

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.28) (2018) 284-289

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Level-Based Clustering Approach to Scheduling Workflows in

Clouds

Tawfiq Alrawashdeh1, Zarina Mohamad2*, Aznida Hayati Zakaria2

1Al Husein Bin Talal University, P.O. Box 20 Ma'an, Jordan

2Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, Malaysia

*Corresponding author E-mail: zarina@unisza.edu.my

Abstract

With the rapid increment on the complexity of the workflow, and the resultant demand on the scalability of the environment, executing

workflows on traditional environment such as grids and clusters has become challenging task. Generally, schedulers aims to find a trade-

off between execution, user requirement, and execution cost. Combine this with the uncertainty in the execution environment results in

underlining the importance of designing scalable scheduling algorithm that adopt to the changes in the execution process. Toward this

end, we propose the Level-Based Clustering (LBC) algorithm. By considering each level tasks as a single object (cluster), this algorithm

aims to establish a relationship between the execution requirement for each cluster, and the number of resources that must be used to

execute the entire workflow. We have compared our algorithm with three well-known algorithms from the literature, and the result show

that the LBC algorithm achieves 50%, 25%, 50% on average improvement in term of cost, makespan and the number of resources used,

respectively.

Keywords: scheduling, workflows; cluster; divide and conquer.

1. Introduction

Recently, scientific workflows become increasingly common for

compute-intensive and data-intensive scientific applications. Such

workflows is normally represented as Direct Acyclic Graph

(DAG), where nodes represents tasks with computational require-

ments, and edges represent the data dependency between the tasks

(Figure 1). Workflows is typically executed on distributed envi-

ronments, where each task is assigned to processing core. Due to

the scale of the workflows and the intensity of its processing re-

quirement, and the intensity of its computational requirement,

cloud computing (Infrastructure as a Service (IaaS)) has emerge as

an efficient environment to execute scientific workflows.

Fig. 1: Scientific Workflows Example

The IaaS provide the user with the ability to access a shared on-

demand compute infrastructure, using pay-per-use pricing model.

This is often done by leasing virtualized resources, referred to as

virtual machines (VMs), with a pre-determine computer hardware,

memory, storage, and information measure capability.

Typically, the objective of scientific scheduling workflows is to

either reduce the executing cost [16, 17, 24], or to reduce the exe-

cution time [3, 5, 14, 15]. Proposals that address reducing the

execution cost normally handle the execution time as time-

deadline constraint [20, 21, 25]. In term of reducing the execution

time, proposals that aim to address this objective normally handle

reducing the execution time as a secondary objective [4, 22, 23].

In addition, some proposals have address the bi-objective problem

of minimizing the execution time and cost [18, 19, 6].

The problem of scheduling scientific workflows in clouds is NP-

Complete in nature [13]. To efficient address this problem, we

need to determine the right number of resources to rent. Over-

renting is expected to increase the executing cost, since we will

pay for unused time slots. Under-renting is expected to increase

the total execution time (makespan). In addition, due to the data

dependency constraints, we need to take into consideration the

structure of the workflows during the scheduling process to effi-

ciently utilize the resources (VMs). This is established, since with

the presence of the precedence constraints, the scheduling must

respect the data dependency between the tasks to avoid having

unused time slots.

Toward this end, we propose the Level-Based Clustering (LBC)

algorithm. This algorithm divides the workflow's tasks into clus-

ters, where tasks belong to the same level is allocated to same

cluster. This division aim to simplify the resources allocation

process, since we treat clusters as isolated objects with computa-

tional requirements. We compare the performance of the LBC

algorithm against three other well-known algorithms from the

literature. The results show that the LBC algorithms achieves

50%,25%,50% improvement compare to the other algorithms, in

term of cost, makespan and the number of resources used, respec-

tively.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 285

The rest of the paper is organized as follows. Section 2 presents

and discuss the related works. In Section 3, we formally define the

scheduling problem. In Section 4, we present our algorithmic solu-

tion. The results is discussed in section 5, and the paper is con-

cluded in section 6.

2. Related Works

In this section, we present and discuss the most related proposals

to the problem of scheduling scientific workflows in clouds. Many

proposals have investigated the problem of scheduling scientific

workflows in cloud.

