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Abstract 
 
This paper presents a simple and efficient implementation of a Low Density Parity Check (LDPC) error-correcting code, using the hard-
decision decoding algorithm in a 0.13 µm TSMC CMOS process. The encoder and decoder modules were simulated by transmitting the 
correct 8bit code words, and letting it pass through a test bench module that corrupts one or more bits of the channel data, then allowing 
the decoder to correct the corrupted channel data. The system is able to correct a single bit error with 1 or 2 iterations only. Hence for a 
clock of 50MHz, the system can detect and correct more than 42 bit errors per 1 KB of data, which is just the goal of this research. Im-
plemented through Verilog HDL using Synopsys Design, the design is simple in a sense that it does not use sophisticated encoding and 
decoding algorithms and the H- matrix used is a simple ½ code rate (4,8)- regular matrix and thus will result to a small scale and non-
congested full-parallel architecture. It only measured 6.29 mm2 chip area. For a supply voltage of 1.32 V, the total power of only 138.64 
µW implied very low power consumption. 
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1. Introduction 

Networks must be able to transfer data from one device to another 
with complete accuracy.  A system that cannot guarantee that the 
data received by one device are identical to the data transmitted by 
another device is essentially useless.  The most common causes of 
errors are the interferences, attenuation, distortion and noise in the 
channel. These transmission limitations occur at some fixed or 
unpredictable degree and can be very dangerous to the system. 
This clearly emphasizes the need for error detection and correction. 
Reliable systems must have a mechanism for handling such errors 
[1].  
There are many such schemes and algorithms existing for error 
detection and correction. In each of these schemes, two communi-
cation blocks are essential: the channel encoder and channel de-
coder. These blocks facilitate the error detection and correction 
process by adding some extra bits called parity bits or redundancy 
bits prior to transmission (encoding), then reading these new set of 
data during reception and decode to check if there's an error dur-
ing that instant of transmission (decoding). The best that the en-
coders and decoders could do is to detect the error and also locate 
the position of the bit in error and then correct it. This is done 
through an error-correcting code (ECC) [2].  
Basically these encoder and decoder are digital circuitry that can 
be embedded on the transmitter and receiver sides of a chip-level 
communication system. There had been error-correcting codes that 
existed over the years since the invention of the first ECC called 
the hamming codes, up to until what is the latest ECC currently 
being used in most systems these days, the low-density parity 
check codes (LDPC). LDPC codes were first invented by Robert 

Gallager in his PhD dissertation on 1960. Due to the computation-
al effort in implementing the encoder and decoder, to an era when 
vacuum tubes were only just being replaced by the first  
transistor, and the introduction of the Reed-Solomon code, the 
code was ignored and forgotten [3]. Till then a lot of state-of-the-
art coding gain codes were also introduced, particularly the Turbo 
Code. These codes can achieve coding gains close to the theoreti-
cal limit for channel coding, which is the Shannon Limit, but the 
implementation cost is high [4]. In 1996, LDPC codes were re-
discovered by D. MacKay and R. Neal. They found it to have very 
good coding gain performance, but the implementation cost is 
much lower. 
This paper had aimed to design and implement, using the synthe-
sizable Verilog HDL on the 130 nm CMOS technology process, 
the low density parity check codes. The researchers' major consid-
erations in the design and implementation of this ECC will be the 
speed of the encoding and decoding processes, the design to work 
on a clock of at least 50MHz given the target library to be 90 nm, 
memory input/output in 8, 16, 32, or 64 bits, and a capability of 
correcting 42 bit errors per 1KB of information. 

2. Codes Basics 

Although the goal of error checking is to correct errors, most of 
the time, it is first necessary to detect errors. Error detection 
(without correction) is simpler than error correction and is the first 
step in the error correction process [1]. 
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2.1. Error Correcting Codes 

The most common and least expensive scheme for error detection 
is the parity check. Here, a parity bit is added to every data unit so 
that the total number of 1’s in the data unit (including the parity 
bit) becomes even (or odd for odd-parity). This scheme is the most 
basic and the oldest but more modern and sophisticated algorithms 
still make use of the parity check in their steps [5]. 
Use of simple parity check allows detection of single-bit errors in 
a received message. Correction of these errors requires more in-
formation, since the position of the corrupted bit must be identi-
fied if it is to be corrected. If a corrupted bit can be detected, it can 
be corrected by simply complementing its value. Correction is not 
possible with one parity bit only since any bit error in any position 
produces exactly the same information, i.e., error. If more bits are 
included in a message, and if those bits can be arranged such that 
different corrupted bits produce different error results, then cor-
rupted bits could be identified [6]. 
Forward error-correction coding (also called ‘channel coding’) is a 
type of digital signal processing that improves reliability of the 
data by introducing a known structure into the data sequence prior 
to transmission. This structure enables the receiving system to 
detect and possibly correct errors caused by corruption from the 
channel and the receiver. In a communication system that employs 
forward error-correction coding, the digital information source 
sends a data sequence to an encoder. The encoder inserts redun-
dant (or parity) bits, thereby outputting a longer sequence of code 
bits, called a ‘code word’. These code words can then be transmit-
ted to a receiver, which uses a suitable decoder to extract the orig-
inal data sequence [6]. Figure 1 illustrates the discussion. 

