

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.31) (2018) 160-167

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Domain Ontology for Eliciting Usability Features

Chian Wen Too
1
, Sa’adah Hassan

2
, Abdul Azim Abdul Ghani

3
, Jamilah Din

4

1Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Malaysia
2Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Malaysia

*Corresponding author E-mail: cwtoo@yahoo.com

Abstract

One of the crucial factors that can influence user preferences of software is usability. It assesses the extent of which software able to
facilitate user and use the software easily and effectively. Typically, usability requirements are specified at the design stage of software
development due to its characteristic that is subjective in nature and hard to be elicited at the early stage. As a result, the lack identifica-
tion and improper treatment of usability features always caused the failure of a software product. Consequently, it increased the cost and
effort of rework. Essentially, it suggested that usability need to be specified at the requirements engineering stage to complement the

software functional requirements. This paper presents a preliminary study on current efforts to support the activities in identifying usa-
bility attributes in the software functional requirements. The potential of adopting pattern and ontology for identifying usability features
are also presented. The development of domain ontology is proposed to fill the gap of the current efforts where there is lack of usability
driven semantic knowledge model to support the usability elicitation tasks. The designed domain ontology is expected to overcome the
problems resulted from software developer that lack of sufficient knowledge or expertise in eliciting usability features at requirements
engineering level. The main contribution is to provide a guideline to aid the requirements engineer to elicit and specify usability require-
ments start from the early stage of development phases.

Keywords: Ontology; Pattern; Requirement Engineering; Usability.

1. Introduction

The design of the software application is depend largely on the
requirements gathered during requirements engineering stage.
The requirements can be categorized into two, functional and non-

functional requirements. Functional requirements basically con-
cern on the services or features that the system should provide,
whereas, non-functional requirements more focus on constraints
and desired quality attributes. Usability is one of the non-
functional requirements, where users can use a product to their
satisfaction in order to effectively and efficiently achieve specific
goals in a specific context of use (ISO 9241-11). Specifying the
functional requirements is basically more straightforward.

Whereas, usability requirements are seems more difficult to be
specified. Besides, specifying usability requirements is likely to be
beyond the knowledge of the users. Usually, usability require-
ments are produced based on developers and experts’ views as
well as referring to usability guidelines.
Human Computer Interaction (HCI) community has defined usa-
bility guidelines for non-experts in usability. For example,
Shneiderman[1] and Nielsen[2] proposed usability design guide-
lines that are widely accepted and used as tools to measure usabil-

ity. However, these guidelines are usually described in such an
abstract way that they are difficult to apply (directly) in software
development. There are various usability guidelines have been
introduced to complement the current technologies and communi-
cation devices with different platforms. For example, usability
requirements elicitation using graphical notations ([3];[4]) as well
as textually ([5];[6];[7]). However, developers need to have
knowledge to select the appropriate guideline for the software that

they want to develop.

The potential benefits of ontology approach in improving usability
elicitation have been discussed in our early work [8]. Domain
ontology is possible to overcome the mentioned problems. Besides

that, the problems of understanding resulted from a variety of
stakeholders expressed their needs in different ways can be re-
duced by using a common terminology represented in the ontolo-
gy to promote a uniform communication standards during the
usability requirement elicitation. In fact, the construction of do-
main ontology is to fill the gap in the current approaches or meth-
ods where there is lack of usability driven semantic knowledge
model to support the usability requirements elicitation tasks.

This paper is divided into the following sections: Section 2 pre-
sents the related concepts and research efforts on usability re-
quirements. Section 3 presents the development of domain ontolo-
gy, followed by its evaluation in section 4. Finally, Section 5
describes the conclusions as well as recommendations towards to
the new approach.

2. Related Work

This section highlights related efforts and studies on usability.
Critical analyses on the existing approaches are also discussed.

2.1. Functional Usability Features (FUF) and Patterns

Over the past decade, researchers have developed a variety of
heuristics, guidelines or approaches to enhance and improve usa-
bility in software system. One of the significant work from Juristo
et al. [7] was generated a set of usability elicitation patterns from
HCI literature recommendations. They have treated and integrated
those usability features with major implications for software func-

http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 161

tionality as a kind of functional requirements and named them
using the term, functional usability features (FUF). According to
the authors, recommendations provided in HCI literature to im-
prove usability of a system can be categorized into three groups of
impact depending on their effect on software development includ-
ing impact on the user interface (UI), impact on the development
process, and impact on design [9]. Impact of usability on the UI
only affected the system presentation through slightly modifica-

tions on the UI components but not on the system core. Usability
recommendations with impact on the development process are
affected through modifying the techniques, activities or artifacts
used during development. While, for impact on the design, it is
referring to incorporating certain functionalities that should be
provided to user into the software.
Usability has major implications with the functional requirements,
thus, some studies suggested that usability should be considered

together with functional requirements ([4];[7];[10];[11]). However,
it is also mentioned that by using the usability attributes or usabil-
ity goals to determine usability features is not easy and might lead
to ambiguous or incomplete requirement as there are lack of detail
descriptions in elicitation and specification [10].
Most of the HCI hueristics or guidelines are too general and need
more detail information to properly incorporate the complete
usability feature into a software system. As a result, a list of usa-

bility features grounded on solid HCI principles has been pro-
posed for identifying usability features together with system func-
tionality ([12];[13];[14]) and was termed as functional usability
features (FUF). Based on the selected FUFs, they have further
defined and specialized each usability feature provided by differ-
ent HCI authors into more detailed goals or subtypes and termed
as usability mechanisms [7]. These mechanisms are the usability
aspects to be considered in software architecture or design and
dealing them from the early stages of the development process

[15]. Each usability mechanism is defined further with elicitation
and specification guidelines respectively. Each generated usability
mechanisms is packaged and named as a Usability Elicitation
Pattern for knowledge reusable purpose.
Laura Carvajal [16] has proposed a usability oriented software
development process which focused on providing software devel-
opers with guidance for including FUF into their software applica-
tions but their contribution is mainly in the software design phase.

