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Abstract 
 
The manufacturing industry has evolved in the past decades, due to the competition of the global economy, where the market demands 
high quality and customized products, and meeting lowest possible costs are paramount. One of the many processes in manufacturing is 
the assembly line operation, namely the assembly line balancing (ALB) problem. ALB problem is dependent on optimum resource utili-
zation in order to improve production output, reduces costs, and shortens production lead times. In these recent years, various approaches 

have been proposed to solve the complexity of assembly line balancing operations, which composed of exact, heuristic, and meta-
heuristic approaches. However, little work had been done to solve the type E assembly line balancing problem. This paper proposed an 
approach using artificial immune system (AIS) algorithm, namely as the artificial immune cell (AIC) approach, for solving type E as-
sembly line balancing problem. An initialization mechanism through the bone marrow model and probabilistic clonal selection mecha-
nism had encouraged efficient exploration and exploitation of the solution space. The computational results over 242 instances of 24 
datasets had demonstrated the efficiency of the proposed AIC approach by achieving high-quality solutions (up to 85.94% optimum solu-
tions was obtained). Also, the results were statistically justified by comparing with multi-rule multi-objective simulated annealing 
(MRMOSA), priority-based genetic approach (PriGA), two-phased genetic approach (2P-GA), and assignment genetic approach (MA-

GA). 
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1. Introduction 

Manufacturing industry has faced considerable changes in the past 

few years, relatively from the local economy to a highly competi-
tive global economy. These circumstances invoke demand for 
high quality customizable products at the lowest possible cost with 
the shortest life cycles. In manufacturing, one of the core produc-
tion activity is the assembly; it encompasses both the production 
time and cost. Consequently, the assembly is accountable between 
20% and 50% on both cost and lead-time of a product; it can also 
reach up to 90% in newly emerged areas of micro-technologies 

and electronics [15]. As such, balancing the resources (machines 
or workstations) in term of utilization and performance during the 
assembly is crucial. 
The assembly line balancing (ALB) is one of the problem that has 
been the subject of large body of the literature with wide-range of 
applications, including the automotive industry, consumer elec-
tronics, and household items [16]. When manufacturing high-
demand products, the ALB problem arises when a firm introduces 
a new assembly line or redesigns an existing one. The new bal-

anced system is expected to save capital expenditure and reduce 
cycle time into a value (actual cycle time) less than the value pre-
defined by the desired production rate of the firms (theoretical 
cycle time). The importance of the current subject in the produc-
tion research had been shown by vast numbers of studies made to 
solve the ALB problem. 

Depending on the number of product models considered in the 
manufacturing production [26], the ALB problem can be further 

classified into single-model, mixed-model, and multi-model ALB 

problems. The most popular ALB problem is called the single-
model or simple assembly line balancing (SALB) problem. The 
mixed-model ALB problem deals with several models simultane-
ously with negligible setup cost, while the SALB problem is char-
acterized by mass production of the single standardized product. 
Meanwhile, a multi-model ALB problem involves different items 
which are performed in small batches, where division of labour, 
specialization, and standardization are still being benefited [20]. 

Compared to the single-model ALB problem, the mixed-model 
and multi-model ALB problems are generally focused on special-
ized markets and tend to be application-based. Meanwhile, the 
SALB problem has been utilized for decades to provide a basis for 
testing different approaches to varying characteristics of the prob-
lem with respect to the known optimality. As such, this motivates 
the adoption of the SALB problem as the main focus area of this 
study. 

The SALB problems are known to be NP-hard, where j tasks and r 
ordering constraints result in a j!/2^r number of possible task se-
quences [17]. Assessing the performance in SALB problem, the 
most sought objective measure is the Type 1 (minimize station 
number, K), followed by Type 2 (minimize cycle time, C) while 
the least sought one is the Type E (minimize both station and cy-
cle time number or, maximizing efficiency E). Although several 
approaches had been proposed in optimizing different perfor-
mances of the ALB problem, Type E performance of the ALB 

problem had been rarely emphasized. In addition, directly solving 
the Type-E ALB problem (or SALB-E problem) is challenging 
due to difficulty of directing the search procedure to promising 
regions when neither machine number (K) nor the cycle time (C) 
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is fixed or known beforehand. As such, the aim of this study is to 
propose an approach to effectively solve the challenging combina-
torial nature of the ALB problem with respect to the Type E prob-
lem. 
The remainder of the paper is organized as follows. First, Section 
2 presents previously published literatures and related procedures 
in solving the SALB domain problem. Section 3 describes in de-
tails on the SALB problem, constraints, and its performance 

measure. The proposed AIS approach is presented in details on 
Section 4. In Section 5 the proposed approach is tested on a well-
known ALB datasets where the result of the proposed approach is 
analyzed and compared with other approaches, with respect to the 
SALBP-E problem. Lastly, Section 6 concludes this study. 

