

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.40) (2018) 31-36

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

An Adaptive Offloading Framework for Improving

Performance of Applications in IoT Devices Using Fuzzy Multi

Criteria Decision Making

Waskitho Wibisono*, Mahaputra Widhi Pande Putu, Tohari Ahmad, Radityo Anggoro

Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, 60111

*Corresponding author E-mail:waswib@if.its.ac.id

Abstract

The recent advances of Internet of Things (IoT) technologies have changed the requirements of IoT device to not only provide basic

sensing and communication services but also of executing more complex applications with different goals. These challenges have high-

lighted the need to provide high computation capability in IoT devices. However, common limited resources in IoT devices bring chal-

lenges to support application requirements as well as to deal with limited computation resources. To address with this problem, computa-

tion offloading can be applied. In this approach heavy computational tasks can be transferred and executed in the cloud computing ser-

vice to get the result. However, sending heavy computational jobs along with the data to the cloud server are not always efficient, espe-

cially where the mobile environments where network performances may changes unpredictably. This paper proposes a prototype of smart

offloading framework designed to work in IoT devices using the Fuzzy Multi Criteria Decision Making as the decision tool. The decision

whether the job execution will be done in the IoT device itself or being uploaded to the cloud computing server is done by considering

internal and external factors such as current network conditions. The smart offloading framework prototype has been developed and test-

ed in a real IoT device. The experiment results showed that the smart offloading approach can improve the performance of applications

running in an IoT device by deciding location of job executions in dynamic situations with good results.

Keywords: Computation Offloading, Cloud Computing, Embedded Systems, Internet of Things, Fuzzy MCDM

1. Introduction

The proliferations of Internet of Thing (IoT) technologies have

enabled IoT devices to become development platforms for various

applications. IoT is a concept where devices that are connected to

the internet can exchange data and influence devices or physical

object in its surrounding [1]. The current advances of IoT devices

have enabled various sensors to be embedded in the IoT devices,

e.g. GPS, accelerometer, camera, light, gyroscope, proximity sen-

sors etc. There are various systems that use IoT devices as their

system components such as in traffic monitoring, disaster mitiga-

tion, health monitoring and intelligent building systems etc.

Various applications can be developed and run in IoT Devices.

From basic computation applications that perform simple compu-

tation to highly computation applications development including

augmented reality, image and speech processing etc. [2-4]. These

type of applications are generally require heavy computation re-

sources to fulfill the application requirements. On the other hand,

IoT devices typically have limited capacity in terms of memory,

processing power, network connectivity and energy sources [5].

These facts have highlighted challenges to optimize computation

process in the IoT devices.

On the other hand, cloud computing services have provided new

era where groups of computation resources such as, networks,

servers and various services are easily can be accessed. Various

mobile cloud platforms have been deployed for high computation

and energy hungry applications that give benefits of reducing

energy consumption, preventing overheating and increasing sys-

tem reliability [5]. These supports can be used to deal with re-

source limitation of the IoT devices by using the computation

offloading technique.

The computation offloading is a technique to execute some tasks

of resource constrained devices to the cloud server to speed up the

process. It is done by transferring intensive computational process

from the IoT devices to more powerful computational resources

on the cloud server.

Mobile computation offloading have shown to give benefits in

improving performance of the systems deployed in mobile devices

[6-8]. Nevertheless this approach need to be executed in an effi-

cient ways to get its benefit. The decision to perform computation

offloading can be influenced by various parameters for examples,

the current device resources e.g. memory, CPU usage, remaining

battery power, network bandwidth etc. All of these factors may

influence to the result of mobile computation offloading [9]. Mo-

bile computation offloading have shown to give benefits in im-

proving performance of the systems deployed in mobile devices

[6-8]. However problems of computation offloading for heavy

computation task such as image recognition done in real IoT de-

vices with limited resources still need to be addressed.

