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Abstract 
 

The best method in developing automated assembly system is the integration of the machine vision tools with the robot in the assembly 

platform. Vision system plays an important role in building an autonomous robotic part assembly system. Recognition of the correct part 

in the assembly line is the key issue while grasping the parts by the robot. The captured images of the parts on the assembly line may be 

affected by geometric transformation such as rotation, translation, scaling and may be corrupted by Point-Spread-Function (PSF) blurring 

of camera. In order to recognize parts in such type of condition, three steps are followed in this paper. Firstly, features of the parts are 

extracted by using combined orthogonal Zernike moment. Secondly, the original part image is reconstructed by using combined orthogo-

nal Zernike moment. For this reconstruction, the moment order is selected by a proposed algorithm. The optimum moment order will 

maintain a proper balance between the reconstruction capability and sensitivity to noise. Finally, for classification of parts used in as-

sembly nearest-neighbor classifier is used. The suggested technique is implemented in LabVIEW and the simulation is successfully per-

formed in an assembly system with 6-DoF Kawasaki robot. 
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1. Introduction 

The parts in the assembly lines are transported to the assembly 

station by means of material handling devices. The captured im-

ages of the parts on the assembly station belt may be affected by 

transformation with respect to geometry of the object/parts such 

as scaling, translation, rotation and may be corrupted by Point-

Spread-Function (PSF) blurring of camera. The proposed method 

utilizes orthogonal moment based feature attributes for object 

recognition. These attributes are insensitive to geometric trans-

formation and blurring conditions present in the acquired images. 

Moreover, the environmental noise which is inherently present in 

the captured images, is taken care in this method. 

Object recognition is a very important and necessary image pro-

cessing step in the arena of machine vision.  Popularly, the object 

recognition procedure follows four subsequent steps such as  

• Image acquisition 

• Image preprocessing 

• Feature extraction 

• Classification  

Feature extraction is the most vital and principal activity in the 

field of object recognition. It is due to the fact that the features 

have the ability to represent an image via some distinctive and 

characteristic interest points. Consequently this process reduces 

the amount of data required to represent an object. Recognition of 

objects irrespective of their position, size, and geometrical trans-

formation has been an active research area from last decades. The 

key solution to this type of problem lies in selecting object de-

scriptors which are invariant in nature. However, whatever may 

be the type of object descriptors, they should take care of some of 

the main issues as described below. 

• Selection of a feature descriptor which is invariant to image 

position, scale and orientation. 

• Selection of a feature descriptor which is robust to noise or 

any other degradation present in the imagery. 

• Selection of a feature descriptor which can represent the 

object or image compactly. 

• Selected feature descriptor must maintain a tradeoff between 

the time and space efficiency. 

2. Background 

Among a variety of alternatives, object recognition via moment 

invariants [M. K. Hu 1962; J. Flusser, 2006; Mercimek et al., 

2005], and Fourier descriptor are quite prominent in literature. 

Among all of the above mentioned object descriptors, moment 

invariants are extensively used in object recognition as they satis-

fy almost all these requirements of a good object descriptor [Kho-

tanzad et al., 1990]. Therefore, this work focuses on the moment 

invariants to provide a suitable background for object identifica-

tion. 

http://creativecommons.org/licenses/by/3.0/
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Moment invariants are those features of the image which retain 

their values when the image undergoes different degradations 

such as shift, scaled, or rotation and blur. Moment invariants are 

calculated in terms of ordinary moments. Due to this excellent 

behavior, moment invariants have been widely used in numerous 

applications such as object recognition, image classification 

[Keyes et al., 2001], template matching [K. M. Hosny, 2010] and 

image registration [Flusser et al., 1994] etc. 