2. Related Works 

Exact or mathematical approaches always guaranteed optimal 
result, but have been unpopular due to its significant computa-
tional capacity. However, due to recent advances in computer and 
information science, exact approach is revived to solve the promi-
nent ALB problems. Exact approach often modelled and formal-
ized the respective ALB problem mathematically. A recently 
adopted exact approach is the tree-based search with partial solu-

tion [16]. Other exact approaches are the simulation approach 
where assignment or sequencing decisions is a sets of feasible 
solutions [11], and decision support approach utilizing rigid rule 
structure (e.g., assignment or sequencing, constraint satisfaction, 
etc.) to arrive for conclusion or sets of possible or probable con-
clusion (e.g., optimal solution) [18]. 
Heuristic approaches is another approach that manipulates “rule of 
thumb” in searching, where it guaranteed near-optimal solution 

(partially greedy-based procedure) that is obtained within reason-
able amount of computational time. Some researchers adopted 
heuristic by combining it with exact approaches, such greedy-
based procedure [24]. The derivation of the rules usually from the 
domain problems (e.g., constraints, restrictions, etc.) and working 
elements of the problem (e.g., workstations assignment, cycle time 
calculation, etc.). 
Meta-heuristic approaches is an approach that derive solutions by 
utilizing approximation methodology to computationally challeng-

ing tasks for which an exact solution cannot achieve in polynomial 
time. Some authors have improvised a well-known genetic algo-
rithm (GA) by incorporating multiple stages of GA operation [28], 
priority-based GA [14], and multiple assignment GA [1]. Other 
meta-heuristic approaches for solving the assembly line balancing 
problem which includes bacterial foraging optimization (BFO) [2], 
simulated annealing (SA) [4], ant colony optimization (ACO) [13], 
particle swarm optimization (PSO) [10], and artificial bee colony 

(ABC) [23]. 
Among the available meta-heuristic approaches, the artificial im-
mune system (AIS) approach have been adopted to solve a differ-
ent variety of problems in manufacturing, such as scheduling with 
preventive maintenance [25], engineering design [27], scheduling 
[6], assembly sequencing [3] and hybridized AIS approach in 
complex manufacturing problems [19]. An AIS approach was 
naturally enriched within its meta-heuristic framework with fea-

tures that encompasses the ability for adaptation, self-organization, 
scalability, robust, and decentralization. Additionally, AIS algo-
rithm is capable of solving problems for a wide range of areas 
such as optimization, data mining, computer security, and robotics 
[9]. AIS optimization procedure, namely the clonal selection (CS) 
approach, is capable of rapid exploitation and exploration of the 
problem’s search space, embedding a diversity preservation 
mechanism of the solutions, and composing of elitists within its 

elementary structures (no backward effect during iterations). As 
such, the motivation of this paper is to propose AIS algorithm, 
more specifically the CS algorithm, for solving SALB-E problem. 
To the best of our knowledge, AIS has only been adopted in solv-
ing SALB-1 problem [29]. Based on the computational experi-

ment conducted by [29], encouraging results had been achieved 
where the proposed approach outperforms the previously pub-
lished approaches. Besides the scarcity of AIS approach in ad-
dressing the SALB-E problem, the encouraging results obtained 
by AIS approach in solving SALB-1 problem acts as the motiva-
tion of adopting AIS as the proposed approach in this study. In 
addition, the core elements in the SALB problem (such as tasks 
and machines) behaved analogously to the core elements (anti-

body and antigen) of the AIS approach, where attempting to repre-
sent their interactions is expected to influence the performance of 
the SALB-E problem. 
Compared to the generic AIS approach, the proposed AIS ap-
proach in this study is tailored to the SALB-E problem while gen-
eralized enough to be adapted to similar types of problem. In addi-
tion, the generic AIS approach utilizes binary representation 
scheme which requires modification to properly address the dis-

crete combinatorial optimization problem of the SALB-E domain. 
As such, encoding the problem is not straightforward and over-
coming the constraint is challenging. Therefore, the main contri-
bution of this study is to propose a modified version of an artifi-
cial immune system (AIS) approach that can effectively address 
the challenging combinatorial nature of the SALB-E problem. 

3. Problem Description 

Table 1: Problem notations 

Indices 

i index of product in a cycle (i=1,…,I) 

j index of task (j=1,…,J) 

k index of station (k=1,…,K) 

Decision variables 

The decision variables possessing a value of 0 and 1 integers are as follow: 

 

 

 

 
Parameters 

I total product produced in a cycle 

J total tasks 

K total stations/machines 

Ct the existing cycle time 

tsum summation of all task processing time, ∑tj  

Sk set of tasks assigned to station k 

Suc(j) set of direct successor of task j 

Pre(j) set of direct predecessor of task j 

t(Sk) cumulated task time at station k 

tj processing time of task j 

C cycle time, max{t(Sk)}  

 
Manufacturing a product on a simple or straight assembly line 
requires delegating the total amount of work into a set of elemen-
tary operations named tasks j=1,…,J. Performing a task j consume 
a task time tj, and requires certain equipment of machines and/or 
skills of workers [14]. Due to technological and organizational 

requirements, several constraints have to be addressed. The prece-
dence constraints (Figure 1) state that all predecessor of task j 
must be assigned to a machine, which is in front (l = k-1) of or the 
same as the machine that task j is assigned in. Assignment con-
straint ensures that task j must be assigned to only one machine. 
The cycle time constraint calculates the total machine time t(Sjk) 
on machine k and guarantees that the total machine time t(Sjk) is 
not greater than the upper bound (Ct). 

