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Abstract 
 

The recent advances of Internet of Things (IoT) technologies have changed the requirements of IoT device to not only provide basic 

sensing and communication services but also of executing more complex applications with different goals. These challenges have high-

lighted the need to provide high computation capability in IoT devices. However, common limited resources in IoT devices bring chal-

lenges to support application requirements as well as to deal with limited computation resources. To address with this problem, computa-

tion offloading can be applied. In this approach heavy computational tasks can be transferred and executed in the cloud computing ser-

vice to get the result. However, sending heavy computational jobs along with the data to the cloud server are not always efficient, espe-

cially where the mobile environments where network performances may changes unpredictably. This paper proposes a prototype of smart 

offloading framework designed to work in IoT devices using the Fuzzy Multi Criteria Decision Making as the decision tool. The decision 

whether the job execution will be done in the IoT device itself or being uploaded to the cloud computing server is done by considering 

internal and external factors such as current network conditions. The smart offloading framework prototype has been developed and test-

ed in a real IoT device. The experiment results showed that the smart offloading approach can improve the performance of applications 

running in an IoT device by deciding location of job executions in dynamic situations with good results. 
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1. Introduction 

The proliferations of Internet of Thing (IoT) technologies have 

enabled IoT devices to become development platforms for various 

applications. IoT is a concept where devices that are connected to 

the internet can exchange data and influence devices or physical 

object in its surrounding [1]. The current advances of IoT devices 

have enabled various sensors to be embedded in the IoT devices, 

e.g. GPS, accelerometer, camera, light, gyroscope, proximity sen-

sors etc. There are various systems that use IoT devices as their 

system components such as in traffic monitoring, disaster mitiga-

tion, health monitoring and intelligent building systems etc.  

Various applications can be developed and run in IoT Devices. 

From basic computation applications that perform simple compu-

tation to highly computation applications development including 

augmented reality, image and speech processing etc. [2-4]. These 

type of applications are generally require heavy computation re-

sources to fulfill the application requirements. On the other hand, 

IoT devices typically have limited capacity in terms of memory, 

processing power, network connectivity and energy sources [5]. 

These facts have highlighted challenges to optimize computation 

process in the IoT devices.  

On the other hand, cloud computing services have provided new 

era where groups of computation resources such as, networks, 

servers and various services are easily can be accessed. Various 

mobile cloud platforms have been deployed for high computation 

and energy hungry applications that give benefits of reducing 

energy consumption, preventing overheating and increasing sys-

tem reliability [5]. These supports can be used to deal with re-

source limitation of the IoT devices by using the computation 

offloading technique.  

The computation offloading is a technique to execute some tasks 

of resource constrained devices to the cloud server to speed up the 

process. It is done by transferring intensive computational process 

from the IoT devices to more powerful computational resources 

on the cloud server.  

Mobile computation offloading have shown to give benefits in 

improving performance of the systems deployed in mobile devices 

[6-8]. Nevertheless this approach need to be executed in an effi-

cient ways to get its benefit. The decision to perform computation 

offloading can be influenced by various parameters for examples, 

the current device resources e.g. memory, CPU usage, remaining 

battery power, network bandwidth etc. All of these factors may 

influence to the result of mobile computation offloading [9]. Mo-

bile computation offloading have shown to give benefits in im-

proving performance of the systems deployed in mobile devices 

[6-8].  However problems of computation offloading for heavy 

computation task such as image recognition done in real IoT de-

vices with limited resources still need to be addressed.  

In this paper we present a computation offloading framework to 

increase the performance of IoT applications by considering the 

size of jobs to be processed and the current speed network connec-

tion in a real time environment. A fuzzy multi criteria decision 

making has been adopted to deal with the aforementioned chal-

lenges and implemented in real IoT devices and cloud computing 
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platform. Image recognition tasks, i.e. counting number of people 

in numerous images, has been selected as case study in this paper. 

A set of extensive experiments to evaluate the performance of the 

proposed frameworks has been done which show promising re-

sults in improving the computation speed in various network traf-

fic conditions. 

2. Related Work 

Nowadays, various IoT devices with reasonable prices are availa-

ble on the market. The recent IoT devices are no longer designed 

for only to provide basic sensing and communication services 

where currently these devices are designed to have capability of 

executing more complex applications with different requirements. 

Example of applications to be executed in IoT devices may range 

from simple calculation to a very complex applications for image 

or voice recognition systems [10].   