In this paper we present a computation offloading framework to

increase the performance of IoT applications by considering the

size of jobs to be processed and the current speed network connec-

tion in a real time environment. A fuzzy multi criteria decision

making has been adopted to deal with the aforementioned chal-

lenges and implemented in real IoT devices and cloud computing

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET
mailto:waswib@if.its.ac.id

32 International Journal of Engineering & Technology

platform. Image recognition tasks, i.e. counting number of people

in numerous images, has been selected as case study in this paper.

A set of extensive experiments to evaluate the performance of the

proposed frameworks has been done which show promising re-

sults in improving the computation speed in various network traf-

fic conditions.

2. Related Work

Nowadays, various IoT devices with reasonable prices are availa-

ble on the market. The recent IoT devices are no longer designed

for only to provide basic sensing and communication services

where currently these devices are designed to have capability of

executing more complex applications with different requirements.

Example of applications to be executed in IoT devices may range

from simple calculation to a very complex applications for image

or voice recognition systems [10].

Generally, these types of applications require the devices to have

powerful resources for their executions. Remote execution on the

cloud server can be used as solution to deal with limitation of IoT

devices. Using computation offloading can improve performances

of job processing in IoT devices with limited resources such by

sending heavy computational jobs to a cloud server [11].

Applying offloading scheme to deal with heavy computation tasks

in IoT devices can bring advantages. However various aspects

need to be considered to execute this approach including size of

tasks, network conditions, server capability and available device

resources before making offloading decision. Generally the deci-

sion of computation offloading it depends on many parameters

such as size of the jobs and network bandwidth.

Various work have been proposed to deal with decision to perform

the computational offloading processes. Niu et al. [12] focuses on

bandwidth estimation at runtime to design the offloading partition-

ing models. In [13] Wang et al. focuses on bitrate adjustment at

runtime to deal with intermittent connectivity. On the other hand

mobile computation offloading have also been applied to increase

the performances of smartphone and IoT devices in various appli-

cations. Computation offloading approach has been applied to

increase performances of smartphone for face detection [14] and

speech recognition [15]. In [16], the offloading approach has been

used to optimize the process virus scanning.

Ho et al. [17] proposed a mobile data offloading system for video

streaming by utilizing multimodal communications (cellular and

WIFI links over Software Defined Network (SDN)) by still main-

taining quality of the video. The SDN system is responsible to

control the traffic by adapting the network conditions. Another

work by Zhang et al. [18] proposed a hybrid offloading model to

cloudlet queuing model for home automation scenario. A simula-

tion was then developed to evaluate the proposed model.

In this paper we focus on building an adaptive offloading frame-

work in a real IoT device. The main aim of the proposed frame-

work is to improve the performance applications deployed in the

device y considering various constraints e.g. number of tasks,

network condition and current available resource in the device.

In this paper, we adopt Fuzzy Multi Criteria Decision Making

(Fuzzy-MCDM) to deal with computation offloading decision

task. This technique brings advantages to deal with uncertainty of

decision making given by different criteria and evaluation parame-

ters. For an example if we incorporate different expert assign-

ments toward the importance of each parameter (e.g. network

speed, number of tasks, available resources) to create the offload-

ing decision. The approach has been developed as a prototype and

deployed in a real IoT device.

The performances of the proposed approach are evaluated in a real

environment by using object detection in digital images as a case

study. This task utilize deep learning algorithm to recognize avail-

able objects in a series of digital images [24,25]. The details of the

proposed framework are described in the following sections.

Fig. 1: Component architecture of the proposed adaptive offloading

framework to support interaction between IoT devices and cloud server

3. Adaptive computation offloading frame-

work based on fuzzy multi criteria decision

making

This paper proposes an adaptive offloading framework to improve

performance of applications in IoT devices. To support interoper-

ability and flexibility of the deployment, the framework has been

developed using Python programming language since this lan-

guage is now can be compiled in various IoT devices. The frame-

work is designed to support collaboration between applications in

IoT devices and services in the cloud server. The components

architecture of the proposed adaptive offloading framework is

depicted in Figure 1.

