

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Distribution Generation Optimal Placement with Various Power Factors and Loading Margins

Kalidas Babu Gera¹, Dr. P.V. Ramana rao²

¹ Research scholar, Electrical and Electronics Engineering, A.N.U
 ² HOD, Electrical and Electronics Engineering, A.N.U
 *Corresponding author E-mail:kalidas.gera@gmail.com

Abstract

In the new era of power system world depleting conventional resources and increasing rapid power demand leads to focus more on distribution power generation or distribution generation (DG). DG contributes to solve numerous issues like to meet out the peak load demand in distribution system, diminishing power system losses and enhance voltage levels. And one of the major issues of distribution generation is to allocate optimally to hold the most benefits. The work in this paper focuses on the optimal placement of DG by considering pre assumed various power factors along with different loading conditions and the study has been carried out by the technique colliding body optimization. This paper also presents a comparison and influence of variations in DG optimal location with pre assumed load power factors 0.85, 0.87, and 0.89 corresponding to the various loading margins of 0.7, 1.0 and 1.25 of total real power load. The above analysis effectively implemented and tabulated for standard 38 bus system in radial distribution network.

Keywords: Colliding bodies' optimization; distributed generation; load margins, radial distribution system.

1. Introduction

The primary eminence of power system is to supply unceasing and assurance electricity. This requires continuous power generation from different sources, huge power can be generating through traditional power plants are located hundreds of kilometers distance from load centers. In the present scenario due to rapid growth in electrical utilities the power from traditional generation in not adequate and moreover huge amount of power losses being happening while transmits power for long distances [1]. The other alternative to minimize the burden on traditional power plants, transmission power losses and to maintain voltage in limits a new era was raised called distribution generation (DG). Furthermore many types of DG sources were available for power generation due to their major technical benefits [2] [3] [4] and setting up of alternate energy for electricity has developed at a yearly rate of 25% [5]. Several papers are concentrated on the subject of optimal location and sizing of distributed generators to enhance voltage levels and to reduce power losses [6][7]. This work contributes best possible location of distributed generation for the given bus system by considering the variation in loading margins and pre assumed load power factors in radial distribution networks.

Objective function = (ILP + ILQ = IVD)(1)

$$ILQ = \left[\frac{\text{total reactive power loss with DG}}{\text{total reactive power loss without DG}}\right](3)$$
$$IVD = Max \left[\frac{|V_s - ||V_i|}{||v_s||}\right]$$
(4)

With Equality constraints,

i=2

$$P_{gs} + \sum_{DG=1}^{m} P_{DG} = P_{demand} + P_{loss}$$
⁽⁵⁾

Equality constraints,

$$V_{i\min} \le V_i \le V_{i\max} \tag{6}$$

3. Colliding Bodies Optimization

The major intention is to recognize the best possible position of distrib^{The} projected method enlarged by kaveh and mahdavi imuted generation and tumbling the impact of power system losses and elled by the normal occurrence of collision involving two voltage profile indices. Now, the main concern is given to renewable^{bjective} bodies [8] DGs outstanding of the low maintenance and cost.

2. Mathematical Approach

Copyright © 2018 Authors. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

3.1. Physical Laws of Collision

Law of collision between two objective bodies is supervised by converse law of momentum and energy. Assume two masses of bodies $m_1 \& m_2$ travelling in one dimensional space, the momentum of $m_1 \& m_2$ collision before & after represents in the below figure 1.

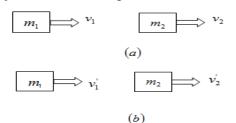


Fig.1: (a) and (b) collision before and after among two bodies.

