An Evaluation Instrument (Q-U) for Measuring the usability of Business Intelligence Application

Ayad Hameed Mousa*, Heba Adnan Raheem, Nibras Talib Mohammed

1, 2, 3 University of Kerbala, Karbala, Iraq
*Corresponding Author E-mail: ayad.h@uokerbala.edu.my

Abstract

The main purpose of Business Intelligence (BI) applications is to focus on supporting organizations' strategic, operational and tactical decisions by providing comprehensive, accurate and vivid data to the decision makers. Usability testing is an important part of software development. It focuses on how well users can understand and utilize a product/software in fulfilling their intended goals. In the software development, most software tends to be complex. Hence, the way to ensure that such software will satisfy users will be done by measuring the usability of such software. Due to using many data integration techniques in developing BI application, thus, the different software have different instruments to measure the usability of BI software. In this paper, the new instrument (Q-U) for measuring BI software was developed. A systematic approach was adopted which suggested by many researchers in developing the intended Q-U instrument. The literature has been reviewed in a systematic manner to elicit Q-U instrument attributes. Multi-methods were used in validating Q-U instrument such as face validity, a pilot study for testing the goodness of Q-U consistency, and factor analysis. Multi-methods were used in validating Q-U instrument such as face validity, a pilot study for testing the goodness of Q-U consistency, and factor analysis as well as Bartlett’s test for measuring the reliability of Q-U. The finding obtained indicates the workability of Q-U in measuring the usability of BI applications. Ultimately, Q-U was used in measuring BI application in two different sectors.

Keywords: BI Application, Usability, Software Usability, BI Usability, Pilot Study.

1. Introduction

Business Intelligence (BI) is the mechanism to provide insights for most of the operations and performance of organizations, in addition to identifying strategic business opportunities. BI from a technical point is a set of techniques, tools and methodologies that work together to transform the information and data belonging to the organizations into meaningful and actionable information and making this information available to decision makers in an organization[1-10]. Usability testing is an extremely important element in software development. It focuses on how well users can understand and utilize a product in achieving their intended goals[11, 12]. In the era of software development, most software functions tend to be complex and to ensure that such software will satisfy users, it is extremely important for software to have the high degree of usability[13, 14]. In the same aspect, the optimal use of BI applications depends on various factors including the usability of the product[15, 16].

2. Software Testing in BI Environment

Measuring the usability of software is a significant element in software development. It helps to know how users can comprehend and utilize a software to fulfill the objectives which designed for[11, 12, 17]. According to [14], usability, to some extent, is the question of “whether the system is good enough to satisfy all the needs and requirements of the users and other potential stakeholders, such as the users, clients and managers”. On the other hand, usability can define as “the extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency. In the same aspects, [18] states that the process of usability evaluation includes three main goals; i) to measure the extent and accessibility of the system’s functionality, ii) to measure users’ experience of the interaction, and iii) to identify any particular issues within the system.
3. Usability in Bi Applications

Usability can be considered as one of the factors in terms of determining the best of use and ultimate benefit obtain from BI application. The main aim of BI is to help and support the massive warehouses and flow business data in, out, and around the organizations by identifying, processing the information into meaningful information and valuable managerial knowledge and intelligence [19, 20]. Besides, to gain from the actual users about the prototype usability and according to [21], a usability testing should be conducted.

4. Q-U Instrument Development

To develop the evaluation instrument, a systematic approach was adapted as suggested by authors [22-24], the rigor process of evaluation instrument development is illustrated in Figure 1.

As illustrated in Figure 1, the design of the instrument began with the elicit works to determine the dimensions and items of the evaluation instrument. Then the drafted instrument was piloted for a test of validity and reliability. In this pilot study, 150 respondents were obtained. The respondent numbers who have participated in the pilot study is enough to achieve a reliable outcome in the statistical test as described by [24]. In the next paragraphs, the brief explanation for each stage in instrument design approach was conducted.

4.1. Elicitation Work

Six attributes of usability are considered, which are visibility, flexibility, learn-ability, application behavior, error control, and near real-time decision making. These attributes have been proposed to form the q-u instrument attributes, and to be used later in measuring the usability of bi applications. In the same aspect, the proposed attributes were elicited from previous studies related to usability evaluation of bi applications. A total of 20 evaluation works were reviewed in a systematic manner to elicitation Q-U instrument attributes [11, 14, 25-32].