 
Fig. 1. The Message, check, and code word bits in an FEC  
encoded message 

2.2. LDPC Codes 

As their name suggests, LDPC codes are linear block codes with 
parity-check matrices that contain only a very small number of 
non-zero entries. An LDPC code parity-check matrix is called (wc, 
wr)-regular if each code bit is contained in a fixed number, wc, of 
parity checks and each parity-check equation contains a fixed 
number, wr, of code bits. 
LDPC codes are often represented in graphical form by a Tanner 
Graph. The Tanner graph consists of two sets of vertices: n verti-
ces for the codeword bits (called bit or variable nodes), and m 
vertices for the parity-check equations (called check nodes). So for 
the given example of an H-matrix, the corresponding Tanner 
Graph is as shown in Figure 2. 

 
Fig. 2. The relationship with H-matrix and the tanner graph 

2.3. The Hard-Decision Algorithm 

In [7], Leiner uses a (4, 8) linear block code to illustrate the hard 
decision decoder and corresponding tanner graph, as shown in 
Figure 3 (a) and (b), respectively.  
  

 
Fig. 3. (a) A (4, 8) linear block code 

 
 (b) Corresponding tanner graph 

By the help of an example presented in [8] {4}, the researchers 
will illustrate how the Hard-Decision decoding algorithm operates. 
An error free codeword of H is c = [1 0 0 1 0 1 0 1] T. Suppose we 
receive y = [1 0 0 1 0 1 0 1] T. So c2 is flipped [9]. The algorithm, 
as illustrated in [8], is as follows:   
Step 1. In the first step, all variable nodes send a message to their 
connected check nodes. In this case, the message is the bit they 
believe to be correct for them. For example, message node v2 re-
ceives a 1 (y2 = 1), so it sends a message containing 1 to check 
nodes c1 and c2.  
Step 2. In the second step, every check nodes calculate a response 
to their connected variable nodes using the messages they received 
from step 1. This is done by having a parity check or an XOR 
operation to each of the 4 bits received, and if the reduction XOR 
result is 1, the check node sends to its connected variable nodes 
the opposite of what it receives, else if the reduction XOR result is 
0, the check nodes send the same message it gets. Table 1 illus-
trates the steps in 1 and 2.  

Table 1. Check Nodes Activities for Hard-Decision Decoder 

 
What this table illustrates, is that if a check node receives and odd 
number of ones, it will send a flipped 4-bit value, otherwise if it 
receives an even number of ones, it will send the same 4-bit num-
ber back. So for example in c0 and c1 in the table, they both re-
ceived 1101 from the v-nodes, thus it will send 0010 to their con-
nected v-nodes. C2 and c3 received 0101 and 1100 respectively, 
which both contains even number of ones. Thus, it sends the same 
0101 and 1100 respectively. 
Step 3. In this step, the variable nodes use messages they get from 
the check nodes to decide if the bit at their position is a 0 or a 1 by 
majority rule. The variable nodes then send this hard-decision to 
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their connected check nodes. Table 2 illustrates this step. To make 
it clear, let us look at variable node v2. It receives 2 0’s from check 
nodes c1 and c2. Together with what it already has y2 = 1, it de-
cides that its real value is 0. It then sends this information back to 
check nodes v1 and v2.  

Table 2. Variable Nodes Decisions for Hard-Decision Decoder 

 
Step 4. Repeat 2 until either exit at step 2 or a certain number of 
iterations has been passed. In this example, the algorithm termi-
nates right after the first iteration as all parity check equations 
have been satisfied. V2 is corrected to 0. 

3. Experimental Results 

As shown in Figure 4, we decided to design the system given the 
LDPC H matrix, G matrix and the corresponding Tanner graph. 
The corresponding distinct messages and the resulting code words 
were also presented at the bottom of Figure 5. 

 
Fig. 4. H and G Matrix and the corresponding tanner graph with the re-
spective distinct messages and code words. 

Figure 5(a) shows the main LDPC encoder module and its pinouts. 
Table 3 shows the details of those pinouts. To help discuss the 
operation of the main encoder module, first is to look at its inter-
nal architecture, shown at Figure 6(b). Like most implemented 
LDPC encoder modules, each of them consist of a controller, a 
buffer and a block that does the encoding. 

