

Copyright © 2018Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.28) (2018) 577 -581

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

 Implementation of the Hard-Decision Low Density
Parity Check Codes in A 0.13µm CMOS Process

1Daryl P. Pongcol, Roberto B. Madronial, Jr. , Olga Joy L. Gerasta,Jefferson A. Hora, 2J.Banuchandar

1Microelectronics Laboratory,

Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
 E-mail: jefferson.hora@g.msuiit.edu.ph

2Research Scholar, Anna University, Chennai, India.
*Corresponding author Email: jtbanuchandar@gmail.com

Abstract

This paper presents a simple and efficient implementation of a Low Density Parity Check (LDPC) error-correcting code, using the hard-
decision decoding algorithm in a 0.13 µm TSMC CMOS process. The encoder and decoder modules were simulated by transmitting the
correct 8bit code words, and letting it pass through a test bench module that corrupts one or more bits of the channel data, then allowing
the decoder to correct the corrupted channel data. The system is able to correct a single bit error with 1 or 2 iterations only. Hence for a
clock of 50MHz, the system can detect and correct more than 42 bit errors per 1 KB of data, which is just the goal of this research. Im-
plemented through Verilog HDL using Synopsys Design, the design is simple in a sense that it does not use sophisticated encoding and
decoding algorithms and the H- matrix used is a simple ½ code rate (4,8)- regular matrix and thus will result to a small scale and non-
congested full-parallel architecture. It only measured 6.29 mm2 chip area. For a supply voltage of 1.32 V, the total power of only 138.64
µW implied very low power consumption.

Keywords: Decoder; Error correcting code (ECC); Low density parity check (LDPC); Parity check

1. Introduction

Networks must be able to transfer data from one device to another
with complete accuracy. A system that cannot guarantee that the
data received by one device are identical to the data transmitted by
another device is essentially useless. The most common causes of
errors are the interferences, attenuation, distortion and noise in the
channel. These transmission limitations occur at some fixed or
unpredictable degree and can be very dangerous to the system.
This clearly emphasizes the need for error detection and correction.
Reliable systems must have a mechanism for handling such errors
[1].
There are many such schemes and algorithms existing for error
detection and correction. In each of these schemes, two communi-
cation blocks are essential: the channel encoder and channel de-
coder. These blocks facilitate the error detection and correction
process by adding some extra bits called parity bits or redundancy
bits prior to transmission (encoding), then reading these new set of
data during reception and decode to check if there's an error dur-
ing that instant of transmission (decoding). The best that the en-
coders and decoders could do is to detect the error and also locate
the position of the bit in error and then correct it. This is done
through an error-correcting code (ECC) [2].
Basically these encoder and decoder are digital circuitry that can
be embedded on the transmitter and receiver sides of a chip-level
communication system. There had been error-correcting codes that
existed over the years since the invention of the first ECC called
the hamming codes, up to until what is the latest ECC currently
being used in most systems these days, the low-density parity
check codes (LDPC). LDPC codes were first invented by Robert

Gallager in his PhD dissertation on 1960. Due to the computation-
al effort in implementing the encoder and decoder, to an era when
vacuum tubes were only just being replaced by the first
transistor, and the introduction of the Reed-Solomon code, the
code was ignored and forgotten [3]. Till then a lot of state-of-the-
art coding gain codes were also introduced, particularly the Turbo
Code. These codes can achieve coding gains close to the theoreti-
cal limit for channel coding, which is the Shannon Limit, but the
implementation cost is high [4]. In 1996, LDPC codes were re-
discovered by D. MacKay and R. Neal. They found it to have very
good coding gain performance, but the implementation cost is
much lower.
This paper had aimed to design and implement, using the synthe-
sizable Verilog HDL on the 130 nm CMOS technology process,
the low density parity check codes. The researchers' major consid-
erations in the design and implementation of this ECC will be the
speed of the encoding and decoding processes, the design to work
on a clock of at least 50MHz given the target library to be 90 nm,
memory input/output in 8, 16, 32, or 64 bits, and a capability of
correcting 42 bit errors per 1KB of information.