3. Methodology 

The invariant features of the image are used as the input to the 

classification process to select the labeling of the underlying im-

age.  Hence, extraction of appropriate feature attributes is so 

much important in the process of object identification. However, 

along with the extraction of feature attributes some other factor 

such as deciding the optimal number of feature vector which can 

represent the image compactly as well what is the amount of 

contribution of each feature vector towards the image representa-

tion also impact on the success of the method. The majority of the 

existing states of art techniques in literature use an unplanned 

procedure for achieving such requirements. Furthermore, from 

the indigenous study of object identification in literature it is 

observed for the identification of a blurred image is performed by 

de-blurring that image prior to apply the image identification 

methods.  However, de-blurring of an image without the prior 

knowledge about the blurring parameter is ill-posed in nature and 

till now it is also an open research area.   

In order to take care of the above mentioned issues, the proposed 

work aims at utilizing a set of feature attributes of the captured 

images that are invariant to geometric transformations such as 

scaling, translation and rotation as well as to blurring environ-

ments. They are the feature attributes which are invariant to simi-

larity transformation and blur by using orthogonal Zernike mo-

ments (ZM) [Khotanzad et al., 1990]. Besides this, a systematic 

reconstruction based approach is used for the selection of optimal 

order of the orthogonal ZM required in the classification problem 

is established.  

The reason why to use orthogonal Zernike moments: 

• Noise sensitivity of ZM are better than other types of 

moments 

• ZM outperform non-orthogonal and other orthogonal 

moments in terms of providing redundant information 

and image representation competence. 

The rest of the discussion follows the sequence of procedures 

followed for the object recognition. 

3.1 Mathematical Background of Zernike Moment 

ZM of order n with recurrence l to intensity of image ( ),f x y is 

given [ Chong et al., 2004] in Eq. 1 
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In order to compute the ZM of an image the first and foremost 

step is to map the center of the image into origin and to map all of 

the pixel coordinates to arrange of unit circle ( )2 2x y+ . The 

pixels within that unit circle contribute in the computation of ZM 

whereas the pixels outside the unit circle don’t contribute. Imper-

fect mapping scheme will introduce geometric error in the com-

putation of ZM. Hence in order to avoid geometric error the pro-

posed work utilizes the mapping scheme as given in [Yang et al., 

2010] and is described in Eq. 3. 
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The intensity image ( ),f x y of size (M×N) is mapped 

to ( ),i jf u v  onto  the unit circle. 

3.2 Formation of Feature Attributes  

This section describes the process of generating a set of feature 

attributes based on combined orthogonal ZM invariants. These 

attributes are not only invariant to geometric transformation such 

as rotation, scaling, translation but also insensitive to the blurring 

conditions [Chen et al. 2011]. The combined orthogonal ZM 

invariant order n  with recurrence l for ( ),f x y  is denoted 

as ( )
( ),

,
f x y

CI n l . Eq. 4 provides the mathematical formulation 

for  ( )
( ),

,
f x y

CI n l  at 2n l p− + . 
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Where
( ) 00,f x y

 =   and ( )11argf = . nl  defines 

the ZM of digital image of order n with l repetition and is defined 

in Eq. 1. The formulation of ,

l

p kC   and ,

l

k mD  is described in Eq. 

5 and Eq. 6 respectively. ( )
( ),

2 ,
f x y

I l p l+  is the set of fea-

ture attributes based on ZM invariant to blurring condition and is 

described in Eq. 7. 
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Where the formulation for ( ), , ,A l p t j  is described in Eq. 8 
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3.3 Image Reconstruction using Combined Orthogonal 

Moment 

This section describes the reconstruction of a digital image 

( )
max

,

o

f x y  by utilizing the feature attributes up to a predefined 

order maxo based on combined invariant to similarity transfor-

mation and to blur using orthogonal ZM of the captured im-

age ( ),f x y . Eq. 9 provides the mathematical formulation for 

the estimation of ( )
max

,

o

f x y . 
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When maxo → , then the ( )
max

,

o

f x y  will approach to-

wards ( ),f x y . However, it is quite difficult to find out the op-

timal value of maxo  i.e., opto  for which the reconstructed image 

( )
max

,

o

f x y  approaches to the true estimate ( ),f x y . From the 

literature it is quite obvious that as the moment order increases 

the noise sensitivity also increase. Moment invariants of lower 

order are less sensitive to noise but have limited representation 

capability. Hence, a strategy is proposed to select the optimal 

order, opto , which will maintain a trade-off between the recon-

struction capability and noise sensitivity.   