Constancy of entire force before and after collision is alike directed by subsequent equation

$$m_1 v_1 + m_2 v_2 = m_1 v_1 + m_2 v_2 \tag{7}$$

Besides, the constancy of entire kinetic energy is directed by:

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + Q$$
(8)

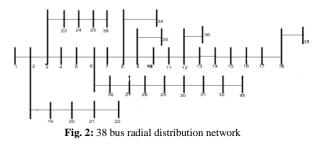
 v_1 , v_2 stand for early velocity of first and second object before contact v_1 , v_2 represent end velocities of first and second object after contact. m_1 , m_2 reflects mass of objects, and the Q represents loss of kinetic energy owed in contact [9].

Velocities subsequent to one-dimensional collision,

$$V_{1}' = \frac{(m_{1} - \varepsilon m_{2})v_{1} + (m_{2} + \varepsilon m_{2})v_{2}}{m_{1} + m_{2}}$$
(9)

$$V_{2}' = \frac{(m_{2} - \varepsilon m_{1})v_{2} + (m_{1} + \varepsilon m_{1})v_{1}}{m_{1} + m_{2}}$$
(10)

 ϵ represent restitution multiplication between the collision of two bodies, defined as ratio of variation in velocity separation to velocity access.


$$\varepsilon = \frac{\left| v_{2}^{'} - v_{1}^{'} \right|}{\left| v_{2} - v_{1} \right|} = \frac{v^{'}}{v}$$
(11)

3.2. Structure of algorithm

In the colliding bodies optimization, each resolution aspirant X_i comprise several variables $(i.e \ X_i = \{x_{i,j}\})$ marked as colliding bodies [10]. The colliding bodies optimization algorithm [11] has been taken and implemented.

4. Results

The test data of 38 bus proposed radial distribution network [12] is appearance in figure 2.

12.66 kV is the substation voltage and the total power load is 2.0MW real power and 0.970MVAR with total losses 20.2KW and 13.4847KVAR. The proposed technique for optimal location of DG having size of 1338.55 KVA is carried and implemented on 38 bus radial distribution network.

 Table 1: voltage profiles on different loading factors without DG

Load margins	0.75 (P +j Q)	1.0 (P +j Q)	1.25 (P + jQ)
V1	1	1	1
V2	0.9978	0.997	0.9962
V3	0.9874	0.9829	0.9783
V4	0.9819	0.9755	0.9688
V5	0.9765	0.9681	0.9593
V6	0.963	0.9497	0.9358
V7	0.9604	0.9462	0.9314
V8	0.9569	0.9414	0.9252
V9	0.9523	0.9351	0.9172
V10	0.948	0.9293	0.9098
V11	0.9474	0.9285	0.9087
V12	0.9463	0.927	0.9068
V13	0.9448	0.9249	0.9041
V14	0.9431	0.9227	0.9012
V15	0.9421	0.9213	0.8994
V16	0.9411	0.9199	0.8977
V17	0.9396	0.9179	0.8951
V18	0.9392	0.9173	0.8943
V19	0.9974	0.9965	0.9956
V20	0.9963	0.995	0.9936
V21	0.9957	0.9943	0.9928
V22	0.9953	0.9936	0.992
V23	0.9847	0.9794	0.9738
V24	0.9798	0.9727	0.9654
V25	0.9773	0.9694	0.9612
V26	0.9616	0.9478	0.9334
V27	0.9597	0.9452	0.9301
V28	0.9513	0.9338	0.9154
V29	0.9453	0.9256	0.9049
V30	0.9427	0.922	0.9004
V31	0.9396	0.9178	0.895
V32	0.939	0.9169	0.8939
V33	0.9388	0.9166	0.8935
V34	0.9569	0.9414	0.9252
V35	0.9523	0.9351	0.9172
V36	0.9463	0.927	0.9068
V37	0.9392	0.9173	0.8943
V38	0.9773	0.9694	0.9612

 Table 2: Losses and voltage sensitivity index on different loading factors without DG

Load margins	0.75(P +j Q)	1.0(P +j Q)	1.25 (P +j Q)
P loss in KW	107.8694	199.1061	323.8657
Q loss in KW	73.2587	135.2761	220.1387
V index	0.0436	0.0593	0.0757