They suggested few artifacts for usability elicitation and analysis
in their proposed guidelines. Two of the main artifacts were Usa-
bility Elicitation Guideline (UEG) and Usability Elicitation Clus-
ter (UEC), used to help analysts in eliciting usability requirements
related to each FUF in more structured and tangible way. The
output generated from these two artifacts is a set of requirement
with usability. The UEG, presented in pattern based format is
extended and modified from the original Usability Elicitation Pat-

terns [7]. Their extended UEG is added with additional features,
like an Intent field, to provide a clearer description of the FUF; an
Interrelationship field, to explain the impact of inclusion of a
particular feature would have on other features; an Elaboration
column, elaborated the high level HCI recommendations from a
software engineering point of view and so on. From the list of
issue to be discussed with stakeholders in UEG, a UEC is used to
group the related discussion items to a single topic that must be

achieved by the system being developed in a sequence ordering
[16]. This set of topics represents the core goals and general re-
sponsibilities that need to be achieved or fulfilled by the system
being developed.

2.2. Usability Requirements Elicitation and Specifica-

tion

In the past, some efforts have been made regarding elicitation and
specification of usability by researchers in software engineering
field. The community believed that considering usability started
from early stage of software development is very crucial and

needed to avoid any rework in the later stage. Therefore, few
methods and techniques have been proposed on how to elicit,
analyze and specify usability requirements [17]. This section
presents the recent state-of-the-art approaches proposed for the
inclusion of usability requirement at the requirement engineering
process.
The idea of using a reusable knowledge based catalogue to elicit
and specify usability requirement was originally came from [4].

According to them, usability requirements should be treated as
requirement that capture usability goals and associated measures
for a system under development. They adopted i*framework [18]
and based on personal experiences to model usability as goals to
be achieved through different views of possible alternatives. The
general usability goals has been categorized into three sub-goals
or attributes used to achieve usability requirements and will be
kept refining until an implementable mechanisms that can meet

the usability goals achieved. However, the technique used was
context-specific which is applicable only to a health care domain.
Rafla et al. [19] proposed a usability-driven adaptation of the
quality attribute workshop (UQAW) to help the software develop-
er in discovering and documenting usability requirements. They
used the usability scenarios proposed by Bass and John [13] in
conjunction with Folmer’s usability property [20] to facilitate the
elicitation of usability requirements process at requirements defi-

nition stage by incorporating the workshop as part of the activity
of RE process. They mentioned that Folmer’s work did not speci-
fy in details the way to capture and organize the usability require-
ments presented. Although empirical study was conducted to
evaluate the benefits of their proposed method but all the works
need to be done manually, thus, required huge effort from the
developers. Similar to Cysneiros et al. [4], Roder [11] proposed to
use a pattern-based approach in eliciting and specifying functional
usability features. The author pointed that usability is not limited

to the system user interface only but also should be properly con-
sidered in various development activities. Roder [11] has used a
catalog of patterns to support usability features selection and an
extended use case to specify the selected usability features during
the requirement engineering activities. Even though the proposed
method is supported by a semiformal specification template, but
the use case notation did not help to form a structure to standard-
ize the requirements with consistent syntax during requirement

specification. Moreover, not all the 20 functional usability features
in their pattern catalogue were proved to give major impact on the
system functionality.
While, Ormeno et al. [10] proposed to capture usability require-
ment by organizing the information stored in different guidelines
in a tree structure. The analyst will navigate through this structure
to ask questions from end users and gather all the answers in order
to produce a set of usability requirements. Unfortunately, their

approach only focused on the Model-driven Development (MDD)
paradigm. In the same year, Rivero et al. [21] proposed and devel-
oped a set of techniques and a tool to support software engineer to
produce descriptive requirement specifications for web based
application. Nevertheless, their proposal did not mention the usa-
bility features or model to support the elicitation task. Further-
more, Hassan, S., et al., [22] proposed an analysis framework to
facilitate developers in identifying usability requirements. Howev-

er, further research need to be done for capturing usability based
on user needs.

