainly address the other 
processes for log analysis and redo actions.  

The proposed recovery algorithm is given in Figure 4. In the log 
analysis process of lines 2 to 7, the algorithm sequentially reads log 
records and looks up the log types of them. If a log record retrieved 
has a type of ‘snapshot’, then the DPT is updated to reflect its log 
information. More specifically, its data of rec-lsn and page ID are 
saved as a DPT entry; otherwise, it is used for updating an undo 
transaction list.  The way for manipulating the undo transaction list 
is not different from the previous ways in  (Kornacker, Mohan & 

Hellerstein, 1997; Mohan & Levine, 1992).  Those conditional 
actions depending on log types are performed in lines 4 to 7.  

At the beginning of a redo process, the recovery algorithm performs 
physical redos for the pages having snapshot log records. For this, 
the recovery algorithm reads each DPT entry and check its rec-type. 
If that type is the same as ‘snapshot’, then a physical redo is 
executed to restore the up-to-date image of the associated page P. 
Such a redo action is done in line 12, where the function 
DoPhysicalRedo() for the physical redo overwrites the data logged 
in the snapshot log record within the in-frame image of P. Then, the 
up-to-date image of P is written to storage within the function. Since 
the LSN of page P is modified with that of its recovery log record, 
redo log records preceding the After the physical redo actions using 
snapshot log record will be ignored during the redo process later. 
Therefore, the proposed recovery algorithm can save the time taken 
for traditional redo actions.   

After the physical redo actions using snapshot log records, the 
traditional undo actions are executed in lines of 13 to 17. For this, 
the redo start point is decided and the file pointer of the log file is set 
with that start point as in lines 13 and 14. Then, by reading each redo 
log record the recovery algorithm performs the remaining steps of 
the redo process. During those steps, physiological redos are 
performed as in the traditional recovery schemes. Finally, to restart 
the database system, undo actions are performed to roll back update 
effects from aborted transactions.  

 

Fig. 3: Algorithm for the recovery after system failure. 
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4. Performance Analysis 

As a dirty page with constant updates seems to be a winner at 
buffer replacement times, it is apt to stay long in the buffer 
pool without being flushed. This situation seems to increase the 
time for system recovery. For this reason, the mechanism of 
background-mode flushing is usually employed in HDD-based 
database systems. Since the background-mode flushing easily 
incurs the number of update operations, however, it can harm 
storage performance in the case of SSD-based database.  

Table 1: Notations and meanings of I/O parameters. 
notations meanings values 

 #. of pages made in a flash block 64 - 128 

 
# of logging blocks used for page 

address 30 - 50 

 
Averaged # of flash blocks involved in 

a full-merge 20 - 30 

 
Probability of a full-merge occurrence 

w.r.t an update  

 Size of a flash block in Kbytes 128 - 256 

 
I/O cost for a single write to an empty 

page 200 – 250 us 

 I/O cost for erasing a flash block 200 – 250 ms 

Differently from such background-mode flushing used for fast 
recovery, the proposed method based on snapshot logging 
provides two advantages in the I/O respect. First, our method 
does not incur any update operations since snapshot log records 
are stored into clean pages. When clean pages of a log file are 
exhausted, storage space of that file is freed to a file system via 
the I/O calls of TRIM or UNMAP (Wu & He, 2012). Through 
those kinds of I/O calls, we can largely save I/O costs because 
of the reduction of updates, while guaranteeing fast recovery.  
Second, since the size of snapshot log record is less than half 
the page size, our method can reduce the overall amount of data 
written. Thanks to those two characteristics, the proposed 
method can support the reliable I/O performance of a flash-
based database system against heavy update workload. 

To assess the performance advantages in more detail, we 
introduce a I/O cost model based on the parameters of Table 1. 
In that table, the value of  relies on the two factors, that is, 
real I/O request patterns in the system and the internal mapping 
mechanism of an FTL (Flash Translation Layer) used in flash 
storage. Since the hybrid addressing for the FTL is usually 
accepted nowadays (Gupta, Kim, Urgaonkar, 2009; Moon et al., 
2011; Wang, Goda & Kitsuregawa, 2009; Wu & He, 2012), we 
also assume the same addressing mechanism for our cost 
model. That is, a portion of storage is dedicated for the use of 
the log block area, and that area is used for saving updated 
pages until it becomes full. Under this assumption, actions for 
full-merging arises when log blocks are all consumed for 
saving updated pages in flash storage (Moon et al., 2011; 
Wang, Goda & Kitsuregawa, 2009). From this, we can compute 
approximately the probability  such that  =  

. 

While a page is being updated according to a page addressing 
mechanism of an FTL, its new image is first written to a clean 
page existing in a log block. If there is no clean page in the log 
block area, that update operation leads to a full-merge for 

reclaiming some space in the log block area. By considering 
that hidden cost for full-merging, the I/O cost for updating a 
page can be estimated as follows: 

 

Here, the fraction of 0.7 is the storage utilization rate of the 
data block. Therefore, 70% of pages within a block are 
rewritten for saving valid pages. Since the size of a snapshot 
log record is less than half the page size, we can compute the 
performance benefit as follows: 

 

In literature (Do et al., 2011; Lee & Moon, 2007; On et al., 
2010; Wu, Kuo & Chang, 2007), it was reported that the black 
erase cost of  is at least 100 times higher than the write cost 
of . When the number of log blocks is the same as 20 and a 
block contains 64 pages, the rates of  becomes around 
20%. Although this performance may vary according to the real 
values of , the proposed method can improve the flash 
storage performance by reducing update workloads in database 
systems.  

5. Conclusions 

In this paper, we propose a new logging scheme that can evade the 
necessity of periodic flushing of dirty pages, thereby reducing the 
number of costly update operations. For this, we made some 
modification to a dirty page table used for bookkeeping the state of 
dirty pages, and proposed an algorithm used for making a decision 
between flushing and logging for an aged dirty page. Since the 
proposed logging scheme should be valid for recovering a failed 
system, we also proposed a recovery algorithm that works correctly 
with the proposed snapshot logging scheme. With the proposed 
recovery algorithm, we can restore the dirty pages to an up-to-date 
state. Since the redo actions are done through physical redos, we can 
improve the time for recovery. To show performance advantages, we 
introduced a simple I/O cost model. The results from the cost model 
show that the proposed method can improve the overall I/O 
performance for flash storage. 
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