The framework in IoT device side consists of (a) offloading con-

troller who responsible of managing the job processing flow in the

device. Using information about the job size, current device re-

sources e.g. available memory, CPU load and network condition

(e.g. downloading/uploading speed to/from the cloud) from each

load estimator module (b), the offloading decision component (c)

will decide whether the current job will be offloaded to the server

of being locally executed.

In the cloud side, it consists of (a) incoming task handler, (b) load

balancer and (c) communication module. Upon arriving of tasks

uploaded by IoT devices, the load balancer component will create

associate task handler for each task in the cloud server. Then, the

results will be sent back to the corresponding IoT device by the

communication module.

3.1. Fuzzy membership functions and fuzzy numbers

One of the important component in the proposed framework at the

device side is the offloading decision component. This component

is responsible for creating offloading decision given a number of

defined criteria. Multi Criteria Decision Making (MCDM) is a

decision making tools. It works by selecting best alternative

among the available options according to a number of criteria. To

deal with this challenge we adopt Fuzzy Multi Criteria Decision

Making (Fuzzy-MCDM) as the main decision making tool that

utilizes fuzzy set theory in to MCDM process [19].

For each offloading criteria, a set of linguistic variables are de-

fined. In the Fuzzy concept, the linguistic variables represent val-

ues in natural or artificial language to represent vagueness of in-

formation. The crisp value of each input criteria must be trans-

formed into degrees of membership for each linguistic term. To

perform these tasks, the corresponding membership functions need

to be defined. The membership function for each criteria repre-

sents a degree to which the criteria belong to a set of evaluation to

decide offloading execution. For an input criteria qi the member-

ship function using trapezium model is defined in

the Eq. 1 [20].

International Journal of Engineering & Technology 33

(1)

Using the trapezium membership function (Eq. 1) the fuzzy num-

ber for each linguistic variable of the proposed framework (Low,

Medium, High) are constructed as depicted in the following table.

Table 1: Fuzzy Numbers for Linguistic Variables

Linguistic Variables Fuzzy Numbers

Low (L) (0.0, 0.3, 0.3, 0.5)

Medium (M) (0.3, 0.5, 0.5, 0.7)

High (H) (0.5, 0.7, 0.7, 1.0)

The next step is to assign linguistic variable for each decision

criteria used in the offloading framework. There are (1) current

available RAM in the corresponding IoT device, (2) current down-

loading speed from the corresponding cloud server to IoT device,

(3) current uploading speed from IoT device to the cloud server,

and (4) size of tasks, i.e. the number of images to be processed.

In this paper we use case study of counting number of people in a

set of digital images. In this case, the number of digital images

need be recognized is the 4th criteria of offloading decision. The

membership function for each input criteria for both local and

offloading decision are illustrated in the Figure 2.

Fig. 2: Component architecture of the proposed adaptive offloading
framework to support interaction between IoT devices and cloud server

3.2. Weights assign for each computation offloading cri-

teria

Using the Fuzzy-MCDM concept [21] , evaluation of the im-

portance of each criteria in creating offloading decision (remote

execution (offloading) / local execution (without offloading)) are

made. In our case, five experts (E1-E5) were surveyed (Step 1) to

assign the linguistic variable for each criteria as shown in the fol-

lowing table.

Table 2: Linguistic variable for each criteria assign by 5 experts (L=Low,

M= Medium, H= High) .

Criteria
Weights

E1 E2 E3 E4 E5

Available Local Ram M M L M L

Download Speed H M H H M

Upload Speed M H H M H

Number of Tasks / Jobs H M H M M

In the Step 2, the linguistic variables assigned by the correspond-

ing experts for each criteria are transformed into fuzzy decision

matrix as shown in the Table 3.

