Improved MANET Routing Protocols Performance using Optimization Methods

Mehdi Ebady Manaa*1, Sadeem Dheyaa Shamsi2

1-2College of Information Technology, University of Babylon, Babylon, Iraq.
*Corresponding Author Email: meh_man12@yahoo.com

Abstract

A Mobile Ad-hoc Network (MANET) is a combination of mobile nodes that contact and cooperate with one another without depending on any predefined infrastructure. Reactive protocols are on-demand routing protocols detect the routes between sender and receiver. These protocols do not keep any network topology information and there is no need to exchange routing information periodically so it saves much control overhead. Particle Swarm Optimization (PSO) algorithm is an inspired algorithm because it imitates the sociological behavior associated with bird crowd. PSO similar the other evolutionary algorithms based on population; PSO start with random solutions of the population. Bat algorithm (BAT) is a metaheuristic algorithm and its idea comes from the echolocation conduct of microbats, with disparity pulse averages of emission and loudness, used for global optimization. To address the problem of finding in MANET optimal solution, BAT and PSO are used in this work by implementing 30000 scenario using AODV and DSR. After obtaining the results from these algorithms in comparison with DSR and AODV, it turns out that the use of optimization algorithms shows good results through increasing the packet delivery ratio and the reduction the delay and drop packets.

Keywords: Ad-hoc; MANET; DSR; AODV; Optimization; PSO; BAT.

1. Introduction and Research Background

Wireless ad-hoc network does not base on a pre-defined infrastructure, which means the nodes interact with another node without any intermediate device so it’s called as an ad-hoc network. Each node participates in routing by forwarding data for other nodes, so the determination of which nodes forward data is made dynamically on the basis of network connectivity. [1]. In this type of network routing is done on a hop by hop basis.

1.1 Ad-hoc Networks

Mobil Ad-hoc Network (MANET) is a new kind of wireless connection between nodes. In MANET there is no need for fixed infrastructure can be developed by using a wireless link which connecting diverse mobile nodes. When there is no alternatives are obtainable to create a network the Ad-hoc network is the proper choice, this characteristic makes it hard to make a network with no need to any existing infrastructure. Typical challenges of MANET contain routing, bandwidth constraints, low power devices, hidden terminal and security[3]. Vehicle Ad-hoc Network (VANET) is a sub category of the MANET. In this technology the vehicles represent the nodes to create a mobile network. Every vehicle acts as a wireless router or node so this allows the vehicles to connect and create a wide range of the network[4]. Flying Ad-hoc Network (FANET) is a collection of Unmanned Air Vehicle (UAVs) contact with one another without access point requirement, but they need at least one of them to be connected to a ground base or satellite. UAVs work with no need to human intervention, such as autopilot. UAVs can fly independently or can be operated far away. Previously, UAVs were piloted aircrafts remotely and generally used for military operations/applications. Fig. 1 shows Mobil ad-hoc network. It consist of hosts configured wirelessly so they have their own transmission domain [2].
1.2 Reactive Protocols

Ad Hoc on-Demand Distance Vector (AODV) is a packet routing protocol designed for use in mobile ad hoc networks (MANET). AODV supports both unicast and multicast routing. This protocol establishes the route from source to destination when there is a need for this link by using its control packets Route Request (RREQ) and Route Reply (RREP). Route Error (RERR) control packet used on route maintenance operation. [5]. Dynamic Source Routing (DSR) is one of the reactive protocols which are on demand routing protocols. Like in AODV the work of the Protocol summarizes in two parts: route discovery which is used for setting up routes and route maintenance which are used for monitoring of those routes respectively. DSR does not depend on the information in the intermediate nodes and instead of that use source routing.