2. Codes Basics

Although the goal of error checking is to correct errors, most of
the time, it is first necessary to detect errors. Error detection
(without correction) is simpler than error correction and is the first
step in the error correction process [1].

http://creativecommons.org/licenses/by/3.0/
mailto:jefferson.hora@g.msuiit.edu.ph
mailto:jtbanuchandar@gmail.com

578 International Journal of Engineering & Technology

2.1. Error Correcting Codes

The most common and least expensive scheme for error detection
is the parity check. Here, a parity bit is added to every data unit so
that the total number of 1’s in the data unit (including the parity
bit) becomes even (or odd for odd-parity). This scheme is the most
basic and the oldest but more modern and sophisticated algorithms
still make use of the parity check in their steps [5].
Use of simple parity check allows detection of single-bit errors in
a received message. Correction of these errors requires more in-
formation, since the position of the corrupted bit must be identi-
fied if it is to be corrected. If a corrupted bit can be detected, it can
be corrected by simply complementing its value. Correction is not
possible with one parity bit only since any bit error in any position
produces exactly the same information, i.e., error. If more bits are
included in a message, and if those bits can be arranged such that
different corrupted bits produce different error results, then cor-
rupted bits could be identified [6].
Forward error-correction coding (also called ‘channel coding’) is a
type of digital signal processing that improves reliability of the
data by introducing a known structure into the data sequence prior
to transmission. This structure enables the receiving system to
detect and possibly correct errors caused by corruption from the
channel and the receiver. In a communication system that employs
forward error-correction coding, the digital information source
sends a data sequence to an encoder. The encoder inserts redun-
dant (or parity) bits, thereby outputting a longer sequence of code
bits, called a ‘code word’. These code words can then be transmit-
ted to a receiver, which uses a suitable decoder to extract the orig-
inal data sequence [6]. Figure 1 illustrates the discussion.

Fig. 1. The Message, check, and code word bits in an FEC
encoded message

2.2. LDPC Codes

As their name suggests, LDPC codes are linear block codes with
parity-check matrices that contain only a very small number of
non-zero entries. An LDPC code parity-check matrix is called (wc,
wr)-regular if each code bit is contained in a fixed number, wc, of
parity checks and each parity-check equation contains a fixed
number, wr, of code bits.
LDPC codes are often represented in graphical form by a Tanner
Graph. The Tanner graph consists of two sets of vertices: n verti-
ces for the codeword bits (called bit or variable nodes), and m
vertices for the parity-check equations (called check nodes). So for
the given example of an H-matrix, the corresponding Tanner
Graph is as shown in Figure 2.

Fig. 2. The relationship with H-matrix and the tanner graph

2.3. The Hard-Decision Algorithm

In [7], Leiner uses a (4, 8) linear block code to illustrate the hard
decision decoder and corresponding tanner graph, as shown in
Figure 3 (a) and (b), respectively.

Fig. 3. (a) A (4, 8) linear block code

 (b) Corresponding tanner graph

By the help of an example presented in [8] {4}, the researchers
will illustrate how the Hard-Decision decoding algorithm operates.
An error free codeword of H is c = [1 0 0 1 0 1 0 1] T. Suppose we
receive y = [1 0 0 1 0 1 0 1] T. So c2 is flipped [9]. The algorithm,
as illustrated in [8], is as follows:
Step 1. In the first step, all variable nodes send a message to their
connected check nodes. In this case, the message is the bit they
believe to be correct for them. For example, message node v2 re-
ceives a 1 (y2 = 1), so it sends a message containing 1 to check
nodes c1 and c2.
Step 2. In the second step, every check nodes calculate a response
to their connected variable nodes using the messages they received
from step 1. This is done by having a parity check or an XOR
operation to each of the 4 bits received, and if the reduction XOR
result is 1, the check node sends to its connected variable nodes
the opposite of what it receives, else if the reduction XOR result is
0, the check nodes send the same message it gets. Table 1 illus-
trates the steps in 1 and 2.

Table 1. Check Nodes Activities for Hard-Decision Decoder

What this table illustrates, is that if a check node receives and odd
number of ones, it will send a flipped 4-bit value, otherwise if it
receives an even number of ones, it will send the same 4-bit num-
ber back. So for example in c0 and c1 in the table, they both re-
ceived 1101 from the v-nodes, thus it will send 0010 to their con-
nected v-nodes. C2 and c3 received 0101 and 1100 respectively,
which both contains even number of ones. Thus, it sends the same
0101 and 1100 respectively.
Step 3. In this step, the variable nodes use messages they get from
the check nodes to decide if the bit at their position is a 0 or a 1 by
majority rule. The variable nodes then send this hard-decision to

International Journal of Engineering & Technology 579

their connected check nodes. Table 2 illustrates this step. To make
it clear, let us look at variable node v2. It receives 2 0’s from check
nodes c1 and c2. Together with what it already has y2 = 1, it de-
cides that its real value is 0. It then sends this information back to
check nodes v1 and v2.