3.4 Selection of Optimal Moment Order ( opto ) 

This discussion provides the way to choose the optimum moment 

order of the combined invariants for which ( )
max

,

o

f x y  will ap-

proach towards ( ),f x y and the reconstruction process should be 

less affected by noise. Algorithm 1 describes the optimization 

process utilized for the selection of optimal order opto . The cost 

function of the optimization process is to minimize the inter-

correlation gap between the captured and estimated image. How-

ever, correlation between the captured and estimated image is 

modeled as an energy function. 

Algorithm 1:  

Selection of optimal moment order opto  

Input: ( )
max

,

o

f x y , ( ),f x y , maxo   and  

Output: opto   

Step 1:   For   i= 2 to maxo   do 

Step 2:   Find the amount of correlation between the image 

( ),

i

f x y  and ( ),f x y  by using the following equation 
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 Step 3:  If ( )( )     0 1corr i       then opti o=   

That means with the current moment order i the correlation be-

tween the captured and original image is quite high and no more 

improvement is needed in the reconstruction process.          

Else   go to step 4 

Step 4: Perform minimization of the energy function as  

            described in the following equation to find opto  
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The above equation measures the grid point gap. By considering 

the mapping scheme as described in Eq. 3, the empirical solution 

to the above minimization problem is given below. 
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where ( ),x y  defines the pixel interval in the mapping pro-

cess. ( )opto  denotes the penalty factor and is defined as 
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−
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 = −     

  

  

Step 5:  end For  

Step 6: Obtain the optimum moment order opto . 

The accuracy of the opto  resulted by Algorithm 1 is verified by 

experimental analysis. In the experimental analysis, the plot of 

normalized reconstruction error for the reconstruction of 

( )
max

,

o

f x y  using the combined moment invariants 

( ) ( ),
2 ,

f x y
CI l p l+  of order zero through max 15o =  from the 

captured image ( ),f x y   is plotted in Fig. 1.  The plot is the 

average plot for the 4 test part images such as “Part1.jpg”, 

“Part2.jpg”, “Part3.jpg” and “Part 4” as shown in Fig.2 to fig. 5. 

The reconstruction error is computed using Eq. 10. From the plot 

it is clearly visible that with the increase in moment order the 

reconstruction error reduces gradually. The minimal error is 

found approximately at 6th order. After that the reconstruction 

error starts increasing. Hence, the opto from the experimental 

study is found to be at 6th order and is termed as opt
Ex

o . How-

ever, the selection of opto  by using Algorithm 1 is found to be 7 

and is termed as  opt
Al

o . The relative error between the selec-

tions of optimum order moment can be determined by the formu-

lation given in Eq. 11 and is found to be 3.32%.  
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Fig.1: Average reconstruction error vs Moment order 

4. Result Analysis for the Invariance Measure 

Simulation results demonstrate the efficacy and robustness of the 

proposed method. Tests are performed in two different scenarios. 

The first experiment is tested with different synthetically generat-

ed test images and the second experiment is tested on the real 

images captured from the conveyor belt. To test the invariance of 

moment invariants towards the geometrical transformation and to 

blurring condition, test images are generated synthetically for 

four parts such as “part1.jpg”, “part2.jpg”, “part3.jpg”, and 

“part4.jpg”. The synthetic images are rotated by different angles 

from  5 = to  150 and different scaling parameters as well 

as three different types of blurring kernels are also used. The 

parameters used for creating synthetic images are ∆x, ∆y, θ and 

S. x  and y represent the translation along X-axis and Y-axis 

respectively. θ and S defines the angle of rotation and amount of 

scaling respectively. The blurring types such as average blur with 

size (7 x7), Gaussian blur with size (31 x 31) with standard devia-

tion=0.1 and motion blur with parameter (20,45) are used. The 

detail description about the parameters used for generating the 

synthetic images for different sample part images are given in 

Table 1. Fig. 2 to Fig. 5 provides the graphical representation of 

the synthetically generated images. 