1.3 Meta-Heuristics

Meta-heuristics are the most recent evolution in search methods for solving complex optimization problems that increase in business, commerce, industry and many other areas. Also, it uses concepts Inspired from artificial intelligence, biological, mathematical, natural and physical sciences improve their performance[7]. Particle Swarm Optimization (PSO) is an optimization algorithm representing as a swarm of particles that inspired from the behavior of flocking birds. It gets the best solution from through the movement in an N dimensional search space. Every particle in the swarm has two values, one for the current position and the other for its velocity. The movement of particles obtained from these values where the velocity calculated and added to the previous position to get new the position. The particle has a memory to save its best position (Pbest). While (Gbest) mean the global best which calculated by the PSO during the monitoring the best value and its location for each particle in the swarm. [8]. BAT Algorithm is one of the algorithms that rely on optimization and arithmetic intelligence. This algorithm operates on the principle inspired by echolocation behavior of microbats. The algorithm uses frequency, speed and location for each bat in the swarm in all iterations in the specific dimension in the search space. The position represents the vector of solutions to the problem. The best solutions are stored during the frequent search process [9].

In addition to this introduction and research background, this article contains the following:

Section 2: present related work about energy optimization and network optimization with comparison between them.
Section 3: explains the metaheuristic algorithms and illustrates the proposed system.
Section 4: Introduces the results and evaluates the proposed system.
Section 5: Presents conclusion.

2. Related Work

The most related works for MANET optimization lay on two categories:

2.1 Energy optimization:

which means reduced energy consumption of battery-powered for each node in the network. Wen-kuang Kuo and Shu-hsien [11] Chu present our numerical results of applying our proposed BB algorithm to energy efficiency optimization of a MANET. Add to that they compared between the proposed algorithm (BB) with another one and the result show that the proposed algorithm good performance Keep in mind computational complexity.

Radhika D. Joshi and Kirti Aniruddha Adoni [12] this paper proposed an algorithm on modified Optimized Link State Routing (OLSR) to minimize the consumption of the energy for each node in the network. This proposed algorithm always chooses energy optimized path so it's clearly the average range of nodes stay alive from 10 to 25%, but at the same time there is growing in the routing overhead.

The main interest in MANET is energy optimization & trustworthy communication. Manjinder Kaur and Lalit Mann Singh [13] minimize the energy consumption by using dynamic clustering or residual energy connotation & perform routing protocol for trustworthy communication.

2.2 Network optimization:

Network optimization plays a crucial role as information technology is growing at massive rates with business users who produce large amount of data so there is a large consumption in network bandwidth. Kamaldeep Kaur and Lokesh Pawar in [14], this paper display some of Optimization approaches which fall into the category of biologically inspired algorithms like Genetic algorithms, Particle Swarm Intelligence, Ant Colony Optimization, Artificial Bee Colony Optimization, Artificial Neural Networks and Bacterial Foraging Algorithm.

Al-Ghazal, M. et. al in [15], this paper works on algorithm which is based on genetic algorithm (GA) and cluster head gateway switching protocol (CGSR) by which it can be improved routing in clustering algorithm. Genetic algorithm (GA) keeps up to date state information about the neighboring network and GA mechanisms make systems to be self-configured. Genetic algorithms discover the best path from sender to receiver in the network, but it is not necessary to be the shortest path, also it allows a node to update routing information fast and efficiently to set local topology which constantly changing, initiating fewer link fractures and increasing lower MAC layer overhead.

Karthikeyan, D. and Dharmalingam, M. in [16], this paper use ant colony optimization (ACO) algorithm that inspired from the nature. In MANETs, the routing algorithms are developed facilely with this technique. In this technique, the independent agents interact with one another and their collaboration behavior is studied to get a given solution by finding the best global solution. An algorithm based on energy efficient routing is proposed for MANETs to increase the lifetime of the system by reducing energy consumption of nodes. Alireza, S. et. al in [17], this paper suggests an algorithm based on the PSO algorithm in MANET for multicast routing. The PSO algorithm has higher performance and speed than GA based multicast routing. In multicast routing the main focus is on energy consumption efficiency and delay. Generally means that choosing the node within lower energy consumption and constructing a multicast tree with lower delay. Here, the issue was formulated as a PSO problem. A novel multicast routing algorithm depends on the PSO algorithms was suggested.

K.Sumathia and A.Priyadharshini [10] this paper presents the enforcement of Adaptive HELLO messaging scheme to get the information on the link between sender and receiver and monitor the link state with the using of dynamic on demand routing protocol to decrease the energy consumption to specific rang.
Optimization algorithm has shown to be a good technique for recognizing steady routes between source and destination in network, and it also decreases overhead of neighbor discovery processes and energy consumption.