. Table 3: Transformed Fuzzy Decision Matrix
(0.3,0.5,0.5,0.7) (0.3,0.5,0.5,0.7) (0.0,0.3,0.3,0.5) (0.3,0.5,0.5,0.7) (0.0,0.3,0.3,0.5)

(0.5,0.7,0.7,1.0) (0.3,0.5,0.5,0.7) (0.5,0.7,0.7,1.0) (0.5,0.7,0.7,1.0) (0.3,0.5,0.5,0.7)

(0.3,0.5,0.5,0.7) (0.5,07,0.7,1.0) (0.5,0.7,0.7,1.0) (0.3,0.5,0.5,0.7) (0.5,0.7,0.7,1.0)

(0.5,0.7,0.7,1.0) (0.3,0.5,0.5,0.7) (0.5,0.7,0.7,1.0) (0.3,0.5,0.5,0.7) (0.3,0.5,0.5,0.7)

The average fuzzy numbers are then computed (Step 3) from the

defined fuzzy decision matrix. It consisted of all fuzzy number

for all criteria where assigned by the expert

where . For an example, as shown Table IV, the aver-

age fuzzy number of a component a (from trapezium membership

function (see Eq. 1) for the available RAM (criteria 1) is obtained

as follow = 0.18.

This approach is applied for the remaining fuzzy numbers compo-

nents of the trapezium membership function for the corresponding

criteria i.e. . The defuzzification value (Step 4)

for each criteria is then also computed by averaging these val-

ues, i.e. , e.g. =

0.41. Finally (Step 5), the normalized weights for each criteria

as shown in Table 4 are obtained using the following equation

(2)

In the above equation, is the number of criteria and

denotes the number of fuzzy number assigned for a criteria. The

complete results can be seen in Table 4.

. Table 4: Normalized Weights for Each Criteria

Criteria Average

Fuzzy Number

(Deff)

Normalized

Weight

Available
RAM

0.18 0.42 0.42 0.62 0.41 0.0256

Downloading

Speed

0.42 0.62 0.62 0.88 0.635 0.0397

Uploading
Speed

0.42 0.62 0.62 0.88 0.635 0.0397

Number of

Tasks

0.38 0.58 0.58 0.82 0.59 0.0369

Using the above tables, fuzzy membership functions numbers, the

decision making process is done. For each input criteria and of-

floading decision, the input value is then fuzzified according to its

membership functions as described in the Figure 2. The resulted

fuzzy numbers for each criteria is obtained according to the cur-

rent value of each input criteria exist in the IoT Device (i.e. avail-

able RAM at IoT device, downloading speed, uploading speed and

number of images to be processed). These fuzzy numbers for each

34 International Journal of Engineering & Technology

criteria is then averaged to get their defuzzification values. The

final decision score of each decision (i.e. local execution or of-

floading execution) given available input criteria is computed by

multiplying the defuzzification values for each criteria with the

normalized weight of the corresponding criteria . The total sup-

port value for each decision are then obtained and the correspond-

ing actions of the program execution can be performed.

4. Implementation and Evaluation

The proposed smart offloading framework has been developed

using python programming language and deployed in Raspberry

Pi 2 (B model) equipped with WIFI dongle and connected to an

access point. The access point is controlled using a network speed

controller software to simulate the dynamic speed of the network

during the experiments.

The local execution here is a decision where the jobs are executed

in the Raspberry Pi or offloading to cloud server. An example of

high computational program to detect number of people in a digi-

tal image using deep learning adopted from [22, 23]. The image

recognition detection program is deployed both in the cloud server

and the Raspberry Pi. This device is equipped with processor

ARM Cortex-A7 CPU, Memory 1 GB and a WIFI dongle (See

Figure 3). The cloud server is deployed with specification as fol-

low: processor (Intel(R) Xeon(R) CPU E5-2630 @ 2.30GHz,

memory 512 MB with Ubuntu 16.04 as the operating system. The

illustration of the test bed environment for the experiments is

shown in the Figure 3.