Many proposals have investigated the problem of minimizing the

execution time (makespan) [3, 5]. In [3] presented the heterogene-

ous earliest end time (HEFT) algorithm. This algorithm schedules

the tasks using a greedy approach. In each iteration, the process

works by assigning the task under consideration to the VM that

results in the earliest actual execution time. The efficacy of this

approach depends on the available number of resources. However,

this approach does not take into consideration the execution cost

during the construction of the schedule, and this may result in

increasing the execution cost. In [5] presented an improvement

version of the shuffled frog leaping algorithm (ASFLA). The re-

sults demonstrate significant reduction in the makespan, however

the authors did not take into consideration the execution cost for

resource.

In [4], the authors studied the problem of minimizing the execu-

tion cost under the presence of the time-deadline constraint. To

address this problem, the authors proposed the IC-PCP algorithm.

Starting from this exit task, this algorithm distribute the time-

deadline over the entire branches of the workflow. Then, it

schedule the tasks starting from the entre level on the cheapest

VM that results in satisfying the tasks deadline. In [8] proposed

adaptive algorithm using Mixed Integer Programming (MIP)

method that also aims to reduce the cost under the presence of

deadline constraint. However, the algorithm does not allow using

VMs that already assigned.

Several proposals have investigated the problem of minimizing the

makespan under the presence of the budget constraint [16-28]. In

[16], the authors proposed heuristic-based solution that aim to

reduce the overall execution delay. In each iteration, the main idea

of this approach is to improve the current schedule by considering

the left budget. In [27] proposed priority based genetic algorithm

termed as BCHGA, which address the problem of scheduling the

tasks of the workflow under the presence of the budget constraint.

In this algorithm, based on the locality of the tasks, each task is

assigned either bottom level priority (b-level), or top level priority

(t-level). Then, in each round, the algorithm by trying to find bet-

ter schedule in term of makespan, while minimizing the execution

cost. In [26, 28], the authors adopt similar strategy to minimize the

execution cost under the presence of the budget and execution

time constraints.

Many proposals have addressed the problem of minimizing both

the execution time and cost [1-2, 6, 9]. Our work falls into this

category. In [1] proposed cluster-based algorithm that aim to de-

termine the priority of each objective using a slack parameter. The

value of this parameter ranges from 0 to 1, where assigning 0 to

this parameter results in prioritizing the execution time, and as-

signing 1 to this parameter results in prioritizing the execution cost.

This algorithm starts by dividing the workflow tasks into partition

in a sequential fashion starting from the entre level tasks. Then,

the number of resources assigned to each partition is determined

based on the value of the slack parameter. For each partition this

number ranges from 1 resource to the number of resources that

ensure each task is executed on its earliest starting time. Similarly,

the RDAS algorithm [2] uses a fair allocation strategy, which aim

to construct schedule with the objective of minimizing the execu-

tion time and cost. In [6] proposed algorithmic approach to ad-

dress the same problem. In this approach, the user has to assign a

weight value for each objective.

3. Problem Definition

The input can be represented as Directed Acyclic Graph (DAG)

, where is a finite set of tasks,

and denotes the number of tasks in the workflow application.

Each edge connects two tasks representing their precedence con-

straint or data dependency. A dependency ensures that a child

node cannot be run before all its parent tasks finish successfully

execution and transfer the required input data. The last task to

transfer its data a given task is termed the Most Influential Parent

(MIP).

Additionally, we are given a set of resource

. Each set of resources contains restrict-

ed range of uniquely identifies resources in terms of memory and

storage space. Capacity is the main distinguisher between the re-

sources set for instance. Without losing of generality, we assume

that is times faster and more expensive compared to

 resources. The execution time for the entire workflow is de-

noted as makespan or schedule length. For each task, the actual

start time (AST) and actual finish time (AFT) is not expected to be

similar to the Earliest Start Time (EST) and Earliest Finish Time

(EFT). These values depend on the available number of resources.

4. Algorithmic Solution

Due to the data dependency constraints, a task cannot start its

execution without receiving all of the required data from its parent.

This suggest that the scheduler must ensure that the tasks located

at the same level must finishes their execution relatively at the

same time in order to reduce the data waiting periods for the tasks

located at the next level. In addition, the computational require-

ments for each level's tasks is typically different. Some level has a

single task, and other levels have hundreds of tasks. This suggests

that the structure of the workflow must be also taken into consid-

eration during the construction of the execution schedule. To ad-

dress these issues, in this section, we present the Level-Based

Clustering algorithm.