Table 1: Summarization of the MANET protocols with Optimization methods

<table>
<thead>
<tr>
<th>Paper No.</th>
<th>Authors</th>
<th>Method</th>
<th>Performance Evaluation</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Kamaldeep Kaur and Lokesh Pawar</td>
<td>PSO, ACO, ABC, ANN and BF.</td>
<td>Survey on network optimization in MANET.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Al-Ghazal, M. et al.</td>
<td>genetic algorithm</td>
<td>-Routing information -overhead</td>
<td>CGSR</td>
</tr>
<tr>
<td>16</td>
<td>Karthikeyan, D. and Dharmalingam, M.</td>
<td>ACO</td>
<td>-Energy efficiency, -robustness -reliability -PDR</td>
<td>AODV</td>
</tr>
<tr>
<td>17</td>
<td>Alireza, S. et al.</td>
<td>PSO</td>
<td>-energy efficiency -delay</td>
<td>Multicast routing.</td>
</tr>
<tr>
<td>18</td>
<td>Nancharaiah, B. and Mohan, B.C</td>
<td>ACO and PSO</td>
<td>-End-to-end delay -Communication cost</td>
<td>Routing protocols</td>
</tr>
<tr>
<td>19</td>
<td>Anuj, K. and Harsh, S</td>
<td>ACO</td>
<td>-end to end delay - routing overhead</td>
<td>AODV, DSDV, DYM0, DSR</td>
</tr>
<tr>
<td>20</td>
<td>Zulfiqar Ali and Waseem, S.</td>
<td>ACO and PSO</td>
<td>-routing overhead -route optimality -energy efficiency</td>
<td>AODV,ZRP</td>
</tr>
<tr>
<td>21</td>
<td>Shah, S.K. and Vishwakarma, D.D.</td>
<td>ANN</td>
<td>-throughput -node density</td>
<td>AODV</td>
</tr>
<tr>
<td>22</td>
<td>Harpreet K., Jasmeet S.</td>
<td>BFOA</td>
<td>-energy consumption -overhead</td>
<td>AODV, DYM0.</td>
</tr>
<tr>
<td>23</td>
<td>E. Hemalatha, J. and Dr. Kannammal</td>
<td>MABCO</td>
<td>- PDR -delay -Jitter -Throughput</td>
<td>Routing protocols</td>
</tr>
</tbody>
</table>

3. Research Methodology

The purpose of this study is to find the best solution from thousands of scenarios in DSR and AODV protocols in MANET environment. First, the scenarios have been implemented in network simulator (ns2) after that Java has been used to read the files that contain input network parameters and output evaluation parameters to prepare structured data. The optimization algorithm will apply to this data to get the best solution and run it in the ns2.

3.1 Particle Swarm Optimization (PSO)

PSO is one the optimization algorithms rely on population randomness. PSO first proposed by Kennedy and Eberhart by implementing the algorithm on the simple social sample, start with a number of random solutions (particles), each particle has a velocity in a range defined by the user, to optimize the value of the cost function which is evaluated at the position of the particle. Each particle developed repeatedly in the search space trying to get a better solution in the following method:

\[v_k(i + 1) = w v_k(i) + c_1 r_1 [P_{bestk} - x_k(i)] + c_2 r_2 [G_{best} - x_k(i)]. \]
\[x_{k}(i + 1) = x_{k}(i) + v_{k}(i + 1) \] \hspace{1cm} (2)

In equation (1) the \((x)\) represent the position and \((v)\) represent the velocity of particle which represented in \((k)\) in the iteration \((i)\), \(c1, c2\) are stable acceleration equal to 2, \(r1 \) and \(r2\) are independent random numbers in the range \((0,1)\) and \(P_{best}\) is the best position of a particle and \(G_{best}\) is the best position of the swarm. \(P_{best}\) represent the best position where the cost is lower value in its search history [24]. In this work these equations have been used to change the position of the particle until the best cost have been obtained which leads to the best solution.