The Sk set of tasks are assigned to a station k=1,…,K, constituting 
its station load, in which the cumulated task time t(Sk) = ∑jϵSk tj is 
called station time. When a fixed common cycle time C_T is given, 
a line balance is feasible only if the station time of neither station 
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exceeds CT. In case of t(Sk ) < CT, the station k has an idle time of 
Ct - t(Sk) time units in each cycle. Finding a feasible line balance is 
common in any type of ALB problem. For Type-E simple assem-
bly line balancing (SALB-E) problem, the objective is to maxi-
mize the line efficiency E: 
 

 
Fig. 1: An example of precedence diagram with N=11 tasks. It contains 

node weights for the task times and arcs for the precedence constraints. 

The precedence constraints of task 7 requires tasks 3, 4 and 5 (direct pre-

decessors) and 1 (indirect predecessor) to be completed. On the other 

hand, task 7 must be completed before its (direct and indirect) successors, 

task 9 and 11 can be started. 
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The precedence constraints in (2) state that all predecessor of task 
j must be assigned to a machine, which is in front (l=k-1) of or the 
same as the machine that task j is assigned in. Assignment con-
straint in (3) ensures that task j must be assigned to only one ma-
chine. The cycle time constraint in (4) calculates the total machine 

time t(Sjk) on machine k and guarantees that the total machine time 
t(Sjk) is not greater than the upper bound (Ct). The integrity con-
straints in (5) and (6) ensure the correct binary value of the deci-
sion variables. 

4. The Proposed Swarm of Artificial Immune 

Cells Approach 

Vertebrates (organisms having internal bones), have developed a 
highly complex and effective natural immune system composing 
vast number of cells, molecules, and organs that work as an identi-
fication mechanism capable of perceiving and combating dysfunc-

tion from its own cells (infections self) and from the action of 
exogenous infectious microorganisms (infectious non-selves) such 
as viruses, bacteria and other parasites (so-called invading patho-
gens). A clonal selection (CS) principle is used to elaborate the 
adaptive immune system which involves responding on any recog-
nized antigens (the correspondence of specific proteins of the 
pathogen) and enhance its capability of recognizing and eliminat-
ing future encounters [12]. Variety mechanisms which formed the 

building block of a very complex natural immune system in order 
to defend against pathogenic organisms, act as a source of inspira-
tion for solving the problems in the optimization domains. 

The artificial immune cells (AIC) approach which is based on CS 
algorithm, is composed of five major components; (1) Gene ar-
chiving (2) Solution representation and initialization; (3) Clonal 
selection and cloning process; (4) Hyper-mutation; and (5) Mem-
ory cell generation. The generalized overall flow of the proposed 
AIC algorithm starts by initializing the gene archives (task and 
machine sequences) where each binding of genes in both archives 
will be evaluated. The binding of these gene archives form a solu-

tion, which is part of population that being initialized. The popula-
tion will undergo clonal selection operator. The selected popula-
tion will be cloned and undergo somatic hyper-mutation. Then, the 
receptor editing is considered where some portion of the popula-
tion is replaced by randomly generated solutions. The last compo-
nent is the memory cell generation where best solution from the 
population will be copied and disassembled into genes for archiv-
ing in the gene archives. 

 

4.1 Solution Archiving (Bone Marrow Model), Solution 

Encoding, and Initialization 

 
The initial production of solution (or population of solutions) of 
the proposed AIC algorithm is based on the bone marrow model 
where specific segment from each gene library are combined to 

form the initial solution. At early stage, the initial antigen (task 
assignment sequence) is considered as the self-antigen (body’s 
own tissues) which bind with the antibody (machine allocation 
sequence). This is necessary for the antibody to recognize the non-
self-antigen presented by pathogen (foreign molecules) during 
infection [8]. The antibody gene library involves randomly gener-
ate machine allocation (1≤ k ≤K) based on the length of the task 
(J). Conversely, the antigen gene library involves randomly gener-

ate task assignment sequence with respect to the precedence con-
straint. 
The antigen gene (task assignment sequence) is generated with 
respect to the precedence constraint by employing a direct acyclic 
graph (DAG) model, where the graph is traverse starting from 
node(s) without predecessor followed to its successor node(s). The 
selection of the node is randomized where only node without un-
assigned predecessor is assigned directly while selected node with 

unassigned predecessor(s) will be skipped. If all the predecessor(s) 
of the selected node is assigned, then the currently selected node is 
assigned. This process repeats until all nodes were assigned into a 
list of task sequence. The size of the generated gene archives are 
based on the number of solutions Nsol (user-defined).  
The initially generated gene archives (both antigen and antibody 
genes) are unique and no duplication allowed in order to provide 
the most distinct gene archives as possible. This also applies when 
memory cell (best solution) decomposed into its genetic materials 