This algorithm starts by assigning tasks located at the same level

to a single cluster. This aim to simplify the scheduling process,

since tasks located at different level have different computational

requirements. Then, starting from the entry level cluster, the re-

source allocation step starts by identifying each cluster share of

the available resources. This is established based on the number of

tasks assigned to this cluster, and their computational require-

ments. In this step, the objective is identifying the number of VMs

that must be assigned to each cluster such that all tasks belong to

the same cluster relatively finish their execution at the same time.

Then, in the tasks scheduling step, we identify the actual starting

time for each task.

 4.1. Clustering Step

In this step (Algorithm 1), we partition the workflow into set of

clusters such that tasks belong the same level located at the same

partitions. This algorithm starts by calculating the number of re-

quired clusters based on the height of the workflow (line 5). Then,

the algorithm iterates to assign each task to its level cluster (line 8-

17). By performing level based clustering, we aim in to handle

each cluster as an isolated object in term of computation require-

ments.

286 International Journal of Engineering & Technology

Algorithm 1: Clustering Step

1 : procedure PARTITIONING ()

2 : ►Input: , Levels

3 : ►Output: C = c1,cp2, …. cm.

4 : p1 ← vi V in L1

5 : i ← 1

6 : while we have unassigned node do

7 : j ← 2

8 : for each l in L do

9 : if |v| V in Li equal to 1 then

10 : ► the entry tasks located at level 1

11 : Cj-1 ← vi V in Li

12 : else

13 : Cj ← vi V in Li

14 : j ← j+1

15 : end if

16 : i ← i+1

17 : end for

18 : end while

19 : return C

20 : end procedure

4.2. Resource Allocation Step

The objective of the resource allocation step is to determine the

maximum number of VMs that will be allocated to each cluster. In

this step, we ensure that the selected VMs run relatively for the

same amount of time, and this establish an upper bound on the

execution time for each clusters. Such bounding reduces the ex-

pected delay, since we will have deadline on the cluster execution

time, and this reduces the impact of the data dependency con-

straints. The main idea of this step is to determine the size of the

execution time-slot for each clusters. For each cluster, this time-

slot represents the maximum amount of time a VM can use to

execute this cluster tasks.

Algorithm 2 describe the process of the resource allocation step.

For each cluster (for loop line 3), to calculate the time-slot for

cluster (), we start by calculating the total running time for this

cluster's tasks () (line 4). Then, we calculate the average running

time for this cluster tasks (), where is the number

of tasks assigned to cluster (line 5). Now to determine the size

of the time-slot, we calculate the average running time for the

available VMs on this cluster tasks. The time-slot () for cluster

 can be calculated as follows (line 6):

 (1)

For each cluster, the time-slot represents the upper-bound for the

VMs running time. Thus, we establish latest execution time for the

tasks belong this cluster. This helps in term of maximization the

utilization of the VMs, since there is no dependency between the

same cluster tasks, and thus they can be executed simultaneously.

In addition, this helps in reducing the number of used VMs, be-

cause we assign tasks to the VMs in sequential order, and a task

will not be assign to a new VM until the current VM reaches its

limit. Once the time-slot for the current considered cluster is de-

termined, we start the tasks allocation process for this cluster tasks

(line 9).

Algorithm 2: Resource Allocation

1 : procedure R_allocation ()

2 : ► Output: S = s1, s2, …, sm.

3 : for each ci in C do

4 : calculate

5 :

6 :

7 : calculate S

8 : for each task C do

9 : Si task_schuduling (tsA,ci)

10 : End for

11 : end for

12 : return S

13 : end procedure

4.3. Tasks Scheduling Step

In this step (Algorithm 3), the actual finishing time for each task

in the current considered cluster is determined. Starting from the

entry level cluster, we order the tasks based on their EST (line 5).

Then, we start the process of assigning the tasks to the selected

VMs (lines 6-15). A task will be assigned to the current consid-

ered VM if this does not result in exceeding this VM time-slot.

Otherwise, a new VM will be used. Once a task is assigned to VM,

this task AST and AFT are determined based on this task order of

execution. This process stops once all considered tasks is assigned

to VM. Next, we calculate the actual finishing time for this cluster,

and that represent the latest actual finishing time for the tasks that

belong to this cluster (C). Different scheduling strategy can be

used in this step. For instance, we can use the best fit strategy

from the pin-packing literature [29]. However, in our work, the

location of the tasks on the VMs does not play an important role in

determining the quality of the final schedule, since the algorithm

behavior is controlled by the size of the time-slot.