4.2. Instrument Validation via Face Validity

According to [29], the first draft of the developed instrument should validated through Content Validity and Inter-Item Consistency Analysis; the author state that face validity as the fundamental measuring approach for Content Validity. Consequently, this paper engaged four experts in various expertise which are: BI Developers, Software Engineering, Information Technology, and Multimedia, through e-mails as well as face to face consultation to review the items in terms of Content Validity. This is inline with the suggestion of [33]; where three to five experts were employed for their content validation. From the feedback of the experts, it was found that some of the items were not good enough to use and not fit well with the intended constructs. This led to some modifications to the first draft.

In the context of this study, the instrument has 5 scales. Hence, a 5-point Likert scale ranging from strongly disagree (denoted by 1), to strongly agree (denoted by 5) is used in the study. [34] reported that using response options beyond 5-point do significantly alter the scale reliability.

4.3. Pilot Study: Testing Goodness of Measures of Q-U Consistency

In order to ascertain that the instrument indeed measures the required variables or constructs, a pilot study has been conducted to measure their consistency [24]. In the context of this study, 150 respondents were involved among the postgraduate students who have either previously be a BI developer, lecturer in computer science, IT, or software engineering. The respondent numbers who have participated in the pilot study is enough to achieve a reliable outcome in the statistical test as described by [35]. According to [36]; the sample size for construct validity test should at least have 100 responses to get a reliable significant outcome.

4.4. Factor Analysis (Validity)

The objective of determining factor analysis was to verify the degree of significance of each item and which are most suitable for each dimension [24]. Therefore, the test was run and guided for accepting each item based on utilizing Kaiser-Meyer-Olkin (KMO) and Bartlett’s
test of sphericity, Measure of Sampling Adequacy (MSA), and Factor loading. In preparing the data for factor loading analysis, KMO test was conducted and the results are tabulated in Table 1. It can be noticed that all the values for KMO test satisfy the condition of KMO test ≥ 0.50.

<table>
<thead>
<tr>
<th>Attributes</th>
<th>KMO</th>
<th>Significant value of Bartlett’s Test of Sphericity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim1</td>
<td>0.644</td>
<td>0.000</td>
</tr>
<tr>
<td>Dim2</td>
<td>0.619</td>
<td>0.000</td>
</tr>
<tr>
<td>Dim 3</td>
<td>0.621</td>
<td>0.000</td>
</tr>
<tr>
<td>Dim 4</td>
<td>0.661</td>
<td>0.000</td>
</tr>
<tr>
<td>Dim 5</td>
<td>0.623</td>
<td>0.000</td>
</tr>
<tr>
<td>Dim 6</td>
<td>0.653</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Where (dim1...dim6) represent the instrument dimensions.

In addition, the Bartlett’s test of sphericity gave the significant value of 0.000 for all constructs, which shows the second condition also met and satisfy (significant value of p ≤ 0.05). Hence, this evidences that the data are ready for factor loading analysis test. Result of Consistency Analysis (Reliability Test).

Reliability of a measure is an indication of consistency. In the pilot study, the measure of consistency is examined through the interim consistency reliability test. The value of Cronbach’s coefficient alpha was computed and should indicate the value of alpha to be accepted as reliable [35]. Thus, the reliability of a measure signifies the level at which the measure is without bias and therefore offers dependable measurement across different items of the instrument [36]. This study ran the Cronbach’s alpha test and set (α > 0.6) to be significant. Table 2 shows the results of reliability test of measurement items, they were found consistent and significant, hence, this measurement items can use for data collection in the main study.

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Cronbach’s Alpha</th>
<th>Items before factor loading</th>
<th>Items after factor loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim 1</td>
<td>0.709</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Dim 2</td>
<td>0.719</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Dim 3</td>
<td>0.725</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Dim 4</td>
<td>0.711</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Dim 5</td>
<td>0.723</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Dim 6</td>
<td>0.745</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

As seen in Table 2, all the items in Q-U are found valid and can be used to represent respective dimensions. As stated earlier, factor loadings ≥ 0.50 are considered practically significant and well-defined structure [36]. Thus, all the items that show loading values less than 0.50 are not included in the usability test for BI applications. Since the items proposed in questionnaire were elicited from various previous works, hence it is important to seek confirmation (through factor analysis) to see if these items underlie that proposed dimensions in questionnaire.