Generally, these types of applications require the devices to have 

powerful resources for their executions.  Remote execution on the 

cloud server can be used as solution to deal with limitation of IoT 

devices. Using computation offloading can improve performances 

of job processing in IoT devices with limited resources such by 

sending heavy computational jobs to a cloud server [11].  

Applying offloading scheme to deal with heavy computation tasks 

in IoT devices can bring advantages. However various aspects 

need to be considered to execute this approach including size of 

tasks, network conditions, server capability and available device 

resources before making offloading decision. Generally the deci-

sion of computation offloading it depends on many parameters 

such as size of the jobs and network bandwidth.  

Various work have been proposed to deal with decision to perform 

the computational offloading processes. Niu et al. [12] focuses on 

bandwidth estimation at runtime to design the offloading partition-

ing models. In [13] Wang et al. focuses on bitrate adjustment at 

runtime to deal with intermittent connectivity. On the other hand 

mobile computation offloading have also been applied to increase 

the performances of smartphone and IoT devices in various appli-

cations. Computation offloading approach has been applied to 

increase performances of smartphone for face detection [14] and 

speech recognition [15]. In [16], the offloading approach has been 

used to optimize the process virus scanning.  

Ho et al. [17] proposed a mobile data offloading system for video 

streaming by utilizing multimodal communications (cellular and 

WIFI links over Software Defined Network (SDN)) by still main-

taining quality of the video. The SDN system is responsible to 

control the traffic by adapting the network conditions. Another 

work by Zhang et al. [18] proposed a hybrid offloading model to 

cloudlet queuing model for home automation scenario. A simula-

tion was then developed to evaluate the proposed model. 

In this paper we focus on building an adaptive offloading frame-

work in a real IoT device. The main aim of the proposed frame-

work is to improve the performance applications deployed in the 

device y considering various constraints e.g. number of tasks, 

network condition and current available resource in the device.  

In this paper, we adopt Fuzzy Multi Criteria Decision Making 

(Fuzzy-MCDM) to deal with computation offloading decision 

task. This technique brings advantages to deal with uncertainty of 

decision making given by different criteria and evaluation parame-

ters. For an example if we incorporate different expert assign-

ments toward the importance of each parameter (e.g. network 

speed, number of tasks, available resources) to create the offload-

ing decision. The approach has been developed as a prototype and 

deployed in a real IoT device.  

The performances of the proposed approach are evaluated in a real 

environment by using object detection in digital images as a case 

study. This task utilize deep learning algorithm to recognize avail-

able objects in a series of digital images [24,25]. The details of the 

proposed framework are described in the following sections. 

 
Fig. 1: Component architecture of the proposed adaptive offloading 

framework to support interaction between IoT devices and cloud server 

3. Adaptive computation offloading frame-

work based on fuzzy multi criteria decision 

making  

This paper proposes an adaptive offloading framework to improve 

performance of applications in IoT devices. To support interoper-

ability and flexibility of the deployment, the framework has been 

developed using Python programming language since this lan-

guage is now can be compiled in various IoT devices. The frame-

work is designed to support collaboration between applications in 

IoT devices and services in the cloud server. The components 

architecture of the proposed adaptive offloading framework is 

depicted in Figure 1.  

The framework in IoT device side consists of (a) offloading con-

troller who responsible of managing the job processing flow in the 

device. Using information about the job size, current device re-

sources e.g. available memory, CPU load and network condition 

(e.g. downloading/uploading speed to/from the cloud) from each 

load estimator module (b), the offloading decision component (c) 

will decide whether the current job will be offloaded to the server 

of being locally executed. 

In the cloud side, it consists of (a) incoming task handler, (b) load 

balancer and (c) communication module. Upon arriving of tasks 

uploaded by IoT devices, the load balancer component will create 

associate task handler for each task in the cloud server. Then, the 

results will be sent back to the corresponding IoT device by the 

communication module.  

3.1. Fuzzy membership functions and fuzzy numbers 

One of the important component in the proposed framework at the 

device side is the offloading decision component. This component 

is responsible for creating offloading decision given a number of 

defined criteria. Multi Criteria Decision Making (MCDM) is a 

decision making tools. It works by selecting best alternative 

among the available options according to a number of criteria. To 

deal with this challenge we adopt Fuzzy Multi Criteria Decision 

Making (Fuzzy-MCDM) as the main decision making tool that 

utilizes fuzzy set theory in to MCDM process [19].  