 Algorithm 3: Tasks Scheduling

1 : procedure TASK_scheduling ()

2 : ►Output: scheduled tasks.

3: for each T do

4 : for C do

5 : T Asc.Sort (EST)

6 : for T do

7 : if >=j then

8 : Create a new

9 : J = 0

10 : end if

11 : ←

12 :

13 :

14 : j j +

15 : End for

16 : End for

18 : End for

5. Results and Discussion

To evaluate the performance of the presented algorithm, we have

conduct an extensive set of experiments. As am input, we have

used five types of well-known real scientific workflows: Epige-

nomics, LIGO, SIPHT, Montage and CyberShake (Figure 1).

These files are obtained from the Pegasus workflow repository

(https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGen

erator). We used three type of resource sets R = R1, R2 and R3.

We assume that VMs from resource set R3 is three times faster

International Journal of Engineering & Technology 287

than R1 resources. The hourly rates used in our experiments are

$10, $20 and $30 for R1, R2 and R3 respectively.

To benchmark the performance of our algorithm, we compare its

performance against the PBWS [1] RDAS [2] and HEFT [3] algo-

rithms. The objective of the HEFT algorithm is to determine the

fastest schedule to execute the tasks of the workflow. In each it-

eration, the algorithm allocates the task under consideration to the

VM such that execution time of this task is minimized. In the

RDAS, the algorithm starts by partitioning the workflow tasks

based on the execution time for the critical path tasks. Then, it

uses fair share strategy to determine the number of tasks allocated

to each partition. The PBWS algorithm uses slack parameter (B)

to determine the priority of each objective function. The value of

this parameter range from 0 or 1. When this value is equal to zero,

the algorithm focus on reducing the execution time. Assigning one

to this parameter results in shifting this algorithm behavior toward

reducing the cost.

For the fairness of the comparison, we start by running PBWS for

B = 0 and 1. Then use the obtained number of VMs by PBWS as

an input to the HEFT, RDAS, and LBC algorithms.

Next, we present and discuss the results for each input scenario.

LIGO: Figure 2 shows the results for the LIGO workflow exper-

iments. From the figure we can see that the LBC algorithm outper-

form the other algorithms in term of cost. In addition, we can see

that the LBC algorithm obtains relatively the same execution time,

regardless of B value. The LIGO workflow has well organized

structure. In the LBC algorithm this results in establishing clusters

with relatively the same running time. Such structure is expected

to results in using relatively the same number of VMs to execute

each clusters. This reduces the number of idle time-slots, and thus

reduces the cost of the obtained schedule by the LBC algorithm.

The HEFT algorithm uses greedy strategy that focus on reducing

the makespan. This is expected to increase the cost of the schedule

obtained by this algorithm, since resource utilization was not takin

into consideration during the construction of the schedule. In the

PBWS and the RDAS algorithms having partitions that cross sev-

eral levels creates a dependency relationship between the structure

of theses partitions and the performance of the obtained schedules.

This is established since having partitions with unorganized struc-

ture results in increasing the expected cost and makespan.

Fig. 2: LIGO workflows

CyberShake: Figure 3 present the results for the CyberShake

workflow experiments. From the figure we can see the LBC algo-

rithm outperforms the other algorithm in term of makespan. In

term of cost, we can see that when B = 1, the LBC algorithm out-

perform the other algorithm. Reducing the value of B to zero,

results in LBC and PBWS obtains relatively the same cost. The

CyberShake workflow has wide-structure, with significantly large

number of tasks in each level. In the LBC algorithm, the mecha-

nism of constructing the clusters based on the level of the tasks

has a great advantage in this situation. This occurs because the

LBC algorithm aims to reduce the average execution time for level

tasks, and increasing the number of tasks in each level highlight

the benefits of such strategy. This is the main reason behind the

seen performance in term of makespan. Regarding the execution

cost, having workflow levels with relatively high number of tasks

results in increasing the execution overhead. This is established

since structure increases the probability of having unused time-

slots, due to the presence of data dependency and the large number

of tasks in each level.

Fig. 3: CyberShake workflows

288 International Journal of Engineering & Technology

Epigenomics: The results for this workflow set experiments in

shown in Figure 4. From the figure we can see that the LBC algo-

rithm constantly outperforms the other algorithms in term of cost.