 
(a) 

 
(b) 

Fig. 5. Main LDPC encoder; (a) Module (b) Internal 

Table 3: Implemented Encoder Port Details 

 
The controller takes care of control signals like the clk, rst, strt, 
read, and write, then they’re corresponding output ports status_1, 
status_2 and the outbuffer_rd and outbuffer_wr. The ldpc_encoder 
then takes the status signals as long as the input datain signal and 
then it outputs the signal directly to the outbuffer. The outbuffer 
module then holds the output data from the ldpc_encoder module 
and buffs the data stream. The outbuffer will only output the sig-
nal only if the outbuffer_wr signal is high. 
Figure 6(a) shows the Main_LDPC_Decoder module and its 
pinouts. Pinouts are then explained in detail at Table 4. Likewise, 
consider first the internal architecture of the main decoder module, 
shown in Figure 7(b). Recall that the operation of the decoder 
makes use of the Tanner Graph in [7], and thus hardware imple-
mentation would also look more or less the same. A tanner graph 
in turn consists also of the variable nodes and the check nodes, 
here in the standard architecture in the left, it is named VNU (var-
iable node unit) and CNU (check node unit), respectively. 
What makes the VCS schematic messy is because the modules are 
not arranged accordingly during compile, and the v-nodes and c-
nodes are scattered all around. But basically, this shows the inter-
nal architecture of the decoder which consists of an input and an 
output buffer, a controller, v-nodes, c-nodes, and an interconnect 
module that takes care of the interconnection of the tanner graph. 

outbuffer 

encoder 

controller 
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(a) 

 
(b) 

Fig. 6. Main LDPC decoder: (a) Module (b) Internal 

Table 4. Implemented Encoder Port Details 

 Next is to look at the ldpc_encoder module. The goal here is to 
perform the matrix multiplication. We recall the proposed encoder 
H and G matrices as shown in Figure 4. The G matrix is derived 
from H matrix where G = identity matrix form of H.  
Recall that in forming the code words, c, the input data, p, must be 
multiplied by the generator matrix G. The code words is then re-
arranged so that the last four bits becomes the first 4 bits to keep 
track of the column permutations. So if we will take a look at the 
values 0001 and 0010 the corresponding code words which are the 
result of the matrix multiplication and the rearrangement as shown 
in Figure 4 are 10110001 and 01110010, respectively. This is 

particular data is shown in the simulation timing diagram in Fig-
ure 7 below. 

 
Fig. 7. LDPC_encoder module timing diagram 

Looking at the timing diagram of the decoder where in three valid 
codewords of the architecture are being tested, which are 
10010101 and 10110001 and 01110010. Note that the first code-
word is the one that was used in the detailed explanation of the 
algorithm in section 1.7.2.5 while the two code words are those 
being used in the example with the encoder. Two cases are shown 
here, the case where both the code words are being flipped at bit 
positions 7, 0, and 1, respectively, and so it becomes 11010101, 
10110000, and 01110000. The second case is simulated where the 
code words are received without an error. Figure 8 shows the main 
LDPC decoder timing diagram. 

 
Fig. 9. Main LDPC decoder module timing diagram 

It is shown from here the important signals that operate to perform 
the hard-decision decoding. In each of the erroneous code words, 
the system iterates up to the second iteration while the cases where 
the code words are not corrupted, it only goes up to the first 
checking of the parity check matrix. Likewise, the system needs 
buffers both at the input and in the output since the nature of the 
operation is not linear in time, it depends on the number of itera-
tion a frame is decoding. But if the reader will look at the timing 
diagram in a bird’s eye view, it can be seen that the decoder suc-
cessfully corrected the corrupted frames.  
Synthesis of the Verilog code, along with running the correspond-
ing IC Compiler routines necessary to generate the prototype, 
show that the total area of the designed LDPC decoder is 
6288.762798 um2 which is small enough for a typical LDPC de-
coder area size using 130nm Logic CMOS Technology. The total 
power of the designed chip is 138.6393 uW which comprised of 
the dynamic power which is 112.9294 uW and the cell leakage 
power which is 25.7009 uW.  Since the dynamic power is small, 
once the device operates, it will only consume less power and it 
will not heat up easily. And also since the Cell Leakage power is 
small compared to the dynamic power, it indicates a good design 
because the power loss is smaller than the dynamic power. The 
slack time for the input, output and combinational path LDPC 
Decoder is positive which indicates that the design is good in 
terms of timing because the data arrives in the input path, output 

v-nodes 
intercon-
nect 

controller 

data-in 

data-out 
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path and combinational path before the clock changes from logic 
high to logic low or from logic low to logic high.  

4. Conclusion  

The designed Low-Density Parity Check Error Correcting Codes 
was analyzed and has been successfully implemented in integrated 
circuit. The fundamentals of LDPC encoder and LDPC decoder 
blocks and special were also discussed in detail in different chap-
ters of this paper. LDPC encoder and LDPC decoder modules 
were successfully implemented in the integrated circuit with 50 
MHz clock using 130nm logic CMOS Technology. Simulated 
results were presented and all simulations were based on ideal and 
actual behaviors.  
Furthermore, the actual simulation show that the LDPC Error 
Correcting Code was working and was effective since the digital 
data that has been assumed to have errors after being encoded in 
LDPC encoder was corrected after passing through the LDPC 
decoder. The designed LDPC Decoder can correct at least 1 error 
on every 8 bit data stream which complies our target of 42 error in 
1K bytes.  
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