As mentioned earlier, the instrument is partially used as a measure of outcome; hence, scale sensitivity becomes an important concern [37]. The overall (Q-U) instrument after refinement is ready to use in testing the usability of any BI application. When concerns with scale reliability, [34] reported that using response options beyond 5-point do not significantly alter the scale reliability. However, difficulties might arise in generating categorical names as the scales expanded [34, 37]. In line with the above situations, the overall instrument consists of six dimensions and 36 items spread over those dimensions. As clearly visualize in Figure 2.

5. Use Q-U in Testing Bi Prototype

The usability testing for the two BI applications spread over two organizations was conducted. The first organization under education sector, while the second organization under the business sector. The measurements were made through an instrument named Q-U, which comprises of six main dimensions, visibility, flexibility, learnability, Application behavior, error control and help, and near real-time Decision making as a Q-U usability attributes. During the Usability test, 30 respondents with computer science, Software engineering, and IT background participated. Descriptive statistics was used. To describe the basic features of the data in this study, to provide summaries about the sample and the measures, together with graphic analysis, and to form the basis of virtually every quantitative analysis of data.
6. Overall Usability Finding

To obtain the overall finding, the average of results for each usability attribute was calculated. The overall usability for measuring the usability of BI application in organization 1 is made of six dimensions as depicted in Table 3 and Figure 3. Calculating the average agreement value for each dimension, the figure shows that for each dimension, the majority of respondents agree that the BI provide data visibility, is flexible, easy to learn, behave as expected, provide necessary error control and help, and data to allow near real time decision making. This lead that the Q-U instrument is workable in practice.

Table 3: Overall Usability Finding (Case 1)

<table>
<thead>
<tr>
<th>Usability Dimension</th>
<th>Strongly Agree & Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dim 1</td>
</tr>
<tr>
<td>2</td>
<td>Dim 2</td>
</tr>
<tr>
<td>3</td>
<td>Dim 3</td>
</tr>
<tr>
<td>4</td>
<td>Dim 4</td>
</tr>
<tr>
<td>5</td>
<td>Dim 5</td>
</tr>
<tr>
<td>6</td>
<td>Dim 16</td>
</tr>
</tbody>
</table>

Fig. 3: Overall Usability Finding (Case 1)

While the overall usability for testing BI application in the second organization illustrate in Figure 4 and Table 4. The overall usability for measuring the usability of BI application in organization 1 is made of six dimensions as depicted in Table 3 and Figure 3. Calculating the average agreement value for each dimension, the figure shows that for each dimension, the majority of respondents agree that the BI provide data visibility, is flexible, easy to learn, behave as expected, provide necessary error control and help, and data to allow near real time decision making.

Table 4: Overall Usability Finding (Case 2)

<table>
<thead>
<tr>
<th>Usability Dimension</th>
<th>Strongly Agree & Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dim 1</td>
</tr>
<tr>
<td>2</td>
<td>Dim 2</td>
</tr>
<tr>
<td>3</td>
<td>Dim 3</td>
</tr>
<tr>
<td>4</td>
<td>Dim 4</td>
</tr>
<tr>
<td>5</td>
<td>Dim 5</td>
</tr>
<tr>
<td>6</td>
<td>Dim 16</td>
</tr>
</tbody>
</table>

Fig. 5: Overall Usability Finding (Case 2)

The findings also showed that the majority of the participants (more than 90%) in both of education and business sectors, have affirmed the workability of the Q-U instrument in measuring the usability of the BI prototype in particular able to test near real-time decision-making which provided by such BI prototype.
7. Conclusion

Two overall contributions can be obtained from this paper are: (1) the proposed instrument can adapt and use from BI development researchers (2) this paper can use as a guideline to other researchers in supporting and guiding them in developing their own instruments.

Acknowledgment

Not forgetting to express my grateful and thanks to the Ministry of Higher Education and Scientific Research (Iraq) and University of Kerbala for supporting and funding my studies. Without their continuous support, this research study would not have materialized.

References