Table 3: Voltage profiles on factors 0.75 & 1.0 loading of various power factors with DG

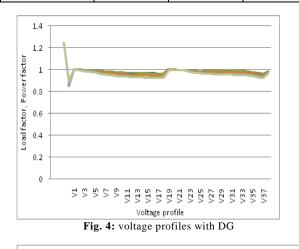
gins different power factors different power factors PF 0.85 0.87 0.89 0.988 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.981 0.981 0.981 0.981 V4 0.991 0.991 0.985 0.985 0.985 0.985 0.985 0.981 0.981 0.981 V5 0.9885 0.985 0.985 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.975 0.975 0.955 0.955 0.955 0.955 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.951 0.951 0.951 0.951 0.951 <th>ous power fa</th> <th></th> <th></th> <th>ith</th> <th>1.0</th> <th>$(\mathbf{D} \downarrow \mathbf{i} \mathbf{O})$</th> <th>with</th>	ous power fa			ith	1.0	$(\mathbf{D} \downarrow \mathbf{i} \mathbf{O})$	with	
PF 0.85 0.87 0.89 0.85 0.87 0.89 VI 1 1 1 1 1 1 V2 0.998 0.998 0.998 0.998 0.998 0.998 V3 0.993 0.991 0.991 0.991 0.991 0.985 0.985 V4 0.991 0.991 0.991 0.981 0.985 0.985 V4 0.991 0.989 0.989 0.981 0.981 0.981 7 7 7 8 9 9 V6 0.985 0.985 0.983 0.981 0.981 0.981 0.985 0.985 0.985 0.985 0.969 0.969 1 1 9 9 8 2 2 1 V7 0.983 0.981 0.965 0.965 0.965 0.965 1 0.977 0.979 0.979 0.951 0.951 0.951 <th>Load mar-</th> <th></th> <th colspan="2">0.75 (P +j Q) with</th> <th colspan="4">1.0 (P +j Q) with</th>	Load mar-		0.75 (P +j Q) with		1.0 (P +j Q) with			
PF 0.85 0.87 0.89 0.85 0.87 0.89 V1 1 1 1 1 1 1 1 V2 0.998 0.998 0.998 0.998 0.998 0.998 V3 0.993 0.993 0.993 0.993 0.989 0.989 0.989 V4 0.991 0.991 0.991 0.985 0.985 0.985 0.981 0.981 V5 0.989 0.989 0.989 0.989 0.989 0.980 0.969 V6 0.985 0.985 0.985 0.973 0.973 0.973 0.970 0.970 0.979 0.979 0.969 0.969 0.969 1 1 9 9 8 2 1 1 V9 0.975 0.975 0.975 0.953 0.953 0.953 2 2 1 1 1 1 1 1 1 <t< th=""><th>gins</th><th colspan="2">-</th><th colspan="3"></th></t<>	gins	-						
V1 1 1 1 1 1 1 1 V2 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.989 0.989 0.989 0.989 0.989 0.989 0.985 0.985 0.985 0.985 0.985 0.981	DE	0.95		0.00	0.95		0.90	
V2 0.998 0.998 0.998 0.998 0.998 0.998 0.998 V3 0.993 0.993 0.993 0.993 0.989 0.989 0.989 V4 0.991 0.991 0.991 0.991 0.991 0.985 0.985 0.985 0.985 0.985 0.981 0.961 0.962 0.962 0.962 0.962 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.951		-		1	1			
7 7 7 7 7 100 1000 V3 0.993 0.993 0.993 0.993 0.989 0.989 0.989 0.989 0.985 0.985 0.985 0.985 0.985 0.985 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.983 0.983 0.983 0.983 0.989 0.989 0.983 0.983 0.983 0.969 0.966 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.952 0.953 0.953 0.953 0.953 0.953 0.953 0.951<				-	-			