(antigen and antibody genes) and to be stored as new gene archive. 
The stored gene archives also being used as the genetic compo-
nents to randomly generate new solution during the initialization 
process as well as during the receptor editing process (see Section 
4.4). Since no duplication of gene archive allowed, only unique 
sequence of the best solution discovered during hyper-mutation 
will be stored into each gene library. Note that the number of solu-
tion is flexible and may change over time (add and remove solu-

tions) to encourage diversity among the population of the solu-
tions (at most Nsol×10). 
The encoding of the proposed AIC involves the representation of 
three distinct cells; antibody cells (machine allocation sequence), 
antigen cells (task assignment sequence), and memory cells. The 
memory cell correspond with the high performance or optimal 
solution, where its composition (machine and task sequences) is 
stored as gene archives for future generation. The binding of an 

antigen (tasks) with an antibody (machines) would form a feasible 
solution without violation of the task precedence’s constraint. The 
binding also defines the “strength” of their receptors matching 
with one another, called affinity measure (p). The better the match-
ing strength, the higher the affinity of the antibody-antigen bind-
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ing; and vice versa. The p is directly proportional to the perform-
ance measure (Equation 1) considered for ALB domain problem.  

 

4.2 Clonal Selection and Selection Process 

 
A probabilistic clonal selection (PCS) is proposed by randomly 
select solution that is less than the pre-calculated threshold (pth). 
This threshold is the average affinity of all solutions (pth = 
(∑pn)/N). This method normalize the selection probability where 
low affinity solution (worst solution) will share the same chance 
of improving their affinity alongside high affinity solution (good 
solution). As such, diversity among the solutions can be retained 
while potential discovery of a new feasible solution can be at-

tained.  
After a solution is selected, the selected solution is cloned in fixed 
number, where the number of the resulting cloning for the selected 
solution is determined by multiplying the affinity of a single solu-
tion with 20% of the total solutions (pn × {N/5}). This method will 
increase the likeliness of unique clones and enable flexible amount 
of clones to be produced without compromising the diversity of 
the available solutions while potentially explores more areas of the 

search space.  

 

4.3 Somatic Hyper-mutation 
 
After the selected solution is cloned, the cloned solution will un-

dergo somatic hyper-mutation (rapid mutation rate) in order to 
change its affinity. Typical somatic hyper-mutation would in-
volves the affinity maturation, where lower affinity solution will 
have high mutation rate, and vice versa. However, the process will 
not guarantee the resultant mutated cell to have higher affinity [5]. 
A two-stage hyper-mutation mechanisms are proposed. By adopt-
ing the two-stage mechanism, limited dependency towards the 
domain problem can be fulfilled as well as sufficient control on 
the exploratory search. The rate of mutation (repetition of the 

mutation process) is defined by quantifying the affinity of the 
cloned solution, (1 – pclone) × 1000. As such, the lower the affinity, 
the higher the mutation rate will be. This quantifying method was 
chosen to provide enough maturity of the mutated solution. 
The RSf mutation mechanism corresponds to random reassign-
ment of all tasks or random reallocation of all machines. Both 
IpmSR and IptSR mutation mechanism imitates vaccination con-
cept, where vaccine is used to stimulate the adaptive immune re-

sponse by introducing familiar genetic materials [22]. These three 
mutation mechanisms (Figure 2(a), (b), (c)) are intended to pro-
vide large “jump” in the affinity landscape. In addition, these three 
mechanisms are focusing on significant leaps on the affinity land-
scape of the target solution, thus provides broader and rapid search. 
Meanwhile, the CPS and SRM mutation mechanism may leads 
new unexplored feasible solutions. These two mutation mecha-
nisms (Figure 2(d), (e)) are important for escaping local optima 

and maintaining solution diversity. However, SRM mutation could 
cause increases in the expected machine workloads. Although the 
expected outcome of the CPS and SRM mutation mechanisms are 
contradictory, they provide their own benefits in term of exploit-
ing the search space. 

 

4.4 Solution Archiving (Bone Marrow Model), Solution 

Encoding, and Initialization 

 
Receptor editing is process of adding new elements (or solutions) 
to the total population. This is necessary to enable exploration of 
new undiscovered feasible solution by introducing new random 
solution (regardless of their affinity) into the solution population 
in each generation cycle [21]. The main purpose of receptor edit-
ing is to preserve diversity of the population of solution, which 

encourages the algorithm to escape from local optimal. The pro-
posed receptor editing process involves replacing the worst affin-
ity solution (solution with the worst E) with new solution gener-

ated with randomly selected gene materials from the gene archives 
(similar to the initialization of first generation population). 
 