In the experiments, all of criteria for offloading decision are ob-

tained directly from the device and network. The available RAM

in the device is arranged to be dynamic by creating additional

workload that consume its RAM. The bash command

“/proc/meminfo” is then called for obtaining available RAM in

device by the daemon program. The download and upload speed

are estimated using speedtest.net library for Python. The set of

image for the experiments is copied in a working directory of the

program. The number of images need to be processed is then ob-

tained accordingly. Finally all the input criteria are processed us-

ing the developed Fuzzy-MCDM offloading decision module and

the decision is executed.

Fig. 3: Test bed architecture (top) and Raspberry Pi 2 (B Model) used in

the experiments (bottom)

Fig. 4: An example of input image (top) used in the offloading

experinment and the resulted images of the running program for
offloading scenario (bottom)

3.3. Experiment Scenario

To evaluate the proposed framework , an application to detect

number of people in a digital image using deep learning [22, 23]

developed in Python programming language is deployed and used

to evaluate the adaptive offloading framework. The number of

images in each experiments are set to be 4 and 10 images per exe-

cution. The experiments for each number of images were conduct-

ed 10 times and the average times of computation speed are rec-

orded.

The download (DL) speed and Upload (UL) speed were arranged

in the access point device using the network speed controller ap-

plication. Furthermore, additional workload that consume device

RAM in the IoT device was also arranged. The example input and

resulted images of the application program for the proposed adap-

tive offloading scenario are shown in Figure 4.

Table 5 and 6 depict execution time for both local and remote

offloading executions using 4 and 10 images per process as the

incoming jobs. Each experiment was run twice to obtain time of

local and remote (offloading) executions.

The Table 7 and 8 shows the score for each decision option (Lo-

cal/Offloading) using the Fuzzy-MCDM. These experiments were

also computed using the same value of each input criteria in both

local and remote offloading experiments. The offloading decision

with highest score given the input criteria is selected and the asso-

ciated times of the selection are taken from Table 5 and 6.

The result in these table show that by using the Fuzzy-MCDM

decision tool to select location of the offloading execution location,

the total execution time is lower that if all the incoming jobs exe-

cuted locally in IoT device or remotely executed by uploading the

jobs to the cloud server.

International Journal of Engineering & Technology 35

Table 5: Execution time for Local and Remote Execution (Number of

Images per Process = 4)

No Available RAM

DL

Speed
Mbps

UL

Speed
Mbps

Execution time (s)

Local Offloading

1 169.996 16.8 3.71 89.783 68.38

2 169.748 0.14 3.02 90.116 96.851

3 169.5 0.15 0.23 89.7 113.621

4 54.744 0.14 0.22 90.352 109.602

5 45.496 5.52 2.88 87.335 69.404

6 224.836 0.06 0.24 86.865 108.649

7 223.844 0.16 0.23 86.988 108.49

8 223.72 4.76 0.27 85.887 81.562

9 52.884 6.1 2.06 87.541 67.68

10 152.456 12.37 3.43 88.396 68.407

Total Execution Time 882.963 892.646

Table 6: Execution Time for Local and Remote Execution (Number of

Images per Process =10)

No

Available

RAM

DL

Speed
Mbps

UL

Speed
Mbps

Execution time (s)

Local Offloading

1 69.108 13.94 3.76 202.155 167.37

2 272.02 16.15 3.76 202.821 167.684

3 271.896 5.75 0.27 203.139 212.847

4 267.342 0.15 0.35 201.964 252.43

5 277.394 0.32 0.43 202.376 251.992

6 139.23 5.22 0.42 203.542 212.428

7 57.342 15.23 3.24 203.434 166.472

8 65.772 5.53 0.59 202.942 213.218

9 268.921 6.82 0.45 202.877 212.924

10 127.546 14.39 3.65 202.754 167.23

Total Execution Time (s) 2028 2024.595

Table 7: Decision Made Using Smart Offloading Framework (Number of Images per Process=4)