2.3. Application of Ontology in Requirements Engineer-

ing

Ontology is firstly defined as "an explicit specification of concep-

tualization" [23]. This definition became the most quoted in the
ontology community [24]. Later on, some authors have modified
slightly Gruber's definition became “a formal explicit specification
of a shared conceptualization” [25]. The term formal is referring
to the fact that ontology should be machine-readable. The term

162 International Journal of Engineering & Technology

explicit means the type of concepts used and the constraints on
their use are explicitly defined. While, the term share is reflecting
the notion that ontology captures consensual knowledge that ac-
cepted commonly and the term conceptualization is referring to an
abstract model of some phenomenon in the world by having iden-
tified the relevant concepts of that phenomenon [26]. Besides,
another definition stated that ontology is a representational artifact
to specify the meaning or semantics about the knowledge or in-

formation in a particular domain in structured form [27]. Another
word to say, ontology can link human and computer understand-
ing by using formal and real world examples.
Information is unstructured and only understandable by human
being. For instance, there is no way to tell the computer that this
document is describing about a person unless it explicitly contains
the word person. Therefore, in order to give some kind of intelli-
gence, the computer must understand the meaning or the structure

of the document and this involves semantics. However, only the
structure is still not enough to reflect the relationship among the
entities in a given domain. The content of the document or known
as the domain model should be able to reflect the real world too. A
domain model can be achieved through conceptualization by sim-
plifying view of the world. In general, ontology can be used to
represent a shared, agreed upon conceptualization [28].

Basically, ontology consists of four main components: classes or

concepts, relations, axioms and instances [29]. Classes or concepts
represents an entity in the domain and provide a way of describing
part of the world. For instance, in a school, concepts are Teacher,
Classroom, Student, Subject and Timetable. The classes represent
taxonomies, which inherit the mechanism that can be applied. The
relations represent the association between classes. Ontology usu-
ally has a binary relation to define domain and range. For instance,
to express a Teacher hasTeach Mathematics, the binary relation is
the hasTeach, the domain is Teacher and the range is Subject.

An axiom is used to specify the constraints, properties and defini-
tions of derived concepts in ontology. A formal axiom represents
the semantic of the terms used and infers knowledge of ontology
to enable the verification of consistency. For instance, the axiom
in a school domain is that it is impossible to schedule two subjects
to be taught at the same time in the same classroom. An instance
represents the individual or elements in the ontology. They are
related to each other through property, a collection of relationship

between individual. For examples, the instance of Teacher is Peter
John, a 33 years old male with staff id:M101.

Nowadays, with the emergence of semantic web, there is a grow-
ing interest of ontology-driven approaches usage in different do-
mains. In software engineering field, study has shown that there is
an increasing amount of research devoted to utilizing ontologies
especially in requirements engineering [30]. According to the
systematic literature review conducted by them, empirical evi-

dences showing using ontologies in requirements engineering
activities is useful in reducing the ambiguity, inconsistency and
incompleteness of requirements. Commonly, the main problems
happened in requirements engineering processes are due to some
factors that contributed to the incomplete, incorrect or inconsistent
functionalities defined. For instance, different interpretations of
the same requirement by different stakeholders may cause ambi-
guity in requirements; poor requirements understanding may cause

incomplete or incorrect of requirements definition; insufficient
specifications due to absence of key requirements [28].
To reduce the problems caused by these factors, the used of ontol-
ogy in requirements engineering will seem brings benefits. Ontol-
ogy can be logically reasoned and shared within a specific domain
[31]. It is a standard form to represent the knowledge of the appli-
cation domain. Thus, it can be used in requirements engineering to
explicitly model the requirements to enable a consistent way of

requirements structuring. Application of ontology especially in the
requirements elicitation is helpful in providing some guidance to
elicitation realization [30]. Generally, ontology can minimize and
resolve the problems in ambiguity between stakeholders by pro-
moting a shared vocabulary and fostering a common understand-

ing of the domain, ensuring the correctness and consistency of the
concepts and relationships usage in the domain through validation
and support the domain knowledge reusability.

3. Design and Development of Domain Ontol-

ogy

Domain ontology is a kind of high-level models of knowledge
underlying all things and concepts of a given domain [28]. Usual-
ly, ontology is formed by concepts (C), properties (R), axioms (X)
and individuals (I) and the OWL Ontology is defined as:

O = (C, R, X, I) (1)

Where:
C = the set of concepts
R is the finite set of properties which consists of datatype Property,
Dtp and object Property, Objp. Therefore ontology properties can
be further described as:

R = (Dtp, Objp) (2)

Where:
X = a set of axioms which is expressed in an appropriate logical
language.
I = a set of instances of a concept, also called individuals.

In this work, the domain ontology contains the facts about the

domain context is developed to provide semantic guidance for
eliciting usability features. This domain ontology design and de-
velopment process consists of four steps (as illustrated in Figure
1) that are adopted from the existing ontology construction meth-
odologies by Noy and McGuinness [32], METHONTOLOGY
[33] and SABiO [34]. For illustration, the university online venue
booking system is used as the domain. The domain ontology is
resulted from the merging of usability ontology and functional
ontology. Usability ontology encoades the knowledge about the

selected usability features and their relevant elicitation guidelines
that have been proven impacting the software functionality.
Meanwhile, the functional ontology is designed to representing the
core functional activities of the domain to be applied.

Fig 1: Development of domain ontology

3.1. Identification of Purpose and Scope

The first step of the development of domain ontology is to identify

the purpose and the scope. The main purpose is to generate a
knowledge model that contains information about a functional
domain and their relevant usability features. This study focused on
the venue booking or reservation domain. While, for scoping ac-
tivity, a middle-out approach is used to enumerate a set of im-
portant terms that should be included in the ontology. This ap-
proach helps to identify the primary concept of the ontology ([33];
[32]).