 

Table 1: Parameters used for creating synthetic images  

(a) 

Original 

image 

(b) 

Average Blur 

(7×7) 

(c) 

Gaussian Blur 

(31×31) 

(d) 

Motion Blur 

(20,45) 

Part1.jpg 5x = − , 

7y = , 

30 = , 

0.5S =  

5x = − , 

5y = , 

150 = , 

0.75S =   

1x = − , 

6y = , 

60 = , 

1S =  

Part2.jpg 5x = − , 

7y = , 

30 = , 

0.5S =  

5x = − , 

5y = , 

150 = , 

0.75S =  

1x = − , 

6y = , 

60 = , 

1S =  

Part3.jpg 5x = − , 

7y = , 

5x = − , 

5y = , 

1x = − , 

6y = , 

30 = , 

0.5S =  

150 = , 

0.75S =  

60 = , 

1S =  

Part4.jpg 5x = − , 

7y = , 

30 = , 

0.5S =  

5x = − , 

5y = , 

150 = , 

0.75S =  

1x = − , 

6y = , 

60 = , 

1S =  

 

 

 

 

 

Fig. 2: Synthetically generated images for original image “Part1.jpg” 

 

 

 

 

 
Fig. 3: Synthetically generated images for original image “Part2.jpg” 

 

 

 
 

Fig. 4: Synthetically generated images for original image “Part3.jpg” 

 

Fig. 5: Synthetically generated images for original image “Part4.jpg” 

The invariants values of different order up to order for the syn-

thesized images are given in Table 1 through Table 5. By analyz-

ing the data given in the tables, it is observed that, there exist 

excellent invariance measures among the test images regardless 

of the image degradation. Consequently, the proposed method 

recognizes the parts efficiently in the conveyor belt. 

 

Table 1: Combined moment invariant (order 6) for synthetic images of 

“Part1.jpg” image 

Moment 

invariants 

Fig. 2(a) Fig. 2(b) Fig. 2 (c) Fig. 2(d) 

CI(2,0) 5.57e-02 5.57e-02 5.58e-02 5.57e-02 

CI(2,2) 2.33e-03 2.33e-03 2.33e-03 2.30e-03 

CI(3,1) 3.61e-04 3.61e-04 3.61e-04 3.60e-04 

CI(3,3) 5.97e-04 5.97e-04 5.96e-04 5.98e-04 

CI(4,0) 4.39e-03 4.39e-03 4.40e-03 4.42e-03 

CI(4,2) 3.31e-02 3.31e-02 3.31e-02 3.31e-02 

CI(4,4) 4.55e-05 4.55e-05 4.55e-05 4.55e-05 

CI(5,1) 2.00e-02 2.00e-02 2.00e-02 2.00e-02 

CI(5,3) 2.66e-02 2.66e-02 2.64e-02 2.66e-02 

CI(5,5) 5.23e-05 5.23e-05 5.23e-05 5.20e-05 

CI(6,0) 1.32e-04 1.32e-04 1.32e-04 1.32e-04 

CI(6,2) 2.54e-06 2.54e-06 2.54e-06 2.54e-06 

   (a)              (b)               (c)                 (d) 

   (a)                 (b)              (c)                      (d) 

   (a)                 (b)               (c)                      (d) 
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CI(6,4) 3.11e-05 3.10e-05 3.11e-05 3.11e-05 

CI(6,6) 6.55e-06 6.55e-06 6.55e-06 6.55e-06 

 

Table 2: Combined moment invariant (order 6) for synthetic images of 

“Part2.jpg” image 

Moment 
invariants 

Fig. 3(a) Fig. 3 (b) Fig. 3 (c) Fig. 3 (d) 