2 2 2 0 0 V4 0.991 0.991 0.985 0.985 0.985 0.985 V5 0.989 0.989 0.989 0.989 0.981 0.981 0.981 V6 0.985 0.985 0.973 0.973 0.973 0.973 6 6 5 3 3 2 V7 0.983 0.983 0.969 0.969 0.969 1 1 9 9 8 V8 0.979 0.979 0.979 0.955 0.959 2 2 1 1 1 1 V10 0.971 0.970 0.952 0.952 0.951 1 0.971 0.970 0.975 0.955 0.951 0.951 V11 0.967 0.967 0.949 0.949 0.949 V13 0.966 0.966 0.945 0.945 0.945 V14 0.965	V2				0.998	0.998	0.998	
V4 0.991 0.991 0.981 0.985 0.985 0.985 0.985 0.985 0.981 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.952 0.954 0.944 0.944 0.	V3				0.989	0.989	0.989	
V5 0.989 0.989 0.981 0.981 0.981 0.981 0.981 V6 0.985 0.985 0.985 0.973 0.973 0.973 V7 0.983 0.983 0.983 0.969 0.969 0.969 1 1 9 9 8 0.969 0.969 V7 0.983 0.979 0.979 0.975 0.969 0.969 V8 0.979 0.975 0.975 0.959 0.959 0.959 2 2 1 1 1 1 1 V10 0.971 0.970 0.970 0.952 0.952 0.952 V11 0.969 0.960 0.960 0.961 0.951 0.951 0.951 V12 0.967 0.967 0.967 0.949 0.948 2 V14 0.966 0.966 0.966 0.945 0.945 0.945 3 2 1 6	V4							
V6 0.985 0.985 0.985 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.979 0.969 0.969 0.969 0.969 0.969 0.969 0.969 0.969 0.965 0.965 0.965 0.965 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.944 0.949 9 8 2 1 </th <th>V5</th> <th>0.989</th> <th>0.989</th> <th>0.989</th> <th>0.981</th> <th>0.981</th> <th>0.981</th>	V5	0.989	0.989	0.989	0.981	0.981	0.981	
V7 0.983 0.983 0.983 0.969 9.969 8.8 V8 0.979 0.979 0.979 0.965 0.965 0.965 V9 0.975 0.975 0.975 0.959 0.959 0.959 2 2 1 1 1 9 5 4 3 V10 0.971 0.970 0.952 0.952 0.952 0.952 0.952 4 4 3 6 6 5 1 9 8 2 1 1 1 9 1 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.949 9 8 2 1 9 8 2 1 9 8 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V6	0.985	0.985	0.985	0.973	0.973	0.973	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V7							
765221V90.9750.9750.9750.9750.9590.9590.959221111V100.9710.9710.9700.9520.9520.95300.9700.9700.9700.9520.9520.952443665V120.9690.9690.9690.9510.9510.95143221-V130.9670.9670.9670.9490.94998821V140.9660.9660.9640.9440.944321654V150.9650.9650.9650.9450.945321654V160.9640.9640.9440.9440.94432165V170.9620.9620.9620.9410.9410.941443776V170.9970.9970.9970.9970.9970.99733555V200.9970.9970.9970.9950.9950.9952222666V180.9960.9960.9950.9950.9950.99520.9960.9960.9960.9950.995 <th>\$70</th> <th></th> <th></th> <th>0.070</th> <th>1</th> <th></th> <th></th>	\$70			0.070	1			
2 2 1 1 1 1 V10 0.971 0.971 0.970 0.953 0.953 0.953 V11 0.970 0.970 0.970 0.952 0.952 0.952 4 4 3 6 6 5 V12 0.969 0.969 0.969 0.951 0.951 0.951 4 3 2 1 - - - V13 0.967 0.967 0.949 0.949 0.949 9 8 8 2 1 - - V14 0.966 0.966 0.964 0.944 0.944 0.944 3 2 1 6 5 4 V15 0.962 0.962 0.942 0.944 0.944 0.944 3 3 2 3 2 1 - V17 0.962 0.962 0.941 0.941 0.941		7	6	5	2	2	1	
Image 9 5 4 3 V11 0.970 0.970 0.970 0.952 0.952 0.952 4 4 3 6 6 5 V12 0.969 0.967 0.967 0.949 0.949 0.949 4 3 2 1 1 1 V13 0.967 0.967 0.949 0.949 0.949 9 8 2 1 1 9 8 V14 0.966 0.966 0.967 0.945 0.945 0.945 3 2 1 6 5 4 4 V16 0.964 0.964 0.944 0.944 0.944 0.944 3 3 2 1 6 5 4 V17 0.962 0.962 0.941 0.941 0.941 0.941 9 8 7 3 3 5 5 <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>								