In addition, we can see that the makespan of the schedule obtained

by the LBC algorithm is relatively similar to the PBWS. The

Epigenomes workflows have balances structure with high demand

computational tasks. In these settings, the mechanism of clustering

the workflow tasks based on their level reduces the expected per-

formance of the LBC algorithm. This occurs because in order to

schedule the tasks for a given, the tasks of the pervious cluster

need to finish their execution. Combine this with the presence of

the computationally demanding tasks introduce execution delay.

Fig. 4: Epigenomics workflows

SIPHT: The results for the Sipht workflows experiments is shown

in Figure 5. The results show that the LBC algorithm significantly

outperforms the other algorithms in terms of cost and makespan.

This behavior is also due to the structure of the workflow. Sipht

workflow has unbalanced structure where most of the levels have

different number of tasks. This results in having clusters with

different computational requirements. Such structure underlines

the benefits of the LBC algorithm that treat the clusters as isolated

objects.

Fig. 5: Sipht workflows

Montage: From the results (Figure 6), we can see that in terms of

makespan, the LBC algorithm achieves the best behavior. Howev-

er, as we also can see, the LBC algorithm achieves the highest cost.

In Montage workflow, most of the levels has small number of

tasks. Combine this to the mechanism of isolating the level, results

in increasing the expected delay in execution, and thus increasing

the cost.

International Journal of Engineering & Technology 289

Fig. 6: Montage workflows

6. Conclusion

In this paper, we address the problem of scheduling scientific

workflow on cloud such that the utilization of resources is maxim-

ized. to address this problem, we presented anew algorithm known

as a level-based clustering algorithm. the proposed algorithm uses

divide-and-conquer approach that treat each level task as an iso-

lated object. we compared the performance of our algorithm

against three well-known algorithms from the literature. the re-

sults show that in most situations, our approach significantly out-

performs the other algorithms in term of cost, makespan and the

number of resources used.

References

[1] K. Almi’Ani & Y. C. Lee, “Partitioning-Based Workflow

Scheduling in Clouds”, Proceedings of the IEEE International

Conference Advanced Information Networking and Application,
(2016), pp. 645–652.

[2] K. Almi’Ani, Y. C. Lee, & B. Mans, “Resource Demand Aware

Scheduling for Workflows in Clouds”, Proceedings of the IEEE
16th International Symposium on Network Computing and

Applications, (2017), pp. 1-5.

[3] H. Topcuoglu, S. Hariri, & M. Wu, “Performance-Effective and
Low-Complexity Task Scheduling for Heterogeneous Computing”,

IEEE Transactions on Parallel Distributed System, 13(30, (2002),
260–274.

[4] S. Abrishami, M. Naghibzadeh, & D. H. Epema. “Deadline-

Constrained Workflow Scheduling Algorithms for Infrastructure as
a Service Clouds”, Future Generation Computer Systems, 29(1),

(2013), 158-169.

[5] P. Kaur & S. Mehta, “Resource Provisioning and Work Flow
Scheduling in Clouds Using Augmented Shuffled Frog Leaping

Algorithm”, Journal of Parallel and Distributed Computing, 101,

(2016), 41-50.
[6] D. Poola, S. K. Garg, R. Buyya, Y. Yang, & K. Ramamohanarao,

“Robust Scheduling of Scientific Workflows with Deadline and

Budget Constraints in Clouds”, Proceedings of the IEEE 28th
International Conference on Advanced Information Networking

and Applications, (2014), pp. 858- 865.

[7] V. Singh, I. Gupta, & P. K. Jana, “A Novel Cost-Efficient Ap-
proach for Deadline-Constrained Workflow Scheduling by Dy-

namic Provisioning of Resources”, Future Generation Computer

Systems, 79, (2018), 95–110.
[8] T. Dziok, K. Figiela, & M. Malawski, “Adaptive Multi-Level

Workflow Scheduling With Uncertain Task Estimates”, Lecture

Notes in Computer Science: Parallel Processing and Applied

Mathematics, 9574, (2016), 90–100.
[9] V. Arabnejad, K. Bubendorfer, & B. Ng, “Budget and Deadline

Aware e-Science Workflow Scheduling in Clouds”, IEEE

Transactions on Parallel and Distributed Systems, 2018, (2018), 1-
10.

[10] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, & K.

Vahi, “Characterizing and Profiling Scientific Workflows”, Future
Generation Computer Systems, 29, (2013), 682–692.