  
Fig. 2: An example of first stage mutation processes: (a) RSf, (b) IpmSR, 

and (c) IptSR, and an example of second stage) mutation processes: (d) 

CPS and (e) SRM. Both IpmSR and IptSR mutation mechanisms involves 

randomly selects a random sequence of machines or tasks. The CPS muta-

tion involves selecting a random task from two or more task successors. 

The SRM focuses on reallocating one randomly selected task to another 

machine. 

 
Subsequently, a certain number of solution with high affinity are 
typically stored as memory cells after the clonal selection and 
somatic hyper-mutation process [21]. In this paper, the proposed 
memory cell generation is based upon the cell proliferation of 
highest affinity solution; which involves copying the antibody 
gene (machine allocation sequence) or antigen gene (task assign-
ment sequence) as a new gene archives. This memory cell will be 

used to form new random solution when receptor editing is trig-
gered.  

5. Experimental Result and Discussion 

In this section, the experimental results over the SALB dataset and 
comparative results of the proposed AIC approach, against other 
approaches from the literature, are presented (Section 5.1). Then, 

detailed discussion and insights on the obtained results over the 
SALB data sets and comparative analysis of the proposed AIC 
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approach, compared to other approaches from the literature, were 
given (Section 5.2).  

 

5.1 Computational Result 

 
The proposed AIC approach was applied to the benchmark data-
sets for the ALB problem. The well-known instances of the SALB 
problem can be found on the website: http://assembly-line-
balancing.mansci.de/. The characteristic of datasets of SALB-E 
consists of 24 precedence graphs that accumulate into a total of 
242 test instances. For each dataset, the required processing time 
of each task and the precedence relations between the tasks are 
given. For each of the SALB-E data instances, a pair of numbers 

(k ,ct) is defined, with k being the known number of the machines 
and ct the known minimal cycle time of the assembly line. Addi-
tionally, as indicated by [7], the datasets were also categorized as 
a small datasets (7 ≤ J ≤ 45), medium datasets (45 < J ≤ 111), and 
large datasets (J ≥ 112). 
The experiment was run 20 times where the best solution obtained 
from the run is recorded. Two parameters were involved for the 
proposed AIC approach, which is the maximum generation num-

ber (Gmax) and the initial population size (pinit). After extensive 
experimentation with multiple parameter settings, it was found 
that the parameter combination of pinit = 30 and Gmax = 50 × 103 
are the best parameter combination. Using these parameter combi-
nations, the effectiveness of the proposed AIC approach can be 
measured by computing the relative deviation (dev: {(E* - E)/E*} 
×100) of the actual assembly line efficiency (E) from the known 
optimal assembly line efficiency (E*). 

The full results obtained by the proposed AIC approach is given in 
Table A1 (Appendix). The table contains the following informa-
tion: (1) name refers to the SALB dataset; (2) Kt refers to the 
known optimal machine number; and (3) Ct refers to the known 
optimal cycle time; (4) K refers to the obtained machine number 
by the AIC approach; (5) C refers to the obtained cycle time by 
the AIC approach; (6) %E is the computed efficiency of the ob-
tained K and C with respect to the objective given in Equation 1. 
In addition, a summary of the results obtained over the three data-

set sizes (small, medium, and large) in regard to this performance 
measure is provided in Table 2. The table contains the following 
information: 

 avg%dev: the average relative deviation of E from optimal 

E* in percentage. 

 max%dev: the maximum relative deviation of E from opti-

mal E* in percentage. 

 %opt: percentage of the instances in the respective dataset 

sizes for which the optimal solution was found.  
For small dataset size, the quality of the generated solutions is 
high, where the proposed AIC approach found the known optimal 
solutions in 85.94% of the dataset instances. Although the per-
formance of the proposed AIC approach gets inferior in the me-
dium and large dataset sizes, it is still relatively satisfactory giving 
solutions with average percent deviation from optimum equal to 
5.29 and 6.85, respectively. Also, the worst solutions obtained by 

the proposed AIC approach in both medium and large dataset 
instances deviated from optimum no more than 32% and 23%, 
respectively. Given the complexity of the SALB-E problem, this 
indicates a competitive performance of the proposed AIC ap-
proach. 
 