For each offloading criteria, a set of linguistic variables are de-

fined. In the Fuzzy concept, the linguistic variables represent val-

ues in natural or artificial language to represent vagueness of in-

formation. The crisp value of each input criteria must be trans-

formed into degrees of membership for each linguistic term. To 

perform these tasks, the corresponding membership functions need 

to be defined. The membership function for each criteria repre-

sents a degree to which the criteria belong to a set of evaluation to 

decide offloading execution. For an input criteria qi the member-

ship function using trapezium model  is defined in 

the Eq. 1 [20].  
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(1) 

Using the trapezium membership function (Eq. 1) the fuzzy num-

ber for each linguistic variable of the proposed framework (Low, 

Medium, High) are constructed as depicted in the following table.  

 
Table 1: Fuzzy Numbers for Linguistic Variables 

Linguistic Variables Fuzzy Numbers 

Low (L) (0.0, 0.3, 0.3, 0.5) 

Medium (M) (0.3, 0.5, 0.5, 0.7) 

High (H) (0.5, 0.7, 0.7, 1.0) 

 

The next step is to assign linguistic variable for each decision 

criteria used in the offloading framework. There are (1) current 

available RAM in the corresponding IoT device, (2) current down-

loading speed from the corresponding cloud server to IoT device, 

(3) current uploading speed from IoT device to the cloud server, 

and (4) size of tasks, i.e. the number of images to be processed. 

In this paper we use case study of counting number of people in a 

set of digital images. In this case, the number of digital images 

need be recognized is the 4th criteria of offloading decision. The 

membership function for each input criteria for both local and 

offloading decision are illustrated in the Figure 2.  

 

 
Fig. 2: Component architecture of the proposed adaptive offloading 
framework to support interaction between IoT devices and cloud server 

3.2. Weights assign for each computation offloading cri-

teria 

Using the Fuzzy-MCDM concept [21] ,  evaluation of the im-

portance of each criteria in creating offloading decision ( remote 

execution (offloading) / local execution (without offloading)) are 

made. In our case, five experts (E1-E5) were surveyed (Step 1) to 

assign the linguistic variable for each criteria as shown in the fol-

lowing table. 

 
Table 2: Linguistic variable for each criteria assign by 5 experts (L=Low, 

M= Medium, H= High) . 

Criteria 
Weights 

E1 E2 E3 E4 E5 

Available Local Ram M M L M L 

Download Speed H M H H M 

Upload Speed M H H M H 

Number of Tasks / Jobs H M H M M 

 

In the Step 2, the linguistic variables assigned by the correspond-

ing experts for each criteria are transformed into fuzzy decision 

matrix as shown in the Table 3. 

 

. Table 3: Transformed Fuzzy Decision Matrix 
(0.3,0.5,0.5,0.7) (0.3,0.5,0.5,0.7) (0.0,0.3,0.3,0.5) (0.3,0.5,0.5,0.7) (0.0,0.3,0.3,0.5) 

(0.5,0.7,0.7,1.0) (0.3,0.5,0.5,0.7) (0.5,0.7,0.7,1.0) (0.5,0.7,0.7,1.0) (0.3,0.5,0.5,0.7) 

(0.3,0.5,0.5,0.7) (0.5,07,0.7,1.0) (0.5,0.7,0.7,1.0) (0.3,0.5,0.5,0.7) (0.5,0.7,0.7,1.0) 

(0.5,0.7,0.7,1.0) (0.3,0.5,0.5,0.7) (0.5,0.7,0.7,1.0) (0.3,0.5,0.5,0.7) (0.3,0.5,0.5,0.7) 

 

The average fuzzy numbers are then computed (Step 3) from the 

defined fuzzy decision matrix. It consisted of all fuzzy number  

for all criteria  where  assigned by the expert  

where . For an example, as shown Table IV, the aver-

age fuzzy number of a component a (from trapezium membership 

function (see Eq. 1) for the available RAM (criteria 1) is obtained 

as follow  = 0.18.  

This approach is applied for the remaining fuzzy numbers compo-

nents of the trapezium membership function for the corresponding 

criteria i.e. . The defuzzification value (Step 4) 

for each criteria  is then also computed by averaging these val-

ues, i.e. , e.g.  = 

0.41. Finally (Step 5), the normalized weights for each criteria   

as shown in Table 4 are obtained using the following equation 

 

 

(2) 

 

In the above equation, is the number of criteria and  

denotes the number of fuzzy number assigned for a criteria. The 

complete results can be seen in Table 4. 