3.2 BAT Algorithm

In 2010 Yang proposes Bat Algorithm [9]. Bat algorithm used to solve optimization problems by simulating the behavior of bats, which depend on the echolocation of the microbats to update its position and velocity to get appropriate to live. This algorithm work iteratively and in each iteration the position of each bat updated depends on the velocity and hertz number of sound wave. In network optimization, the position vector of bats represents the parameters of the problem to be solved. In all iteration, position and velocity for every bat in the swarm will be measured depending on previous velocity, frequency and global information. BAT algorithm uses following equations to update velocity and position:

\[F[i] = F_{min} + (F_{max} - F_{min})\beta \] \hspace{1cm} (3)

\[V_{t}[i] = V_{t} - 1[i] + (X_{t}[i] - X[g])F[i] \] \hspace{1cm} (4)

\[X_{t} + 1[i] = X_{t}[1] + V_{t} + 1[i] \] \hspace{1cm} (5)

Where, \(F(i)\), \(F (\text{min})\), and \(F (\text{max})\) represent the hertz of the sound wave of microbat at time \(t\). \(\beta\) is a random vector and its value range from 0 to 1 [25]. \(X[g]\) is the current global best solution for each bat. The global best solution \(X (g)\) of the swarm is calculated after finishing all the iterations [9].

3.3 Algorithm of PSO – BAT

The algorithmic steps for the proposed MANET routing based on PSO-BAT which shown in the figure(2) is explained as follows:

Step 1: Choose network parameters sequentially (number of nodes, Number of connections, rate of speed).

Step 2: Set the results of scenarios as dataset to algorithm.

Step 3: Generate network parameters randomly and check it with the dataset.

Step 4: Retrieve evaluation metrics (Packet Delivery Ratio, Drop packets, Delay).

Step 5: Compute position and velocity of the current Particle or bat agent using equation (1) and (2) in PSO and equation (4) and (5) in BAT.

Step 6: If all the updates are performed then end the process, and

Step 7: If no optimal solution is achieved after step 2 then move to next agent and repeat from step 3 to 6 to perform optimization.

![Flowchart Proposed MANET routing based on PSO-BAT](image-url)
4. Implementation Results

The results run based on 300000 scenarios for each protocol with different network parameters which were increased sequentially. Nodes in the network follow pursue mobility model. The nodes are linked with one or more neighbors in order to communicate. The transmission range is fixed for each node. Path establishment between nodes is enabled by AODV or DSR. The parameters used for the analysis of our proposed work is shown in Table 2

<table>
<thead>
<tr>
<th>Simulation parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>Wireless Channel</td>
</tr>
<tr>
<td>Phy</td>
<td>Wireless Phy</td>
</tr>
<tr>
<td>Propagation</td>
<td>Two-Ray Ground</td>
</tr>
<tr>
<td>dimension of the topography</td>
<td>1500*1500</td>
</tr>
<tr>
<td>Mac</td>
<td>802.11</td>
</tr>
<tr>
<td>Antenna</td>
<td>Omni Antenna</td>
</tr>
<tr>
<td>Simulation time</td>
<td>50</td>
</tr>
<tr>
<td>Simulator</td>
<td>NS2</td>
</tr>
<tr>
<td>Number of nodes</td>
<td>15-300</td>
</tr>
</tbody>
</table>

The proposed work is employed on DSR and AODV protocols illustrate its effectiveness in network evaluation metrics. The performance of proposed hybrid (PSO - BAT) algorithm is compared against AODV, DSR. The proposed algorithm is evaluated using the network parameters PDR, Drop packets and delay:

4.1 DSR

The results for the DSR, PSO-DSR, and BAT-DSR protocol are presented in the table (3). It is clear that the hybrid of PSO with DSR protocol is better than the DSR and DSR-BAT in term of PDR, delay and drop packet.