3.2 Knowledge Acquisition

Knowledge acquisition activity is important to support the ontolo-
gy conceptualization. In this work, the acquisition of the usability
features related knowledge started from the consolidated biblio-

International Journal of Engineering & Technology 163

graphic materials such as HCI literature ([2];[7];[16];[20];[35]),
reference models , and international standard models like ISO
9126, ISO 9241-11, ISO 25010 (International Organization For
Standardization ISO, 2001, 2011; ISO, 1998)[36][37]. Domain
experts are also the main sources of the knowledge acquisition.
Interviews and brainstorming with the experts from the related
domain have been applied. Besides that, the resources such as
textbooks, and manuals of previously developed applications were

also referred. During the knowledge acquisition process with
domain experts, the glossaries enumerated earlier are refined
through specialization and generalization depends on the necessity
of the terms. This is to ensure that the terms used are relevant,
consistent, and complete without duplication. The outcomes from
the knowledge acquisition are presented and discussed in the con-
ceptualization phase.

3.3. Conceptualization

Conceptualization is the most important task in the whole ontolo-
gy development process. The goal of this step is to capture the
domain conceptualization and structure them in a conceptual mod-

el. All the main concepts and relationships among them should be
identified and organized in taxonomies properly. The terms used
to refer the concepts and relations in the ontology should be cho-
sen carefully. The main concepts and relations in the domain are
defined based on the outcomes from the knowledge acquisition.
The following sub-steps show how to capture and structure the
domain Ontology.

3.3.1 Define the Concept and the Hierarchy

As discussed in the purpose identification, the knowledge captured
for the proposed domain ontology is represented by two core on-
tologies: Usability Ontology and Functional Ontology. Figure 1
illustrated the elements of the Usability Ontology and Functional

Ontology. The Usability Ontology representing knowledge about
the functional usability features, their patterns, metrics, properties,
elicitation guidelines and guideline attributes. The Usability On-
tology is defined based on the OWL ontology and adopted the
syntax definition from the Description Logic Handbook [38]. The
main concepts for Usability Ontology (UO) are defined as fol-
lows:

UOC = (UPAT, EG, GA, UPROP, UM) (3)

Where:
 UPAT = Usability Pattern
EG = Elicitation Guideline
GA = Guideline Attribute
UPROP = Usability Property
UM = Usability Metric

The Action ACT, Entity ET, Time_Unit UT, Format FMT, Method
MTD, Symbol SYM, Quantity QT, Operational_Condition OPCD
is categorized as subclasses in the Guideline Attribute GA. Thus,
the concept classification is:

ACT, ET, UT, FMT, MTD, SYM, QT, OPCD GA (4)

The descriptions for each concept and sub concepts defined in
Usability Ontology are shown in Table 1 and Table 2 respectively.

Table 1: The Concept in Usability Ontology

Concepts Descriptions

Usability Pattern representing a set of functional Usability features

with major implications on software design [7], are

the usability characteristics whose effects go be-

yond the user interface, used as the source of infor-

mation for usability elicitation in the proposed

Usability Ontology. Providing high level response

to a need specify by a usability property.

Elicitation Guide-

line

adopted and extended from Usability Elicitation

Guideline ([7]; [16]). It is formed by a list of issues

to be discussed with stakeholders aimed to help

requirement engineer in eliciting all the aspects

related to a particular functional usability feature.

Therefore, each usability pattern has their related

usability elicitation guidelines to be specified in

detail.

Guideline Attrib-

ute

Formed by all the discussions items used in the

usability elicitation guidelines to provide guidance

to fill in the boilerplates attribute values based on

the given boilerplate templates.

Usability Property Representing the general heuristic and design prin-

ciples that have a direct influence on usability.

Refined from the usability metrics to create a direct

relationship to link the usability pattern to their

metrics [20].

Usability Metric Representing the measurable component of usabil-

ity, high level goals used to achieve usability ([20];

[37]).

Table 2: The Sub Concept in Usability Ontology

Sub Concepts of

Guideline_Attribute

Descriptions

Action

A behaviour that is expected to be fulfilled by the

system.

Formed by combining a verb + noun.

Entity A separate entity in the domain, different from

<Unit>, <Symbol>, <Method> or <Format >.

Formed by noun.

Quantity A numeric value denoting a value.

Time_Unit The time measurement standard used.

Symbol The representation of the <Entity>.

Method The accessing method of the <Entity>.

Format The presentation format of the <Entity>.

Operational Condi-

tion

A condition or event that occurs during system

operation.

On the other hand, the functional ontology is used to represent the
conceptual structure and core business activities of the application

domain. It defines the domain concepts, attributes and relationship
among the concepts. In this work, booking or reservation applica-
tion domain is applied to validate the applicability of the proposed
framework. According to Kaiya and Saeki [39], an ontology used
in requirement analysis need to be interpreted in the same way by
any stakeholder in a specific application domain.
Therefore, in the Functional Ontology, the concepts defined are
represented using the terms such as Booking System, any applica-

tion domain context related to booking or reservation; Actor, users
who interact with the system; Function, the functional require-
ments or business activities of the domain; Object, the entity of the
domain different from other concepts mentioned earlier, for in-
stance booking profile, user profile and etc. Similar to Usability
Ontology, the Functional Ontology is defined based on the OWL
ontology and adopted the syntax definition from the Description
Logic Handbook [38].