 

. Table 4: Normalized Weights for Each Criteria 

Criteria  Average  

Fuzzy Number 

(Deff) 

 

Normalized 

Weight  

Available 
RAM 

0.18 0.42 0.42 0.62 0.41 0.0256 

Downloading 

Speed 

0.42 0.62 0.62 0.88 0.635 0.0397 

Uploading 
Speed 

0.42 0.62 0.62 0.88 0.635 0.0397 

Number of 

Tasks 

0.38 0.58 0.58 0.82 0.59 0.0369 

 

Using the above tables, fuzzy membership functions numbers, the 

decision making process is done. For each input criteria and of-

floading decision, the input value is then fuzzified according to its 

membership functions as described in the Figure 2. The resulted 

fuzzy numbers for each criteria is obtained according to the cur-

rent value of each input criteria exist in the IoT Device (i.e. avail-

able RAM at IoT device, downloading speed, uploading speed and 

number of images to be processed). These fuzzy numbers for each 
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criteria is then averaged to get their defuzzification values. The 

final decision score of each decision (i.e. local execution or of-

floading execution) given available input criteria is computed by 

multiplying the defuzzification values for each criteria with the 

normalized weight of the corresponding criteria . The total sup-

port value for each decision are then obtained and the correspond-

ing actions of the program execution can be performed. 

4. Implementation and Evaluation 

The proposed smart offloading framework has been developed 

using python programming language and deployed in Raspberry 

Pi 2 (B model) equipped with WIFI dongle  and connected to an 

access point. The access point is controlled using a network speed 

controller software to simulate the dynamic speed of the network 

during the experiments.  

The local execution here is a decision where the jobs are executed 

in the Raspberry Pi or offloading to cloud server. An example of 

high computational program to detect number of  people in a digi-

tal image using deep learning adopted from [22, 23]. The image 

recognition detection program is deployed both in the cloud server 

and the Raspberry Pi. This device is equipped with processor 

ARM Cortex-A7 CPU, Memory 1 GB and a WIFI dongle (See 

Figure 3). The cloud server is deployed with specification as fol-

low: processor (Intel(R) Xeon(R) CPU E5-2630 @ 2.30GHz, 

memory 512 MB with Ubuntu 16.04 as the operating system.  The 

illustration of the test bed environment for the experiments is 

shown in the Figure 3. 

In the experiments, all of criteria for offloading decision are ob-

tained directly from the device and network. The available RAM 

in the device is arranged to be dynamic by creating additional 

workload that consume its RAM. The bash command 

“/proc/meminfo” is then called for obtaining available RAM in 

device by the daemon program. The download and upload speed 

are estimated using speedtest.net library for Python. The set of 

image for the experiments is copied in a working directory of the 

program. The number of images need to be processed is then ob-

tained accordingly. Finally all the input criteria are processed us-

ing the developed Fuzzy-MCDM offloading decision module and 

the decision is executed. 

 

 
 

 
Fig. 3: Test bed architecture (top) and Raspberry Pi 2 (B Model) used in 

the experiments (bottom) 

 

Fig. 4: An example of input image  (top) used in the  offloading 

experinment  and the resulted images of the running program for 
offloading scenario (bottom) 

3.3. Experiment Scenario 

To evaluate the proposed framework ,  an application to detect 

number of  people in a digital image using deep learning [22, 23] 

developed in Python programming language is deployed and used 

to evaluate the adaptive offloading framework. The number of 

images in each experiments are set to be 4 and 10 images per exe-

cution. The experiments for each number of images were conduct-

ed 10 times and the average times of computation speed are rec-

orded.  

The download (DL) speed and Upload (UL) speed were arranged 

in the access point device using the network speed controller ap-

plication. Furthermore, additional workload that consume device 

RAM in the IoT device was also arranged. The example input and 

resulted images of the application program for the proposed adap-

tive offloading scenario are shown in Figure 4. 

Table 5 and 6 depict execution time for both local and remote 

offloading executions using 4 and 10 images per process as the 

incoming jobs.  Each experiment was run twice to obtain time of 

local and remote (offloading) executions.  

The Table 7 and 8 shows the score for each decision option (Lo-

cal/Offloading) using the Fuzzy-MCDM. These experiments were 

also computed using the same value of each input criteria in both 

local and remote offloading experiments. The offloading decision 

with highest score given the input criteria is selected and the asso-

ciated times of the selection are taken from Table 5 and 6.   