V11 0.970 0.970 0.970 0.952 0.952 0.952 0.952 V12 0.969 0.969 0.969 0.969 0.951 0.951 0.951 V13 0.967 0.967 0.967 0.967 0.949 0.949 0.949 9 8 2 1 1 1 V14 0.966 0.966 0.967 0.947 0.949 0.949 9 8 2 1 9 8 V14 0.966 0.966 0.967 0.944 0.944 0.944 3 2 1 9 8 V15 0.964 0.964 0.964 0.964 0.944 0.944 3 2 0.962 0.962 0.962 0.942 0.942 0.942 9 8 7 3 3 2 1 V17 0.962 0.962 0.962 0.941 0.941 0.941	V10	0.971	0.971					
V12 0.969 0.969 0.969 0.951 0.951 0.951 V13 0.967 0.967 0.967 0.949 0.949 0.949 9 8 2 1 - - V14 0.966 0.966 0.965 0.947 0.949 0.949 3 2 1 9 8 V15 0.965 0.965 0.945 0.945 0.945 3 2 1 6 5 4 V16 0.964 0.964 0.944 0.944 0.944 3 2 3 2 1 V16 0.962 0.962 0.942 0.942 0.942 9 8 7 3 3 2 1 V17 0.962 0.962 0.941 0.941 0.941 4 4 3 7 7 6 V19 0.998 0.997 0.997	V11			0.970	0.952	0.952	0.952	
V13 0.967 0.967 0.967 0.949 0.949 0.949 V14 0.966 0.966 0.966 0.947 0.946 0.946 3 2 1 9 8 V15 0.965 0.965 0.945 0.945 0.945 3 2 1 6 5 4 V16 0.964 0.964 0.944 0.942 0.942 3 2 3 2 1 6 5 V16 0.964 0.964 0.964 0.944 0.942 0.942 9 8 7 3 2 1 V17 0.962 0.962 0.962 0.942 0.942 0.942 9 8 7 3 3 2 0.941 0.941 0.941 4 4 3 7 7 6 9 9 9 9 V20 0.997 0.997	V12	0.969	0.969	0.969	0.951	0.951		
V14 0.966 0.966 0.966 0.947 0.946 0.946 3 2 1 9 8 V15 0.965 0.965 0.965 0.945 0.945 0.945 3 2 1 6 5 4 V16 0.964 0.964 0.964 0.944 0.944 0.944 3 3 2 3 2 1 V17 0.962 0.962 0.962 0.942 0.942 0.942 9 8 7 3 3 2 0.942 V18 0.962 0.962 0.962 0.941 0.941 0.941 4 4 3 7 7 6 V19 0.998 0.998 0.997 0.997 0.997 0.997 2 2 2 9 9 9 V21 0.996 0.996 0.996 0.9975 0.9975 0.9978	V13	0.967	0.967	0.967	0.949	0.949	0.949	
V15 0.965 0.965 0.965 0.945 0.945 0.945 3 2 1 6 5 4 V16 0.964 0.964 0.964 0.944 0.944 0.944 3 2 3 2 1 V17 0.962 0.962 0.962 0.942 0.942 0.942 9 8 7 3 3 2 V18 0.962 0.962 0.962 0.941 0.941 0.941 4 4 3 7 6 7 7 V19 0.998 0.998 0.997 0.997 0.997 0.995 0.995 0.995 2 2 2 9 9 9 9 V20 0.997 0.997 0.997 0.995 0.995 0.995 0.995 2 2 2 2 6 6 6 9 7 V21	V14	0.966	0.966	0.966		0.946		
V16 0.964 0.964 0.964 0.944 0.944 0.944 3 3 2 3 2 1 V17 0.962 0.962 0.962 0.942 0.942 0.942 9 8 7 3 3 2 V18 0.962 0.962 0.962 0.941 0.941 0.941 4 4 3 7 7 6 V19 0.998 0.998 0.997 0.997 0.997 0.997 3 3 5 5 5 5 V20 0.997 0.997 0.997 0.995 0.995 0.995 2 2 9 9 9 9 9 V21 0.996 0.996 0.996 0.995 0.995 0.995 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <th>V15</th> <th>0.965</th> <th>0.965</th> <th></th> <th>0.945</th> <th>0.945</th> <th></th>	V15	0.965	0.965		0.945	0.945		