The main concept for Functional Ontology (FO) is defined as
follows:

FOC = BOOK (5)

Where:
BOOK = application domain context related to booking or reserva-
tion.
The Actor ATR, Function FUNC, Object OBJ are categorized as

subclasses in the Booking or Reservation domain BOOK.
Thus, the concept classification is:

ATR, FUNC, OBJ BOOK (6)

Where:
ATR = Actor

164 International Journal of Engineering & Technology

FUNC = Function
OBJ = Object
The descriptions for each Concept and sub Concepts defined in
Functional Ontology are shown in Table 3.

Table 3: The Concept and Sub Concept in Functional Ontology

Concepts/Sub

Concepts

Descriptions

Booking/ Reser-

vation Domain

The application domain context related to booking or

reservation.

Actor A person or user who interacts with the system.

Function The main functional requirements or business activi-

ties of the domain.

Object The entity in the domain, different from Domain and

Actor.

3.3.2. Define the Properties of Concepts

Once the classes of concept have been defined, the next step is to

define the property of classes. Property is used to define the rela-
tionships between the concepts and individuals by describing the
internal structure of concepts. In general, there are three types of
properties: Object Property, Data Property and Annotation Proper-
ty. In the domain ontology, the three types of properties are de-
fined but focused more on the object property definition.

a. Object Property

The purpose of defining object property is to describe the relation-
ship between two individual instances. Based on the suggestion

from Ontology Engineering, it is recommended to use the prefix:
'has' or 'is' for properties naming in order to improve ontology
readability and the completeness of property restriction. Most of
the time, the 'is' will be the inverse property of 'has'. For instance,
Usability Property Error Management isPropertyOf Usability
Pattern Undo then Usability Pattern Undo hasProperty Usability
Property Error Management. The object property defined in the
Usability Ontology and Functional Ontology are given in Table 4

and Table 5 with the descriptions provided.

Table 4: Object Properties Definition for Usability Ontology

Object Property, Objr Descriptions

hasMetric Usability Property has Usability Metric

hasInterrelationships Usability Pattern has interrelationships

with other Usability Pattern

hasGuideline Usability Pattern has Elicitation Guideline

hasAction Elicitation Guideline has Action

hasEntity Elicitation Guideline has Entity

hasQuantity Elicitation Guideline has Quantity

hasSymbol Elicitation Guideline has Symbol

hasOpCond Elicitation Guideline has Operational

Condition

hasMethod Elicitation Guideline has Method

hasFormat Elicitation Guideline has Format

hasTimeUnit Elicitation Guideline has Time Unit

hasEffectToAction Operational Condition has effect to Action

hasEffectToFormat Operational Condition has effect to Format

SubClassOf Action, Entity, Format, Method, Opera-

tional Condition, Quantity, Symbol and

Time Unit are SubclassOf Guideline At-

tribute.

Table 5: Object Properties Definition for Usability Ontology

Object Property, Objr Descriptions

perform

Actor perform Function

applyTo Function applyTo Object

b. Data Property

Data Property is used to describe the relationship between an indi-
vidual and its data value, or define restrictions on the values of
attributes. For instance in the Functional Ontology, the datatype

properties are used to describe the individual concepts and their
relationship with the literal value. Table 6 shows part of the data
properties defined for Functional Ontology.

Table 6: Data Properties for Functional Ontology

Data Property, Dtr Descriptions

hasName An actor has name

hasRegID An actor has registration identity

hasDate Booking Profile has booking date information

c. Annotation Property

In the ontology design, annotation property is used to add a human
readable label or information for the classes, instances, object

and data properties. For Usability Ontology, annotation property is
used to provide the additional descriptions for the defined Con-
cepts in Usability Pattern and Elicitation Guideline. For instance
in the concept Usability Pattern, the Intent annotation property
was used to describe the main goal, the Problem annotation prop-
erty described the problem being addressed and the Context anno-
tation property illustrated the context applicable of this concept.
On the other hand, for concept Elicitation Guideline, the

displayOrder annotation property is used to display the sequence
for each instance of Elicitation Guideline during the specification
task.

3.3.3. Define the Facets of the Properties

Facets refer to the role restrictions used to define the object prop-
erties and data properties. An object property can have a variety of
facets to describe their domains, ranges and cardinality. In the

ontology designed process, the domain and ranges are defined.
Domain is referring to the set of classes or concepts where the
property is attached to. Allowed classes for properties of type
instance are called range of properties. Therefore, domains and
ranges are used by object property to link the individuals or in-
stance of the concepts. The equations (adopted from Antoniou et
al., [40])) used to represent the domain and range of object Prop-
erty in the domain ontology is as followings:

Domain (ObjR, C) = ? x, ?y (R (? x, ? y) C (? x)) (7)

where x, y C

Range (ObjR, C) = ? x, ?y (R (? x, ? y) Cr (? y)) (8)

where x, y C

ObjR = {hasCr1}
Domain = (C)
Range = (C1)
For instance in Usability Ontology, the object property
hasProperty links the instance of concept Usability_Pattern,
UPAT to instance belongs to concept Usability_Property, UPROP.

It means that the domain of object property hasProperty is Usabil-
ity_Pattern and the range is Usability_Property. In other words,
the domain and range of an object property are referring to the
concept and their related concept.
ObjR = {hasProperty}
Domain = {UPAT}
Range = {UPROP}
Besides object property, domain and range for data property in the

ontologies are also defined. The range values of data property are
defined using the data types like string, integer, char and so on.
Table 7 shows partially of the data properties defined in Function-
al Ontology with their domain and range.