The result in these table show that by using the Fuzzy-MCDM 

decision tool to select location of the offloading execution location, 

the total execution time is lower that if all the incoming jobs exe-

cuted locally in IoT device or remotely executed by uploading the 

jobs to the cloud server. 
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Table 5: Execution time for Local and Remote Execution (Number of 

Images per Process = 4)  

No Available RAM 

DL 

Speed 
Mbps 

UL 

Speed 
Mbps 

Execution time (s) 

Local Offloading 

1 169.996 16.8 3.71 89.783 68.38 

2 169.748 0.14 3.02 90.116 96.851 

3 169.5 0.15 0.23 89.7 113.621 

4 54.744 0.14 0.22 90.352 109.602 

5 45.496 5.52 2.88 87.335 69.404 

6 224.836 0.06 0.24 86.865 108.649 

7 223.844 0.16 0.23 86.988 108.49 

8 223.72 4.76 0.27 85.887 81.562 

9 52.884 6.1 2.06 87.541 67.68 

10 152.456 12.37 3.43 88.396 68.407 

 
Total  Execution Time 882.963 892.646 

 

Table 6: Execution Time for Local and Remote Execution (Number of 

Images per Process =10) 

No 

Available 

RAM 

DL 

Speed 
Mbps 

UL 

Speed 
Mbps 

Execution time (s) 

Local Offloading 

1 69.108 13.94 3.76 202.155 167.37 

2 272.02 16.15 3.76 202.821 167.684 

3 271.896 5.75 0.27 203.139 212.847 

4 267.342 0.15 0.35 201.964 252.43 

5 277.394 0.32 0.43 202.376 251.992 

6 139.23 5.22 0.42 203.542 212.428 

7 57.342 15.23 3.24 203.434 166.472 

8 65.772 5.53 0.59 202.942 213.218 

9 268.921 6.82 0.45 202.877 212.924 

10 127.546 14.39 3.65 202.754 167.23 

Total Execution Time (s) 2028 2024.595 

 

Table 7: Decision Made Using Smart Offloading Framework (Number of Images per Process=4) 

No F-MCDM Score for (Local) F-MCDM Score for (Offloading) 
Decision  

Made 

Execution Time with  

the Decision 

1 0.51 0.91 Offloading 68.38 

2 0.68 0.73 Offloading 96.851 

3 0.86 0.56 Local 89.7 

4 0.75 0.67 Local 90.352 

5 0.48 0.94 Offloading 69.404 

6 0.86 0.61 Local 86.865 

7 0.86 0.61 Local 86.988 

8 0.71 0.76 Offloading 81.562 

9 0.48 0.94 Offloading 67.68 

10 0.45 0.97 Offloading 68.407 

  Total Execution Time Using Fuzzy-MCDM 806.189 

 
Table 8: Decision Made Using Smart Offloading Framework (Number of 

Images per Proses = 10) 

No 
Fuzzy MCDM 

Score (Local) 

Fuzzy 

MCDM 

Score (Of-

floading) 

Decision 

Execution 

Time with  

the Decision 

1 0.56 0.95 Offloading 167.37 

2 0.67 0.89 Offloading 167.684 

3 0.94 0.62 Local 203.139 

4 0.96 0.45 Local 201.964 

5 0.96 0.45 Local 202.376 

6 0.94 0.62 Local 203.542 

7 0.56 0.95 Offloading 166.472 

8 0.86 0.62 Offloading 213.218 

9 0.94 0.62 Local 202.877 

10 0.71 0.77 Offloading 167.23 

Total Execution Time Using Fuzzy-MCDM 1895.872 

 

 

Fig. 4: Summary of total execution times for Local, Full Offloading and 

the propoped Adaptive Offloading  

   

Results in table VII and Table VIII show that by using the Fuzzy-

MCDM decision tool to select the offloading execution location, 

the total execution time is lower that if all the incoming jobs exe-

cuted locally in IoT device or remotely executed by uploading the 

jobs to the cloud server 

5. Conclusion  

This paper proposed a prototype of smart offloading framework 

designed to work in IoT devices using the Fuzzy-MCDM as the 

decision tool. The decision whether the job execution will be done 

in the IoT device itself or being sent remotely to the cloud server 

was performed adaptively by considering several criteria. These 

criteria were related to the capacity of the IoT devices itself as 

well as external factors such as upload and download speeds be-

tween the IoT device and the cloud server.  

The proposed framework has been developed to work in real IoT 

devise where the evaluation of this work was conducted.  A pro-

gram that requires high computational resources was deployed in 

the device as a case study.  The experiments were conducted in 

dynamic network and device conditions. The results of the exper-

iments showed that the proposed framework can improve the per-

formance of the application running in an IoT device in dealing 

with location of job execution in dynamic situations. Future work 

will be focus in dealing with challenges related to energy preser-

vation and dynamic network condition in various mobile compu-

ting scenarios. 
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