 CI(2,0) 1.54e-02 1.54e-02 1.54e-02 1.54e-02 

CI(2,2) 4.65e-03 4.66e-03 4.65e-03 4.65e-03 

CI(3,1) 4.55e-04 4.55e-04 4.55e-04 4.55e-04 

CI(3,3) 6.40e-04 6.41e-04 6.40e-04 6.40e-04 

CI(4,0) 5.87e-03 5.87e-03 5.87e-03 5.87e-03 

CI(4,2) 3.23e-02 3.23e-02 3.21e-02 3.23e-02 

CI(4,4) 5.12e-05 5.12e-05 5.12e-05 5.12e-05 

CI(5,1) 2.79e-02 2.79e-02 2.79e-02 2.80e-02 

CI(5,3) 3.07e-02 3.07e-02 3.07e-02 3.06e-02 

CI(5,5) 4.10e-05 4.10e-05 4.11e-05 4.10e-05 

CI(6,0) 3.78e-04 3.78e-04 3.78e-04 3.78e-04 

CI(6,2) 4.10e-06 4.10e-06 4.11e-06 4.10e-06 

CI(6,4) 4.44e-05 4.44e-05 4.42e-05 4.43e-05 

CI(6,6) 7.80e-06 7.80e-06 7.79e-06 7.82e-06 

 

Table 3: Combined moment invariant (order 6) for synthetic images of 

“Part3.jpg” image 

Moment 

invariants 

Fig. 4(a) Fig. 4 (b) Fig. 4 (c) Fig. 4 (d) 

CI(2,0) 3.16e-03 3.16e-03 3.16e-03 3.16e-03 

CI(2,2) 5.48e-04 5.48e-04 5.48e-04 5.47e-04 

CI(3,1) 5.70e-05 5.70e-05 5.70e-05 5.70e-05 

CI(3,3) 2.13e-05 2.13e-05 2.13e-05 2.13e-05 

CI(4,0) 5.17e-04 5.17e-04 5.17e-04 5.15e-04 

CI(4,2) 2.46e-03 2.46e-03 2.46e-03 2.47e-03 

CI(4,4) 3.57e-06 3.57e-06 3.55e-06 3.57e-06 

CI(5,1) 3.88e-03 3.88e-03 3.89e-03 3.88e-03 

CI(5,3) 4.30e-03 4.31e-03 4.30e-03 4.30e-03 

CI(5,5) 5.37e-06 5.37e-06 5.37e-06 5.35e-06 

CI(6,0) 4.66e-05 4.66e-05 4.64e-05 4.66e-05 

CI(6,2) 3.23e-07 3.23e-07 3.22e-07 3.23e-07 

CI(6,4) 4.48e-06 4.48e-06 4.48e-06 4.49e-06 

CI(6,6) 5.56e-07 5.56e-07 5.56e-07 5.56e-07 

 
Table 4: Combined moment invariant (order 6) for synthetic images of 

“Part4.jpg” image 

Moment 
invariants 

Fig.5(a) Fig. 5(b) Fig.5 (c) Fig.5(d) 