Table 7: Data Properties and related Domain Range for Functional

Ontology

Data Property, Dtr Domain Range

hasName ATR String

International Journal of Engineering & Technology 165

hasGender ATR Char

hasDate OBJ String

3.3.4. Create Individual Instances

After defining the concept, relations and axioms, individual in-
stances for concept defined in the hierarchy need to be created.
The individual instance is referring to the ABox data. According
to Noy and McGuinness [32], defining an individual instance for a
class required three steps as follows:
i. Choosing a class or concept

ii. Creating an individual instance of that class
iii. Filling in the property values
The steps are used in creating the instances for the Usability and
Functional Ontology. For instance in Usability Ontology, a con-
cept Usability_Property is chosen and identify an instance named
Guidance, a kind of usability property or requirement from HCI
literature [20]. Thus, Guidance is created as an individual associ-
ated to Usability_Property UPROP concept. Next, the object

property was filled in for the individual instance Guidance. It has
an object property has_UsaMetric and described using the syntax
below:

 has_UsaMetric Reliability_In_Use Learnability (9)

Based on the suggestion from SABIO [34], the use of a graphical
model is important and needed to represent the ontology and ease
the communication with the domain experts. In this work, UML
class diagram is used to model the defined concepts and relations
for Usability Ontology and Functional Ontology as shown in Fig-
ure 2 and 3. Figure 2 shows the Usability ontology model repre-
senting the concepts and relations about functional usability fea-
tures. On the other hand, the meta-model in Figure 3 representing

a domain according to two main components: concepts to which a
domain refers and relations between these concepts. It is applica-
ble to all applications related to booking or reservation domain
that share the common concepts represented by this model based
on high level view.

3.4. Cross Ontology Assertions

In the process of merging the ontologies, constraints are defined to
represent the relevant Usability Features that need to be incorpo-
rated into the domain and their functional requirements. The con-
cept Usability_Pattern of Usability Ontology were explicitly spec-
ified and associated with the concept Function of Functional On-
tology by using two assertions as followings:

Fig 2: Usability ontology model

Fig 3: Functional ontology meta-model (high level view)

Assertion 1: Identify the entire related Usability Ontology concept,
Usability_Pattern that should be integrated to a particular domain

by defining an object property, has_UsaPattern. For example in a
Booking Domain, the following Usability Patterns should be in-
cluded: Undo, Progress Feedback, Abort, Warning, Favourites.etc.
has_UsaPattern Undo

has_UsaPattern Progress_Feedback

 has_UsaPattern Abort
has_UsaPattern Warning
has_UsaPattern Favourites
Assertion 2: Map the above identified Usability_Pattern (from
Assertion 1) to particular domain concept using object property,

has_UsaPattern. For example in a Booking Domain, the Usabil-
ity_Pattern that need to be incorporated to the domain concept

Function (its individual instance, Request_Booking activity) are:
has_UsaPattern Undo

has_UsaPattern Progress_Feedback

has_UsaPattern Abort
The Usability_Pattern are reusable and applicable to other related
domain concept Function such as Cancel_Booking, Us-
er_Registration, Logout and so on. The domain and range of ob-
ject property has_UsaPattern used to merge the Usability and
Functional ontology have been defined as shown in Table 8.

166 International Journal of Engineering & Technology

Table 8: Object Properties and related Domain Range for Domain

Ontology

Object Property,

Objr
Domain Range

has_UsaPattern ?FUNC,?UPAT (P(?

FUNC, ?UPAT) C

(?FUNC))

?FUNC,?UPAT (P(?

FUNC, ?UPAT)

D (?UPAT))

4. Evaluation

The purpose of the evaluation is to ensure the correctness of an
ontology that been developed and the output artifacts meet the
specifications imposed (De Almeida Falbo, 2014; Fernández-
López et al., 1997). It is important to verify that the class, proper-
ties between classes and axioms definitions are defined consistent-
ly and classified correctly during the development. In this evalua-
tion process, Hermit Reasoner and ontology taxonomy evaluation

techniques were used. The results are discussed in the following
sections.

4.1. Verification using Hermit Reasoner

Verification was carried out using Hermit Reasoner along the
process of ontology development by using Protégé editor tool. The
verification task is performed by choosing the menu from Protégé
to launch the Hermit Reasoner engine. Whenever there is any
inconsistency in the taxonomy or axioms of the ontology, the er-
roneous result will be displayed and highlighted. The designed
ontology was always checked by executing the reasoning func-
tions and makes the necessary modifications or corrections when
required. This verification step was repeated manually when there

are any changes to the ontology to ensure the class consistency
and infer subsumptions relationships.

4.2. Ontology Taxonomy Evaluation

The Ontology taxonomy evaluation is conducted manually with
the domain experts from HCI and SE expertise. The purpose is to
find out any inconsistency, incomplete and redundancy errors
occur in the structure or taxonomy of the domain ontology. The
results of the taxonomy evaluation as presented in Table 9.

Table 9: Taxonomy Evaluation Results

Errors Sub Errors Descriptions

Inconsistency Circulatory

Errors

No Errors.

Partition Errors No Errors.

Semantic Errors Firstly, the concept Elicita-

tion_Guideline was defined as

subclass under the superclass

Usability_Pattern. After review,

the HCI domain expert suggest-

ed to define it as disjoint class

with Usability_Pattern.