No F-MCDM Score for (Local) F-MCDM Score for (Offloading)
Decision

Made

Execution Time with

the Decision

1 0.51 0.91 Offloading 68.38

2 0.68 0.73 Offloading 96.851

3 0.86 0.56 Local 89.7

4 0.75 0.67 Local 90.352

5 0.48 0.94 Offloading 69.404

6 0.86 0.61 Local 86.865

7 0.86 0.61 Local 86.988

8 0.71 0.76 Offloading 81.562

9 0.48 0.94 Offloading 67.68

10 0.45 0.97 Offloading 68.407

 Total Execution Time Using Fuzzy-MCDM 806.189

Table 8: Decision Made Using Smart Offloading Framework (Number of

Images per Proses = 10)

No
Fuzzy MCDM

Score (Local)

Fuzzy

MCDM

Score (Of-

floading)

Decision

Execution

Time with

the Decision

1 0.56 0.95 Offloading 167.37

2 0.67 0.89 Offloading 167.684

3 0.94 0.62 Local 203.139

4 0.96 0.45 Local 201.964

5 0.96 0.45 Local 202.376

6 0.94 0.62 Local 203.542

7 0.56 0.95 Offloading 166.472

8 0.86 0.62 Offloading 213.218

9 0.94 0.62 Local 202.877

10 0.71 0.77 Offloading 167.23

Total Execution Time Using Fuzzy-MCDM 1895.872

Fig. 4: Summary of total execution times for Local, Full Offloading and

the propoped Adaptive Offloading

Results in table VII and Table VIII show that by using the Fuzzy-

MCDM decision tool to select the offloading execution location,

the total execution time is lower that if all the incoming jobs exe-

cuted locally in IoT device or remotely executed by uploading the

jobs to the cloud server

5. Conclusion

This paper proposed a prototype of smart offloading framework

designed to work in IoT devices using the Fuzzy-MCDM as the

decision tool. The decision whether the job execution will be done

in the IoT device itself or being sent remotely to the cloud server

was performed adaptively by considering several criteria. These

criteria were related to the capacity of the IoT devices itself as

well as external factors such as upload and download speeds be-

tween the IoT device and the cloud server.

The proposed framework has been developed to work in real IoT

devise where the evaluation of this work was conducted. A pro-

gram that requires high computational resources was deployed in

the device as a case study. The experiments were conducted in

dynamic network and device conditions. The results of the exper-

iments showed that the proposed framework can improve the per-

formance of the application running in an IoT device in dealing

with location of job execution in dynamic situations. Future work

will be focus in dealing with challenges related to energy preser-

vation and dynamic network condition in various mobile compu-

ting scenarios.

Acknowledgement

This work was supported by ITS and Ministry of Research Tech-

nology and Higher Education (KEMENRISTEKDIKTI) Indone-

sia, under its competitive research grant, PDUPT Research Grant.

36 International Journal of Engineering & Technology

References

[1] K. K. Patel and S. M. Patel, "Internet of Things: Definition, Char-

acteristics, Architecture, Enabling Technologies, Application & Fu-
ture Challenges," International Journal of Engineering Science and

Computing,, vol. 6, no. 5, pp. 6122-6132, 2016.

[2] A. Khairi, H. H. Ammar, and R. Bahgat, "Smartphone Energizer:
Extending Smartphone's Battery Life with Smart Offloading," in

The 9th IEEE Wireless Communications and Mobile Computing

Conference (IWCMC), 2013, pp. 329-336,.
[3] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, "Calling

the cloud: Enabling mobile phones as interfaces to cloud applica-
tions," in Middleware 2009, 2009, pp. 83–102.

[4] R. Kemp et al., "EyeDentify: Multimedia Cyber Foraging from a

Smartphone," presented at the 11th IEEE International Symposium
on Multimedia, 2009.

[5] K. Liu, J. Peng, H. Li, X. Zhang, and W. Liu, "Multi-device task

offloading with time-constraints for energy efficiency in mobile
cloud computing.," Future Generation Computer Systems, vol. 64,

2016.