3 3 2 3 2 1 V17 0.962 0.962 0.962 0.942 0.942 0.942 9 8 7 3 3 2 V18 0.962 0.962 0.962 0.941 0.941 0.941 4 4 3 7 7 6 V19 0.998 0.998 0.997 0.997 0.997 3 3 5 5 5 V20 0.997 0.997 0.997 0.995 0.995 2 2 9 9 9 9 V21 0.996 0.996 0.996 0.995 0.995 0.995 2 2 2 9 9 9 9 V21 0.996 0.996 0.996 0.994 0.994 0.994 2 2 2 6 6 6 6 V23 0.990 0.990 </th <td>V16</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	V16							
9 8 7 3 3 2 V18 0.962 0.962 0.962 0.941 0.941 0.941 0.941 4 4 3 7 7 6 V19 0.998 0.998 0.997 0.997 0.997 0.997 3 3 5 5 5 V20 0.997 0.997 0.997 0.995 0.995 0.995 2 2 2 9 9 9 9 V21 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.995 0.995 0.995 2 2 2 6 7 8 8 8 7 5 5 5		3	3	2	3	2	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V17							
333555V20 0.997 0.997 0.997 0.995 0.995 0.995 0.995 222999V21 0.996 0.996 0.996 0.995 0.995 0.995 77222V22 0.996 0.996 0.996 0.994 0.994 222666V23 0.990 0.990 0.990 0.985 0.985 66645V24 0.985 0.985 0.985 0.978 66788V25 0.983 0.983 0.983 0.975 0.975 22255V26 0.986 0.986 0.973 0.973 0.973 221443V27 0.987 0.987 0.987 0.973 0.973 1776V28 0.990 0.990 0.993 0.974 0.974 875864V29 0.993 0.993 0.993 0.977 0.977 97485V30 0.996 0.996 0.995 0.977 0.977 2 0.996 0.996 0.995 0.977 0.977	V18							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V19							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V20	0.997	0.997	0.997	0.995	0.995	0.995	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V21	0.996	0.996	0.996	0.995	0.995	0.995	
V23 0.990 0.990 0.990 0.990 0.985 0.985 0.985 0.985 0.985 5 V24 0.985 0.985 0.985 0.985 0.978 0.978 0.978 0.978 0.978 6 6 7 8 8 8 V25 0.983 0.983 0.983 0.975 0.975 0.975 2 2 2 5 5 5 V26 0.986 0.986 0.986 0.986 0.973 0.973 0.973 2 2 1 4 4 3 V27 0.987 0.987 0.987 0.973 0.973 0.973 1 7 7 6 V28 0.990 0.990 0.990 0.974 6 8 7 5 8 6 4 V29 0.993 0.993 0.993 0.975 0.975 0.975 <	V22	0.996	0.996	0.996	0.994	0.994	0.994	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V23	0.990	0.990	0.990	0.985	0.985	0.985	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V24							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V25							
2 2 1 4 4 3 V27 0.987 0.987 0.987 0.973 0.973 0.973 0.973 1 7 7 6 V28 0.990 0.990 0.990 0.974 0.974 0.974 8 7 5 8 6 4 V29 0.993 0.993 0.993 0.976 0.975 0.975 9 7 4 8 5 V30 0.996 0.996 0.995 0.977 0.977 0.977 2 7 5 3 1 <		2	2	2	5	5	5	
1 7 7 6 V28 0.990 0.990 0.990 0.974 0.974 0.974 8 7 5 8 6 4 V29 0.993 0.993 0.993 0.976 0.975 0.975 9 7 4 8 5 V30 0.996 0.996 0.995 0.977 0.977 2 7 5 3 2		2	2	1	4	4	3	
8 7 5 8 6 4 V29 0.993 0.993 0.993 0.976 0.975 0.975 9 7 4 8 5 V30 0.996 0.996 0.995 0.977 0.977 2 7 5 3 3		1			7	7	6	
9 7 4 8 5 V30 0.996 0.996 0.995 0.977 0.977 0.977 2 7 5 3 3		8	7	5	8	6	4	
V30 0.996 0.996 0.995 0.977 0.977 0.977 2 7 5 3 3	V29				0.976			
	V30	0.996	0.996			0.977		
	V31	0.993	0.993	0.992	0.973	0.973	0.973	