Incompleteness Incomplete

Concept Classi-

fication

No Errors. All the related

knowledge sources about Func-

tional Usability Features and

domain functionality were in-

cluded into the designed ontolo-

gy.

Partition errors Firstly, the concept Action,

Entity, Method, Format and etc

were defined as disjoint classes.

After review, the domain experts

suggested to define a relation

between these classes. These

classes were later defined under

the superclass, Guide-

line_Attribute.

Redundancy Grammatical

Redundancy

No Errors.

Identical formal No Errors.

definition of

some classes,

properties and

instances (with a

different name)

5. Conclusions

General speaking, usability is very subjective and abstract in na-
ture. Based on the literature reviews, it is found that usability
should not be treated as the quality attribute that only relevant
with interface details but should also deals with the functionality
that have implications on system design. However, efforts that

deal with usability elicitation and specification at the requirements
stage are limited. Based on the feature analysis conducted on the
existing approaches, there is a need to propose a semantic knowl-
edge representation to model and reason the usability features and
their related information.

Ontology can be specially developed to represent knowledge in
the FUF and support the elicitation process. The reasoning capa-
bilities of ontology enable the assertions of usability features asso-

ciated with the domain functionality. The ontology can also be
used to encode domain knowledge to support the formulation of
competency questions regards to the usability requirements rele-
vant to the domain applied in order to facilitate the elicitation of a
complete set of usability requirements. Currently, we continue this
work by developing a semi-automated tool which applying the
proposed domain ontology to provide support for usability fea-
tures elicitation and specification activities.

Acknowledgement

We wish to acknowledge support from Universiti Putra Malaysia
and Ministry of Education Malaysia through the Fundamental
Research Grant Scheme (FRGS).

References

[1] Shneiderman B (1986), Designing the User Interface: Strategies for

Effective Human–Computer Interaction. Addison-Wesley, Reading,

MA.

[2] Nielsen J (1993), Usability Engineering. Morgan Kaufmann, 1994.

[3] Cysneiros LM & Leite JCSDP (2004), Nonfunctional requirements:

from elicitation to conceptual models. IEEE Transactions on

Software Engineering, 30(5), 328–350.

[4] Cysneiros LM, Werneck VM & Kushniruk A (2005), Reusable

knowledge for satisficing usability requirements. 13th IEEE

International Conference on Requirements Engineering (RE’05).

[5] Jokela T, Seffah A, Gulliksen J & Desmarais MC (2005), Eight

Guiding Designers to the World of Usability: Determining Usabil-

ity Requirements through Teamwork. Springer Netherlands, Vol.8,

127-145.

[6] Cronholm S & Bruno V (2008), Do you Need General Principles or

Concrete Heuristics?: A Model for Categorizing Usability Criteria.

In the 20th Australasian Conference on Computer-Human Interac-

tion: Designing for Habitus and Habitat,ACM, Cairns,Australia.

[7] Juristo N, Moreno AM & Sanchez M (2007), Guidelines for Elicit-

ing Usability Functionalities. IEEE Transactions on Software Engi-

neering, 33(11): 744-758.

[8] Too CW, Hassan S, Ghani AAA, Din J (2017), Towards Improving

Usability Requirements Elicitation and Specification Using Ontolo-

gy-Driven Approach. Advanced Science Letters, Vol.23, No.5, May

2017, pp:4077-4081(5).

[9] Juristo N (2009), Impact of usability on software requirements and

design. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) Vol.5413, pp:55–77.

[10] Ormeño YI & Panach JI (2013), Mapping study about usability

requirements elicitation. In Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics) Vol.7908 LNCS, pp:672–687.

International Journal of Engineering & Technology 167

[11] Roder H (2012), Specifying Usability Features with Patterns and

Templates. UsARE 2012, Zurich, Switzerland, pp:6-11.

[12] Bass L & John BE (2000), Achieving usability through software

architectural styles. CHI ’00 Extended Abstracts on Human Factors

in Computing Systems, pp:171.

[13] Bass L & John B (2003), Linking Usability to Software Architec-

ture Patterns through General Scenarios. The J. Systems and Soft-

ware, vol.66, no.3, pp:187-197.

[14] Juristo N, Lopez M, Moreno AM & Sánchez MI (2003), Improving

software usability through architectural patterns. International Con-

ference on Software Engineering (ICSE), pp:12-19.

[15] Ferre X, Juristo N, Windl H & Constantine L (2001), Usability Ba-

sics for Software Developers. IEEE Software, Vol.18, No.1, pp:22-

29.

[16] Laura Carvajal (2012), Usabilidad-Oriented Software Development

Process, 1(2), 272. Retrieved from

http://oa.upm.es/10599/1/LauraElena_Carvajal_Garcia.pdf

[17] Trienekens JJM & Kusters RJ (2012), A framework for characteriz-

ing usability requirement elicitation and analysis methodologies

(UREAM). IARA, pp:308–313.

[18] Yu E (1997), Towards Modelling and Reasoning Support for Early

Phase Requirements Engineering. In Proc. Of the 3rd IEEE Int.

Symp. On Requirements Engineering, pp:226-235.

[19] Rafla T, Robillard PN & Desmarais M (2007), A method to elicit

architecturally sensitive usability requirements: Its integration into

a software development process. Software Quality Journal, Vol.15,

No.2, pp:117–133.