Table 2. Variable Nodes Decisions for Hard-Decision Decoder

Step 4. Repeat 2 until either exit at step 2 or a certain number of
iterations has been passed. In this example, the algorithm termi-
nates right after the first iteration as all parity check equations
have been satisfied. V2 is corrected to 0.

3. Experimental Results

As shown in Figure 4, we decided to design the system given the
LDPC H matrix, G matrix and the corresponding Tanner graph.
The corresponding distinct messages and the resulting code words
were also presented at the bottom of Figure 5.

Fig. 4. H and G Matrix and the corresponding tanner graph with the re-
spective distinct messages and code words.

Figure 5(a) shows the main LDPC encoder module and its pinouts.
Table 3 shows the details of those pinouts. To help discuss the
operation of the main encoder module, first is to look at its inter-
nal architecture, shown at Figure 6(b). Like most implemented
LDPC encoder modules, each of them consist of a controller, a
buffer and a block that does the encoding.

(a)

(b)

Fig. 5. Main LDPC encoder; (a) Module (b) Internal

Table 3: Implemented Encoder Port Details

The controller takes care of control signals like the clk, rst, strt,
read, and write, then they’re corresponding output ports status_1,
status_2 and the outbuffer_rd and outbuffer_wr. The ldpc_encoder
then takes the status signals as long as the input datain signal and
then it outputs the signal directly to the outbuffer. The outbuffer
module then holds the output data from the ldpc_encoder module
and buffs the data stream. The outbuffer will only output the sig-
nal only if the outbuffer_wr signal is high.
Figure 6(a) shows the Main_LDPC_Decoder module and its
pinouts. Pinouts are then explained in detail at Table 4. Likewise,
consider first the internal architecture of the main decoder module,
shown in Figure 7(b). Recall that the operation of the decoder
makes use of the Tanner Graph in [7], and thus hardware imple-
mentation would also look more or less the same. A tanner graph
in turn consists also of the variable nodes and the check nodes,
here in the standard architecture in the left, it is named VNU (var-
iable node unit) and CNU (check node unit), respectively.
What makes the VCS schematic messy is because the modules are
not arranged accordingly during compile, and the v-nodes and c-
nodes are scattered all around. But basically, this shows the inter-
nal architecture of the decoder which consists of an input and an
output buffer, a controller, v-nodes, c-nodes, and an interconnect
module that takes care of the interconnection of the tanner graph.

outbuffer

encoder

controller

580 International Journal of Engineering & Technology

(a)

(b)

Fig. 6. Main LDPC decoder: (a) Module (b) Internal

Table 4. Implemented Encoder Port Details

 Next is to look at the ldpc_encoder module. The goal here is to
perform the matrix multiplication. We recall the proposed encoder
H and G matrices as shown in Figure 4. The G matrix is derived
from H matrix where G = identity matrix form of H.
Recall that in forming the code words, c, the input data, p, must be
multiplied by the generator matrix G. The code words is then re-
arranged so that the last four bits becomes the first 4 bits to keep
track of the column permutations. So if we will take a look at the
values 0001 and 0010 the corresponding code words which are the
result of the matrix multiplication and the rearrangement as shown
in Figure 4 are 10110001 and 01110010, respectively. This is

particular data is shown in the simulation timing diagram in Fig-
ure 7 below.

Fig. 7. LDPC_encoder module timing diagram

Looking at the timing diagram of the decoder where in three valid
codewords of the architecture are being tested, which are
10010101 and 10110001 and 01110010. Note that the first code-
word is the one that was used in the detailed explanation of the
algorithm in section 1.7.2.5 while the two code words are those
being used in the example with the encoder. Two cases are shown
here, the case where both the code words are being flipped at bit
positions 7, 0, and 1, respectively, and so it becomes 11010101,
10110000, and 01110000. The second case is simulated where the
code words are received without an error. Figure 8 shows the main
LDPC decoder timing diagram.