Table 3: Comparison of DSR and new techniques with respect to various parameters

<table>
<thead>
<tr>
<th>Technique</th>
<th>Scenarios</th>
<th>PDR(Kbps)</th>
<th>Delay(ms)</th>
<th>Drop (packets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSR</td>
<td>15-100</td>
<td>73.26</td>
<td>26.74</td>
<td>7.09</td>
</tr>
<tr>
<td></td>
<td>100-200</td>
<td>63.47</td>
<td>34.49</td>
<td>9.33</td>
</tr>
<tr>
<td></td>
<td>200-300</td>
<td>61.55</td>
<td>22.86</td>
<td>10.45</td>
</tr>
<tr>
<td>PSO-DSR</td>
<td>15-100</td>
<td>91.53</td>
<td>17.78</td>
<td>7.85</td>
</tr>
<tr>
<td></td>
<td>100-200</td>
<td>89.79</td>
<td>9.41</td>
<td>7.17</td>
</tr>
<tr>
<td></td>
<td>200-300</td>
<td>97.58</td>
<td>7.66</td>
<td>6.35</td>
</tr>
<tr>
<td>BAT-DSR</td>
<td>15-100</td>
<td>81.79</td>
<td>20.15</td>
<td>6.78</td>
</tr>
<tr>
<td></td>
<td>100-200</td>
<td>84.04</td>
<td>18.85</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>200-300</td>
<td>78.33</td>
<td>20.38</td>
<td>6.24</td>
</tr>
</tbody>
</table>

4.1.1 Packet Delivery Ratio (PDR)

PDR means the ratio of packets sent successfully to the receiver. The high value of PDR means the best scenario. It is cleared from the figure (3) that the value of the PDR is increased using PSO-DSR and BAT-DSR because it searches for the optimal solution. Equation (6) used to calculate the PDR:

\[
PDR = (\frac{Received \ \text{Sent}}{Sent}) \times 100.\tag{6}
\]

4.1.2 Delay

Delay is one of the important metrics which means the whole time the packet takes until it reaches its destination. It is clear from figure (4) that the time of the delay using PSO-DSR and BAT-DSR is reduced. Equation (7) used to calculate the Delay:

\[
\text{Delay} = \frac{\text{sum of the time spent to deliver packets for each destination}}{\text{number of packets received by the all destination nodes}}.\tag{7}
\]
4.1.3 Drop Packet

Drop packets mean the packets that sent from the sender and does not arrive its destination. Figure (5) shows the reduction of drop packets using PSO-DSR and BAT-DSR. Equation (8) used to calculate the Drop Packets Rate (PDR):

\[DPR = \frac{\text{number of packets sent} - \text{number of packets received}}{\text{number of packets sent}} \]

4.2 AODV

The results for the AODV, PSO-AODV, and BAT-AODV protocol are presented in table (4). It is cleared that the hybrid of PSO-AODV and BAT-AODV are better than the AODV in term of PDR, delay and drop packet.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Scenarios</th>
<th>PDR(Kbps)</th>
<th>Delay(ms)</th>
<th>Drop (packets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AODV</td>
<td>15-100</td>
<td>70.13</td>
<td>446.83</td>
<td>21.16</td>
</tr>
<tr>
<td></td>
<td>100-200</td>
<td>97.07</td>
<td>282.63</td>
<td>9.83</td>
</tr>
<tr>
<td></td>
<td>200-300</td>
<td>96.12</td>
<td>315.08</td>
<td>18.77</td>
</tr>
<tr>
<td>PSO-AODV</td>
<td>100-15</td>
<td>83.46</td>
<td>224.08</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>100-200</td>
<td>95.33</td>
<td>159.06</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>200-300</td>
<td>97.7</td>
<td>217.9</td>
<td>6.7</td>
</tr>
<tr>
<td>BAT-AODV</td>
<td>100-15</td>
<td>85.71</td>
<td>236.24</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>100-200</td>
<td>90.5</td>
<td>87.45</td>
<td>11.83</td>
</tr>
<tr>
<td></td>
<td>200-300</td>
<td>98.86</td>
<td>191.86</td>
<td></td>
</tr>
</tbody>
</table>

AODV Likes the DSR, after implementing the algorithms on the dataset it is obvious to recognize the high packet delivery ratio in comparison with the AODV in the figure (6).
5. Conclusion

The computational results show that using swarm-based algorithms is possible to choose the best solution for the performance of the AODV and DSR routing protocols regarding routing PDR, delay, and dropped packet. The metaheuristic algorithms have the ability to find the best network metrics so it have been used it to improve the performance of choosing the best solution from 300000 scenarios. The
PSO and BAT algorithms are simulated using NS2 software and the results are compared with AODV and DSR using delay, PDR, and dropped packet as parameters. The results show that the PDR are increased while delay and dropped packet decreased.

References