[20] Folmer E, Van GJ & Bosch J (2003), A framework for capturing

the relationship between usability and software architecture.

Software Process Improvement and Practice, Vol.8,No.2, pp:67–87.

http://doi.org/10.1002/spip.171

[21] Rivero L, Barreto R &Conte T (2013), Characterizing Usability In-

spection Methods through the Analysis of a Systematic Mapping

Study Extension. Latin-American Center for Informatics Studies

Electronic Journal, Vol.16, No.1.

[22] Hassan S, Too CW & Kesava PR. (2013), An Analysis Framework

for Identifying Usability Requirement in Mobile Application De-

velopment. Journal of Next Generation Information Technology

(JNIT) Vol.4, No.4, June 2013.

[23] Gruber TR (1993), Toward Principles for the Design of Ontologies

Used for Knowledge Sharing. Proc. Int'l Workshop on Formal On-

tology 1992.

[24] Arpírez JC, Corcho O, Fernández-López M & Gómez-Pérez A

(2003), WebODE in a nutshell. AI Magazine, Vol.24, No.3, pp:37-

47.

[25] Borst W (1997), Construction of Engineering Ontologies. PhD the-

sis, Institute for Telematica and Information Technology, Universi-

ty of Twente, Enschede, The Netherlands.

[26] Studer R, Benjamins VR & Fensel D (1998), Knowledge Engineer-

ing Principles and Methods. Data and Knowledge Engineering, 25,

61-197.

[27] Allemang D, Hendler JA (2008), Semantic Web for the Working

Ontologist: Modeling in RDF, RDFS and OWL. Elsevier, Amster-

dam.

[28] Castaneda V, Ballejos L, Caliusco ML & Galli MR(2010), The use

of Ontologies in Requirements Engineering. Global Journal of Re-

searches in Engineering, Vol.10, No.6.

[29] Ricardo de AF, Crediné Silva de M, Ana RR (1998), A Systematic

Approach for Building Ontologies. IBERAMIA 1998: pp349-360.

[30] Dermeval D, Vilela J, Bittencourt II, Castro J, Isotani S & Brito P

(2015), Applications of ontologies in requirements engineering: A

systematic review of the literature. Requirements Engineering,

pp:1–33.

[31] Fu Gh & Cohn A (2008), Utility Ontology Development with For-

mal Concept Analysis. Conference: Formal Ontology in Infor-

mation Systems. Proceedings of the Fifth International Conference,

FOIS 2008, Saarbrücken, Germany, October 31st - November 3rd,

2008, pp:297-310.

[32] Noy NF & McGuinness DL (2001), Ontology Development 101: A

Guide to Creating Your First Ontology. Stanford Knowledge

Systems Laboratory, 25.

[33] Fernández LM., Gómez P & Juristo N (1997),

METHONTOLOGY: From Ontological Art Towards Ontological

Engineering. AAAI-97 Spring Symposium Series, SS-97-06, pp:33–

40. http://doi.org/10.1109/AXMEDIS.2007.19.

[34] De Almeida FR (2014), SABiO: Systematic approach for building

ontologies. CEUR Workshop Proceedings, 1301.

[35] Shneiderman B & Plaisant C (2010), Designing the User Inter-

face:Strategies for Effective Human-Computer Interaction. Fifth

Edition. Pearson Addison-Wesley.

[36] International Organization For Standardization ISO (2001),

ISO/IEC 9126-1. Software Process: Improvement and Practice.

http://doi.org/10.1002/(SICI)1099-1670(199603)2:1<35::AID-

SPIP29>3.0.CO;2-3

[37] International Organization For Standardization ISO (2011),

ISO/IEC 25010: 2011. Software Process: Improvement and

Practice Vol.2. Retrieved from

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.

htm?csnumber=35733

[38] Baader F, Calvanese D, McGuinness DL, Nardi D & Patel-

Schneider PF (2010), The Description Logic Handbook: Theory,

Implementation and Applications. Kybernetes, 32(9/10), 624.

https://doi.org/10.1108/k.2003.06732iae.006

[39] Kaiya H & Saeki M (2005), Ontology based requirements analysis:

lightweight semantic processing approach. In Quality Software,

2005 (QSIC 2005). Fifth International Conference on IEEE, pp:

223-230.

[40] Antoniou G, Franconi E & Harmelen FV (2005), Introduction to

Semantic Web Ontology Languages, Norbert Eisinger an

 a uszy nski (Eds.), LNCS: Reasoning Web, First International

Summer School, July 25-29, 2005, pp:1-21. Springer.

https://scholar.google.es/scholar?oi=bibs&cluster=12850902918937558637&btnI=1&hl=en
https://scholar.google.es/scholar?oi=bibs&cluster=12850902918937558637&btnI=1&hl=en
http://oa.upm.es/10599/1/LauraElena_Carvajal_Garcia.pdf
http://doi.org/10.1002/spip.171
http://doi.org/10.1109/AXMEDIS.2007.19
http://doi.org/10.1002/(SICI)1099-1670(199603)2:1%3c35::AID-SPIP29%3e3.0.CO;2-3
http://doi.org/10.1002/(SICI)1099-1670(199603)2:1%3c35::AID-SPIP29%3e3.0.CO;2-3
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35733
https://doi.org/10.1108/k.2003.06732iae.006