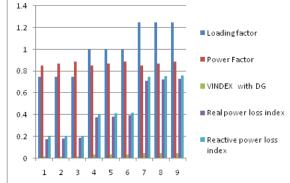
	3	1	9	6	4	1
V32	0.992	0.992	0.992	0.972	0.972	0.972
	7	5	2	7	5	2
V33	0.992	0.992	0.992	0.972	0.972	0.972
	5	3		5	3	
V34	0.979	0.979	0.979	0.965	0.965	0.965
	7	6	5	2	2	1
V35	0.975	0.975	0.975	0.959	0.959	0.959
	2	2	1	1	1	
V36	0.969	0.969	0.969	0.951	0.951	0.951
	4	3	2	2	1	
V37	0.962	0.962	0.962	0.941	0.941	0.941
	4	4	3	7	7	6
V38	0.983	0.983	0.983	0.975	0.975	0.975
	2	2	2	5	5	5

 Table 4: Voltage profiles on factor 1.25 loading of various power factors with DG

Load margins	rs with DG ns 1.25 (P +j Q) with different power factors					
Power Factor	0.85	0.87	0.89			
V1	1	1	1			
V2	0.9972	0.9972	0.9972			
V3	0.9847	0.9847	0.9847			
V4	0.9791	0.9791	0.9791			
V5	0.9737	0.9737	0.9737			
V6	0.9605	0.9605	0.9604			
V7	0.9562	0.9561	0.956			
V8	0.9502	0.9501	0.95			
V9	0.9424	0.9424	0.9422			
V10	0.9352	0.9351	0.935			
V11	0.9341	0.9341	0.934			
V12	0.9323	0.9322	0.9321			
V13	0.9297	0.9296	0.9295			
V14	0.9269	0.9268	0.9267			
V15	0.9251	0.9251	0.925			
V16	0.9234	0.9234	0.9233			
V17	0.9209	0.9209	0.9208			
V18	0.9202	0.9201	0.92			
V19	0.9966	0.9966	0.9966			
V20	0.9946	0.9946	0.9946			
V21	0.9938	0.9938	0.9938			
V22	0.993	0.993	0.993			
V23	0.9802	0.9802	0.9802			
V24	0.9718	0.9718	0.9718			
V25	0.9677	0.9677	0.9677			
V26	0.9602	0.9601	0.96			
V27	0.9598	0.9598	0.9597			
V28	0.9582	0.958	0.9578			
V29	0.9575	0.9572	0.9569			
V30	0.9581	0.9579	0.9576			
V31	0.9531	0.9529	0.9526			
V32	0.952	0.9518	0.9515			
V33	0.9517	0.9515	0.9511			
V34	0.9502	0.9501	0.95			
V35	0.9424	0.9424	0.9422			
V36	0.9323	0.9322	0.9321			
V37	0.9202	0.9201	0.92			
V38	0.9677	0.9677	0.9677			