[11] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. H. Su, & K.
Vahi, “Characterization of Scientific Workflows”, Proceedings of

the IEEE Third Workshop on Workflows in Support of Large-Scale

Science, (2008), pp. 1-10.
[12] J. D. Ullman, “NP-Complete Scheduling Problems”, Journal of

Compute and System Sciences, 10, (1975), 384-393.

[13] S. Liu, K. Ren, K. Deng, & J. Song, “A Task Backfill Based
Scientific Workflow Scheduling Strategy on Cloud Platform,” Pro-

ceedings of the IEEE Sixth International Conference on

Information Science and Technology, (2016), pp. 105-110.
[14] Y. C. Lee & A. Y. Zomaya, “Stretch Out and Compact Workflow

Scheduling with Resource Abundance”, Proceedings of the 13th

IEEE/ACM International Symposium on Cluster Cloud and Grid

Computing, (2013), pp. 219-226.

[15] C. Q. Wu, X. Lin, D. Yu, W. Xu, & L. Li, “End-to-End Delay

Minimization for Scientific Workflows in Clouds under Budget
Constraint”, IEEE Transactions on Cloud Computing, 3(2), (2015),

169-181.

[16] M. A. Rodriguez & R. Buyya, “Deadline Based Resource
Provisioning and Scheduling Algorithm for Scientific Workflows

on Clouds”, IEEE Transactions on Cloud Computing, 2(2), (2014),

222 – 235.
[17] J. J. Durillo, H. M. Fard, & R. Prodan, “MOHEFT: A Multi-

Objective List-Based Method for Workflow Scheduling”, Proceed-

ings of the IEEE 4th International Conference Cloud Computing
Technology and Science, (2012), pp. 185-192.

[18] R. Prodan & M. Wieczorek, “Bi-Criteria Scheduling of Scientific

Grid Workflows”, IEEE Transactions on Automation Science and
Engineering, 7, (2010), 7(2), 364-376.

[19] M. Malawski, K. Figiela, M. Bubak, E. Deelman, & J. Nabrzyski,

“Cost Optimization of Execution of Multi-level Deadline-
Constrained Scientific Workflows on Clouds”, Proceedings of the

IEEE International Conference on Parallel Processing and Applied

Mathematics, (2013), pp. .
[20] M. Mao & M. Humphrey, “Auto-Scaling to Minimize Cost and

Meet Application Deadlines in Cloud Workflows”, Proceedings of

the IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, (2011), pp. 251-

260.

[21] H. Arabnejad & J. G. Barbosa, “A Budget Constrained Scheduling
Algorithm for Workflow Applications”, Journal of Grid Computing,

12(4), (2014), 665-679.

[22] Q. Jiang, Y. C. Lee & A. Y. Zomaya, “Executing Large Scale
Scientific Workflow Ensembles in Public Clouds”, Proceedings of

the IEEE 44th International Conference on Parallel Processing,

(2015), pp. 520-529.
[23] L. Zeng, B. Veeravalli, & X. Li, “Scalestar: Budget Conscious

Scheduling Precedence-Constrained Many-Task Workflow

Applications in Cloud”, Proceedings of the IEEE 26th International
Conference on Advanced Information Networking and

Applications, (2012), pp. 534-541.

[24] J. Yu, R. Buyya, & C. K. Tham, “Cost-Based Scheduling of

Scientific Workflow Applications on Utility Grids”, Proceedings of

the IEEE International Conference on e-Science and Grid
Computing, (2005), pp. 1-9.

[25] A. Verma & S. Kaushal, “Cost Minimized PSO Based Workflow

Scheduling Plan for Cloud Computing”, I.J. Information Technolo-
gy and Computer Science, 7, (2015), 37-43.

[26] A. Verma & S. Kaushal, “Budget Constrained Priority Based

Genetic Algorithm for Workflow Scheduling in Cloud”,
Proceedings of the IET International Conference on Recent Trends

in Information, Telecommunication and Computing, (2013), pp. 8-

14.
[27] V. Arabnejad, K. Bubendorfer, & B. Ng, “Scheduling Deadline

Constrained Scientific Workflows on Dynamically Provisioned

Cloud Resources”, Future Generation Computer Systems, 75,
(2017), 348-364.

[28] M. R. Garey, R. L. Graham, & J. D. Ullman, “Worst-Case Analysis

of Memory Allocation Algorithms”, Proceedings of the 4th Annual
ACM Symposium on the Theory of Computing, (1972), pp. 143-

150.