Fig. 9. Main LDPC decoder module timing diagram

It is shown from here the important signals that operate to perform
the hard-decision decoding. In each of the erroneous code words,
the system iterates up to the second iteration while the cases where
the code words are not corrupted, it only goes up to the first
checking of the parity check matrix. Likewise, the system needs
buffers both at the input and in the output since the nature of the
operation is not linear in time, it depends on the number of itera-
tion a frame is decoding. But if the reader will look at the timing
diagram in a bird’s eye view, it can be seen that the decoder suc-
cessfully corrected the corrupted frames.
Synthesis of the Verilog code, along with running the correspond-
ing IC Compiler routines necessary to generate the prototype,
show that the total area of the designed LDPC decoder is
6288.762798 um2 which is small enough for a typical LDPC de-
coder area size using 130nm Logic CMOS Technology. The total
power of the designed chip is 138.6393 uW which comprised of
the dynamic power which is 112.9294 uW and the cell leakage
power which is 25.7009 uW. Since the dynamic power is small,
once the device operates, it will only consume less power and it
will not heat up easily. And also since the Cell Leakage power is
small compared to the dynamic power, it indicates a good design
because the power loss is smaller than the dynamic power. The
slack time for the input, output and combinational path LDPC
Decoder is positive which indicates that the design is good in
terms of timing because the data arrives in the input path, output

v-nodes
intercon-
nect

controller

data-in

data-out

International Journal of Engineering & Technology 581

path and combinational path before the clock changes from logic
high to logic low or from logic low to logic high.

4. Conclusion

The designed Low-Density Parity Check Error Correcting Codes
was analyzed and has been successfully implemented in integrated
circuit. The fundamentals of LDPC encoder and LDPC decoder
blocks and special were also discussed in detail in different chap-
ters of this paper. LDPC encoder and LDPC decoder modules
were successfully implemented in the integrated circuit with 50
MHz clock using 130nm logic CMOS Technology. Simulated
results were presented and all simulations were based on ideal and
actual behaviors.
Furthermore, the actual simulation show that the LDPC Error
Correcting Code was working and was effective since the digital
data that has been assumed to have errors after being encoded in
LDPC encoder was corrected after passing through the LDPC
decoder. The designed LDPC Decoder can correct at least 1 error
on every 8 bit data stream which complies our target of 42 error in
1K bytes.

Acknowledgement

A special thanks and sincerest gratitude to the following research
funding institution: USAID –STRIDE and DOST – PCIEERD for
providing the licensed tools used for this work.

References

[1] M. Mansour and N. R. Shanbhag (2003, High-throughput LDPC
decoders. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 11:976–996.

[2] P. Radosavljevic, A. de Baynast, and J.R. Cavallaro (2005), Opti-
mized Message Passing Schedules for LDPC Decoding, Proceed-
ings of the conference IEEE 39th on Signals, Systems and Comput-
ers, pages 591–595.

[3] IEEE 802.11 Wireless LANs WWiSE Proposal: High Throughput
extension to the 802.11 Standard. IEEE 11-04-0886-00-000n.

[4] L. W. A. Blad and O. Gustafsson, “An early decision decoding al-
gorithm for LDPC codes using dynamic thresholds,” in Proc. Eur.
Conf. Circuit Theory and Design , Aug. 2005, pp. III/285–III/288.

[5] M. M. Mansour and N. R. Shanbhag, “A 640-Mb/s 2048-bit pro-
grammable LDPC decoder chip,” IEEE J. Solid-State Circuits , vol.
41, no. 3, pp. 684–698, Mar. 2006.

[6] M. Karkooti and J. R. Cavallaro. Semi-parallel reconfigurable ar-
chitectures for real-time LDPC decoding. In IEEE International
Conference on Information Technology: Coding and Computing
ITCC 2004, April 2004.

[7] M. M. Mansour and N. R. Shanbhag (2003), “High-throughput
LDPC decoders,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 11, no. 6, pp. 976–996, Dec. 2003.

[8] R. G. Gallager, Low-Density Parity-Check Codes, Cambridge, MA:
MIT Press, 1963.

[9] J. Banuchandar and D. Uthirapathi, "Single photon transis-
tor," International Conference on Information Communication and
Embedded Systems (ICICES2014), Chennai, 2014, pp. 1-5.
doi: 10.1109/ICICES.2014.7034132

	Abstract
	1. Introduction
	2. Codes Basics
	2.1. Error Correcting Codes
	Fig. 1. The Message, check, and code word bits in an FEC
	encoded message
	2.2. LDPC Codes

	Step 4. Repeat 2 until either exit at step 2 or a certain number of iterations has been passed. In this example, the algorithm terminates right after the first iteration as all parity check equations have been satisfied. V2 is corrected to 0.
	3. Experimental Results
	4. Conclusion