[6] R. Chandra and P. Bahl, "Maui: Making smartphones last longer

with code offload.," in Proceedings of the 8th International Confer-

ence on Mobile Systems, Applications, and Services MobiSys ’10,

2010, pp. 49-62.
[7] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,

"Clonecloud: Elastic execution between mobile device and cloud,"

in Proceedings of the Sixth Conference on Computer Systems Eu-
roSys ’11, 2011, pp. 301–314.

[8] E. Cuervo et al., "Maui: Making smartphones last longer with code

offload," in Mobysys 10, 2010.
[9] A. Bhattacharyaa and P. Dec, "A Survey of Adaptation Techniques

in Computation Offloading," Journal of Network and Computer

Applications archive, vol. 78, no. C, pp. 97-115 2017.
[10] M. AhmadKhan, "A survey of computation offloading strategies

for performance improvement of applications running on mobile

devices " Journal of Network and Computer Applications, vol. 56,
pp. 28-40, 2015.

[11] Atta ur Rehman Khan, O. Mazliza, A. N. Khan, J. Shuja, and S.

Mustafa, "Computation Offloading Cost Estimation in Mobile
Cloud Application Models," Wireless Personal Communications,

vol. 97, no. 3, pp. 4897–4920, 2017.

[12] J. Niu, W. Song, and M. Atiquzzaman, "Bandwidth-adaptive parti-
tioning for distributed execution optimization of mobile applica-

tions," Journal Network Computing Application, vol. 37, pp. 334–

347, 2014.
[13] S. Wang and S. Dey, "Rendering adaptation to raddress communi-

cation and computation constraints in cloud mobile gaming," in

Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM 2010, 2010.

[14] J. Li, Z. Peng, B. Xiao, and Y. Hua, "Make smartphones last a day:

Pre-processing based computer vision application offloading," in
Proceedings of the 12th Annual IEEE International Conference on

Sensing, Communication, and Networking (SECON), 2015, pp.

462–470.
[15] Y. Chang, S. Hung, N. J. Wang, and B. Lin, "Csr: A cloud-assisted

speech recognition service for personal mobile device," in Proceed-

ings of the International Conference on Parallel Processing, 2011,
pp. 305-314.

[16] W. Zhang, Y. Wen, and Z. Zhang, "Towards virus scanning as a

service in mobile cloud computing energy-efficient dispatching

policy under n-version protection," IEEE Transactions on Emerg-

ing Topics in Computing vol. 6, no. 1, pp. 122-134, 2015.
[17] D. Ho, G. S. Park, and H. Song, "Mobile Data Offloading System

for Video Streaming Services over SDN-enabled Wireless Net-

works " in Proceedings of the 9th ACM Multimedia Systems Con-
ference, 2018, pp. 174-185

[18] J. Zhang et al., "Hybrid computation offloading for smart home

automation in mobile cloud computing," Personal and Ubiquitous
Computing, vol. 22, no. 1, 2018.

[19] C. Carlsson and R. Fullér, "Fuzzy multiple criteria decision mak-

ing: Recent developments," Fuzzy Sets and Systems, vol. 78, no. 2,
pp. 139-153, 1996.

[20] G. Bojadziev and M. Bojadziev, Fuzzy Logic for Bussiness, Fi-

nance and Management (Advances in Fuzzy Systems-Applications
and Theory, Vol 12). World Scientific Publishing, 1998.

[21] A. Nagar, "Development of Fuzzy Multi Criteria Decision Making

Method for Selection of Optimum Maintenance Alternative," Inter-
national Journal of Applied Research In Mechanical Engineering,

vol. 1, no. 2, 2011.

[22] A. G. Howard et al., "MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Application," in CoRR, 2017.
[23] A. Rosebrock, "Object detection with deep learning and OpenCV,"

in https://www.pyimagesearch.com/2017/09/11/object-detection-

with-deep-learning-and-opencv/, Accessed May 2018

https://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-and-opencv/
https://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-and-opencv/