Table 2: Summary of results of the proposed AIC approach and compari-

son against other approaches from literatures 

Result summary of the proposed AIC approach 

Dataset Size avg%dev max%dev %opt 

Small 0.23 6.67 85.94 

Medium 5.29 31.34 22.02 

Large 6.85 22.86 5.80 

Comparison of AIC approach against other approaches 

Data No. 10 7 18 7 

Instances 27 15 134 15 

Efficiency 

(Average) 

96.52
a
 98.78

a
 93.51

a
 98.78

a
 

91.40
b
 93.21

c
 96.10

d
 98.04

e
 

p-value 0.0091 0.006 0.8871 0.2214 
a
Proposed AIC; 

b
MRMOSA; 

c
PriGA; 

d
2P-GA; 

e
MA-GA; 

 
Additionally, Table 2 also summarizes the comparison result of 

the proposed AIC approach against four approaches from the lit-
erature. The four approaches from the literature are the multi-rule 
multi-objective simulated annealing (MRMOSA) [4], priority-
based genetic approach (PriGA) [14], two-phased genetic ap-
proach (2P-GA) [28], and multiple assignment genetic approach 
(MA-GA) [1]. However, each of the four approaches only applied 
on a certain portion of the SALB-E datasets. As such, each of the 
four approaches was compared individually only on the instances 

that were adopted. On average, the results of the AIC approach is 
higher the one obtained by the MRMOSA, PriGA, and MA-GA 
approaches, while the average performance of 2P-GA outper-
formed the AIC approach. A one-tailed Wilcoxon rank-sum test of 
the AIC approach with the significant level of α = .05 is consid-
ered. The E values obtained by the AIC approach is significantly 
different when statistically compared to the one obtained by the 
MRMOSA and PriGA approaches (95% confidence interval). 

However, the difference between the E values obtained by the 2P-
GA and MA-GA compared to AIC approach is not significant 
enough to justify statistically, but different nonetheless. 

 

5.2 Solution Archiving (Bone Marrow Model), Solution 

Encoding, and Initialization 

 
The solution behaviour in the population of the AIC approach had 
been influenced by the average performance values of the popula-
tion (pth), where most of the solutions have similar performance 
values where the difference was small compared to the pth. This is 
mainly because of the proposed probabilistic clonal selection (PCS) 
where solution with performance less than the pth will likely to be 
improvised in order to improve its performance or vice versa. 
However, since the improvised solution would not guarantee solu-

tion greater than pth, potentially good solution will likely become 
worst. In addition, the performance of the population will likely 
stagnate during a higher number of the generation which causes 
premature convergence because of trapping in the local optimum. 
Also, exploitation on the currently good solutions is randomized 
when the value of pth increases in later generation, which may also 
contribute to premature convergence as good-enough solution 
unable to escape local optima as well as becoming much worst. 
The PCS also have limited option since improvisation only con-

ducted to the one with performance less than the pth.  
Certain insights can also be deducted from evaluating the perfor-
mance and solution quality of the proposed AIC approach against 
other approaches from the literature. From the local optimization 
perspectives, direct interactions with the information dynamics of 
the domain problem was necessary (such as the task precedence 
constraints) while being generalized enough to be adopted in re-
lated areas of the domain problem. For example, various rules that 

were adopted by MRMOSA approach for assigning tasks to the 
machines does not always lead to the desired result. This is espe-
cially true when only certain rules played significant role in im-
proving solution quality [4]. 
On the other hand, PriGA approach used information of its current 
solutions to improve their performance. Similarly, the 2P-GA 
approach utilizes two-phased generational improvement where the 
first phase seeded the second phase with best-so-far solutions to 

lead the overall population into better search regions after the 
second phase. These proved to be interesting since its search pro-
cedure is partially guided based on known information of the do-
main problem. Also, MA-GA approach utilizes task assignment 
procedures which improved candidate solution by directing the 
task assignment in multiple directions. These involves the exploi-

http://assembly-line-balancing.mansci.de/
http://assembly-line-balancing.mansci.de/
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tation of the domain problem or the problem model to make criti-
cal decisions on the key areas of the problem. 
As opposed to the AIS approaches, a randomized matching of the 
possible machine and task sequences were offered, while occa-
sionally exchanging certain sequence information. Although these 
procedures do not guarantee better solutions (due to the logical 
paradox between task and machine sequence), it does rapidly ex-
ploit the solution where the discovery of new unexplored solution 

as well as advancing the more promising one is possible. The need 
for redundant procedures (such as the 2P-GA approach) is not 
needed where the search focus can be stressed in a single genera-
tional run. 
However, compared to the 2P-GA and MA-GA approaches, the 
proposed AIS approaches have performed similarly in most in-
stances, especially WCH approach. Even though some instances 
favor the proposed AIS approaches in term of balancing efficiency 

against the 2P-GA and MA-GA approaches, the differences were 
not statistically significant to either be practical or to outperform 
the compared approaches. Nevertheless, the comparative study 
were limited to the results obtained based on SALB instances 
adopted by each approaches, as opposed to the complete applica-
tion of the SALB data set instances.  