CI(2,0) 2.13e-02 2.13e-02 2.13e-02 2.13e-02 

CI(2,2) 4.33e-04 4.33e-04 4.33e-04 4.34e-04 

CI(3,1) 5.18e-05 5.18e-05 5.18e-05 5.18e-05 

CI(3,3) 3.16e-06 3.16e-06 3.17e-06 3.18e-06 

CI(4,0) 4.44e-04 4.44e-04 4.44e-04 4.44e-04 

CI(4,2) 6.37e-03 6.38e-03 6.38e-03 6.37e-03 

CI(4,4) 4.42e-05 4.42e-05 4.42e-05 4.41e-05 

CI(5,1) 3.90e-04 3.92e-04 3.91e-04 3.90e-04 

CI(5,3) 3.32e-03 3.32e-03 3.32e-03 3.32e-03 

CI(5,5) 5.46e-05 5.46e-05 5.46e-05 5.44e-05 

CI(6,0) 2.23e-04 2.22e-04 2.20e-04 2.21e-04 

CI(6,2) 1.12e-06 1.10e-06 1.12e-06 1.12e-06 

CI(6,4) 4.05e-05 4.05e-05 4.05e-05 4.05e-05 

CI(6,6) 4.58e-06 4.51e-06 4.56e-06 4.58e-06 

4.1 Object Classification using Nearest-Neighbor 

Method 

In this step the classification of an image is done by passing the 

k-dimensional optimal feature attributes to a nearest-neighbor 

(NN) classifier. The optimal feature attributes are obtained from 

the utilized combined invariants ( ) ( ),
2 ,

f x y
CI l p l+ of or-

der 6opto = . With this moment order, the images can be appro-

priately represented by only 14 number of feature attributes. As a 

result, the computational burden of the whole system will reduce 

to a larger extent.   

Fig. 6 shows the block diagram for the above process. The main 

aim of the image classification is to label an unknown image I 

into a class c provided a database of N classified images. For 

which, we have first find out the 14 optimal feature attributes 

(using the feature attributes with 6opto = ) of image. Next step is 

to find out the 14 optimal feature attributes for each of the classi-

fied images present in the database. Image Euclidian distance 

(IMED) between the feature attributes is used to measure the 

similarity among test image and the images in the database. Un-

like Euclidian distance the IMED not only measures the intensity 

differences but also it considers the spatial relationship among the 

pixels into consideration. Hence it provides a better similarity 

measure between image pairs. Then the unknown image I is as-

signed to that class of image for which the IMED is minimum. 

In a N class problem, let 
( )i
kT  be the set of images in the database 

with k=1, 2, 3, ...,14 feature attributes and labeled to class i where 

i=1, 2, 3, ...,N and 
( ) ( ) ( ) ( ) ( )

1 2 3      
i i i i i

k k k k ktT T T T T =
  

. 

Then the unknown image I is assigned to class *N and defined as 

( )( )* min ,
i

k
N

N I T=        (12) 

Where 
( )

,
i

kI T  
 
 

 measures the distance between the feature 

attributes between the image I and 
( )i
kT  is described in Eq. 13. 

( ) ( )
, ,

i i

k kI T IMED I T    =   
   

       (13) 
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, 1

1
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2 2
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x y

x y
i ix y
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I T

IMED I T

I T I T


=

  
  −
     = −    

    
  
   

  
 − −  
  
  


   (14) 

where 
( ) i

i kI T−   defines the pixel distance. 

Table 5 provides the analysis of classification accuracy by using 

the NN classifier. It is observed that, the classification accuracy of 

the NN classifier using Combined Zernike moment invariant 

outperforms than others. By utilizing only 14 features the classifier 

achieves accuracy around 99%. Whereas, to achieve the identical 

accuracy 47 number of feature attributes based on geometric 

moment is needed. On the other hand 40 numbers of Legendre 

Moment based feature attributes are used to achieve an accuracy 

around 97% and 28 numbers of Zernike Moment based feature 

attributes are used to achieve an accuracy around 98%. From the  

above analysis, it is quite obvious that, selection of feature attrib-

utes using proposed method achieve an excellent tradeoff between 

the performance and computational time. 
 

Table 5: Recognition accuracy using NN classifier 

Feature Type Feature 
order 

Number of 
features 

Accuracy 
(%) 

Geometric Moment 12 47 99 

Legendre Moment 11 40 97 

Zernike moment 9 28 98 

Combined Zernike 

moment invariant 

6 14 99 
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Fig. 6: Block diagram for object classification using Nearest Neighbor 

method 

5. Conclusion 

In this paper, a combined orthogonal Zernike moment based object 

recognition method is presented in which the extracted features are 

invariant to scale, rotation and transformation. This method extracts 

the feature that is best for object detection. Besides this, an efficient 

algorithm is proposed to select the optimum moment order for 

reconstructing the original part image from the geometrically 

distorted image. The NN classifier helps in recognizing the correct 

part. This part recognition methods is an efficient method recognizing 

parts in vision guided robotic part assembly environment.  
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