6. Conclusion  

This paper proposed an AIS algorithm, which named as the AIC 
approach, in order to solve type E ALB problem. The proposed 
AIC algorithm was applied to a discrete combinatorial optimiza-
tion problem, where encoding the problem is not straightforward 
and overcoming the constraint is challenging. These issues has 
been solved by adopting gene archiving for both task and machine 

sequences, where solution generation is independent of the do-
main problem. Also, high quality solution was achieved by adopt-
ing the probabilistic clonal selection (PCS) method and rapid solu-
tion exploitation was possible by utilizing the gene archiving. 
However, the proposed AIC algorithm can be further improved by 
applying to larger problem and different ALB problems (such as 
machine restrictions, etc.). In addition, introducing stochastic task 
times in the proposed AIC algorithm and exploring multi-
objective functions are possible. Lastly, the proposed AIC algo-

rithm can also be tested and applied to investigate its performance 
in other type of ALB problems (such as mixed-model ALB prob-
lems). 
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Appendix 

Table A1: Detailed results obtained by the proposed AIC algorithm based 

on small, medium, and large SALB-E datasets 

Dataset Info Proposed AIC 

Name Kt Ct K C %E 

Small Datasets 

Heskiakoff 

2 512 2 512 100.00 

3 324 3 324 99.81 

4 256 4 256 100.00 

5 205 5 205 99.90 

6 171 6 171 99.81 

7 147 7 150 97.52 

8 129 8 132 96.97 

9 116 9 120 94.81 

Kilbridge 

3 184 3 184 100.00 

4 138 4 138 100.00 

9 62 9 62 98.92 

10 56 10 60 92.00 

Sawyer 

3 108 3 108 100.00 

4 81 4 81 100.00 

5 65 5 65 99.69 

8 41 8 41 98.78 

7 47 7 47 98.48 

9 37 9 37 97.30 

10 34 10 34 95.29 

12 28 12 30 90.00 

Buxey 

3 108 3 108 100.00 

5 65 5 65 99.69 

8 41 8 41 98.78 

7 47 7 47 98.48 

9 37 9 37 97.30 

10 34 10 34 95.29 

12 28 12 30 90.00 

Mertens 
3 10 3 10 96.67 

5 7 5 7 82.86 

Jackson 

3 16 3 16 95.83 

4 12 4 12 95.83 

5 10 5 10 92.00 

Gunther 

3 161 3 161 100.00 

4 121 4 121 99.79 

5 97 5 97 99.59 

9 54 9 54 99.38 

6 84 6 84 95.83 

10 50 10 50 96.60 

11 48 11 48 91.48 

12 44 12 44 91.48 

Mansoor 
3 62 3 62 99.46 

4 48 4 48 96.35 

Mitchell 

3 35 3 35 100.00 

5 21 5 21 100.00 

6 18 6 18 97.22 

8 14 8 14 93.75 

Roszieg 

3 42 3 42 99.21 

4 32 4 32 97.66 

6 21 6 21 99.21 

8 16 8 16 97.66 

10 14 10 14 89.29 

Bowman 
3 28 3 25 100.00 

5 17 5 17 88.24 

Jaeschke 

3 13 3 13 94.87 

4 10 4 10 92.50 

5 9 5 9 82.22 

6 8 6 8 77.08 

7 7 7 7 75.51 

Lutz1 

4 3574 4 3542 99.80 

5 2827 5 2827 98.47 

6 2396 6 2396 98.36 

7 2096 7 2096 96.37 

9 1638 9 1638 95.92 

10 1526 10 1526 92.66 

Medium Datasets 

Wee-Mag 

3 500 3 500 99.93 

4 375 4 375 99.93 

5 300 5 300 99.93 

6 250 6 250 99.93 

10 150 10 152 98.62 

9 167 9 168 99.14 

12 125 12 128 97.59 

13 116 13 120 96.09 

15 100 15 103 97.02 

16 94 16 98 95.60 

21 72 21 75 95.17 

22 69 22 73 93.34 

26 65 26 68 84.79 

31 52 31 69 70.08 

32 48 32 69 67.89 

27 65 27 67 82.86 

35 46 35 67 63.92 

36 46 36 55 75.71 

Arcus2 

3 50133 3 50133 100.00 

9 16711 9 16717 99.96 

4 37600 4 37601 99.99 

5 30080 5 30082 99.99 

6 25067 6 25070 99.99 

8 18800 8 18806 99.97 

10 15040 10 15050 99.93 

11 13673 11 13693 99.85 

12 12534 12 12560 99.79 

13 11570 13 11595 99.78 

14 10747 14 10779 99.66 

15 10035 15 10116 99.12 

19 7928 19 8166 96.94 

20 7526 20 7770 96.78 

22 6859 22 7250 94.29 

26 5856 26 6322 91.50 

Arcus1 

3 25236 3 25236 100.00 

4 18927 4 18931 99.98 

5 15142 5 15157 99.90 

6 12620 6 12642 99.81 

7 10826 7 10830 99.86 

10 7580 10 7642 99.07 

8 9554 8 9554 98.35 

12 6412 12 6415 98.39 

13 5864 13 5928 98.24 

14 5441 14 5503 98.27 

15 5104 15 5180 97.44 

17 4516 17 4600 96.81 

19 4068 19 4210 94.65 

Hahn 

3 4787 3 4787 97.67 

5 2823 5 2823 99.37 

6 2400 6 2400 97.40 

8 1907 8 1907 91.94 

Warnecke 

3 516 3 516 100.00 

4 387 4 388 99.74 

6 258 6 261 98.85 

9 172 9 185 92.97 

10 155 10 172 90.00 

13 120 13 140 85.05 

14 111 14 132 83.77 

15 104 15 125 82.56 
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17 92 17 113 80.58 

20 79 20 98 78.98 

24 66 24 88 73.30 

25 64 25 85 72.85 

27 60 27 79 72.57 

29 56 29 77 69.32 

Tonge 

3 1170 3 1170 100.00 

5 702 5 702 100.00 

6 585 6 586 99.83 

8 439 8 441 99.49 

14 251 14 258 97.18 

11 320 11 324 98.48 

17 208 17 214 96.48 

18 196 18 205 95.12 

19 186 19 196 94.25 

20 177 20 194 90.46 

22 162 22 182 87.66 

Lutz2 

3 162 3 162 99.79 

6 81 6 81 99.79 

9 54 9 54 99.79 

10 49 10 49 98.98 

12 41 12 41 98.58 

14 35 14 36 96.23 

15 33 15 34 95.10 

17 29 17 31 92.03 

19 26 19 27 94.54 

29 17 29 20 83.62 

20 25 20 26 93.27 

26 19 26 21 88.83 

21 24 21 26 88.83 

25 20 25 22 88.18 

24 21 24 23 87.86 

31 16 31 19 82.34 

34 15 34 17 83.91 

37 14 37 15 87.39 

44 12 44 14 78.73 

46 12 46 15 70.29 

Lutz3 

3 548 3 548 100.00 

4 411 4 411 100.00 

5 329 5 329 99.94 

10 165 10 166 99.04 

7 236 7 236 99.52 

9 184 9 184 99.28 

15 110 15 113 96.99 

14 118 14 121 97.05 

17 98 17 101 95.75 

18 93 18 96 95.14 

22 76 22 84 88.96 

19 89 19 92 94.05 

21 80 21 86 91.03 

Large Datasets 

Barthold 

3 1878 3 1878 100.00 

6 939 6 940 99.89 

5 1127 5 1127 99.98 

9 626 9 627 99.84 

7 805 7 805 99.98 

10 564 10 565 99.72 

12 470 12 472 99.47 

13 434 13 437 99.17 

14 403 14 407 98.88 

Barthol2 

5 847 5 847 99.98 

29 146 29 162 90.12 

7 605 7 606 99.81 

9 471 9 472 99.67 

11 358 11 386 99.72 

12 353 12 354 99.67 

13 326 13 329 98.99 

19 223 19 230 96.89 

16 265 16 270 98.01 

20 212 20 221 95.79 

26 163 26 173 94.13 

21 202 21 209 96.47 

22 193 22 203 94.81 

24 177 24 185 95.36 

27 157 27 179 87.61 

31 137 31 155 88.12 

35 121 35 137 88.30 

32 133 32 154 85.92 

34 125 34 137 90.90 

36 118 36 133 88.43 

40 106 40 126 84.01 

39 109 39 126 86.16 

42 101 42 128 78.76 

43 99 43 128 76.93 

50 85 50 102 83.02 

44 97 44 117 82.25 

49 87 49 92 93.92 

45 95 45 122 77.12 

48 89 48 90 98.01 

51 84 51 87 95.42 

Scholl 

4 17414 4 17416 99.98 

5 13931 5 13934 99.98 

8 8707 8 8711 99.95 

7 9951 7 9955 99.96 

9 7740 9 7751 99.85 

21 3317 21 3427 96.79 

10 6966 10 6974 99.88 

12 5805 12 5826 99.63 

14 4976 14 5020 99.11 

15 4644 15 4688 99.05 

16 4354 16 4409 98.74 

18 3870 18 3961 97.70 

20 3483 20 3586 97.12 

23 3029 23 3151 96.11 

27 2580 27 2805 91.97 

29 2402 29 2639 91.02 

31 2247 31 2491 90.20 

24 2903 24 3060 94.85 

25 2787 25 2967 93.91 

33 2111 33 2359 89.48 

36 1935 36 2245 86.19 

34 2049 34 2346 87.33 

37 1883 37 2147 87.68 

38 1834 38 2077 88.25 

40 1742 40 2066 84.29 

42 1659 42 1951 85.01 

44 1584 44 1915 82.67 

46 1515 46 1838 82.39 

48 1452 48 1806 80.35 

50 1394 50 1807 77.09 

 