 Table 5: Losses and voltage sensitivity index on .075 load factor with DG


Load margins	0.75 (P + j Q) with different power factors					
Power factor	0.85	0.87	0.89			
PLOSS	35.5452	36.313	37.355			
QLOSS	27.0416	27.5956	28.3356			
VINDEX	0.021	0.021	0.0211			
ILP	0.1785	0.1824	0.1876			
ILQ	0.1999	0.204	0.2095			
Location of DG	30	30	30			


Table 6: Losses and voltage sensitivity index on 1.0 load factor with DG

Load margins	1.0 $(P + j Q)$ with different power factors					
Power factor	0.85	0.87	0.89			
PLOSS	75.6364	76.7209	78.1886			
QLOSS	54.8898	55.6703	56.7105			
VINDEX	0.0348	0.0349	0.035			
ILP	0.3799	0.3853	0.3927			
ILQ	0.4058	0.4115	0.4192			
Location of DG	30	30	30			

Table 7: Losses and voltage sensitivity index on1.25 load factor with DG

Load margins	1.25 ($P + j Q$) with different power factors					
Power factor	0.85	0.87	0.89			
PLOSS	142.3226	143.7682	145.7198			
QLOSS	100.8835	101.9209	103.3012			
VINDEX	0.0496	0.0497	0.0498			
ILP	0.7148	0.7221	0.7319			
ILQ	0.7458	0.7534	0.7636			
Location of DG	30	30	30			

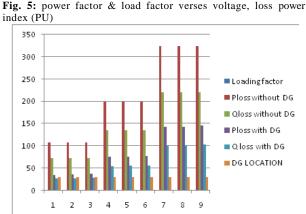


Fig. 6: Total power losses with and without DG for different load margins

Table 8: 38-bus system data								
Bus			Imped	Line Impedances in p.u		Loads on to-bus (p.u)		
From	То		R (p.u)		X (p.u)	Р		Q
1	2		0.0005	74	0.000293	0	1	0.06
2	3		0.00030		0.001564		.09	0.00
3	4		0.0030		0.001304		.12	0.04
4	5		0.0022		0.001101		.06	0.00
5	6		0.0051	15	0.004402		.06	0.06
6	7		0.0011	66	0.003853	0		0.00
7	8		0.0044		0.001464	0		0.1
8	9		0.0064		0.004608		.06	0.06
9	10		0.0065		0.004608		.06	0.06
10	11		0.0012		0.000405	0	.45	0.03
11	12		0.0023		0.000771		.06	0.035
12	13		0.0091		0.007192		.06	0.035
13	14		0.0033	72	0.004439	0	.12	0.08
14	15		0.0036	8	0.003275	0	.6	0.01
15	16		0.0046	47	0.003394	0	.06	0.02
16	17		0.0080	26	0.010716	0	.06	0.02
17	18		0.0045	58	0.003574	0	.09	0.04
2	19		0.0010	21	0.000974	0	.09	0.04
19	20		0.0093	66	0.00844	0	.09	0.04
20	21	0.0	0255	0.00	2979		0.09	0.04
21	22	0.0	004414	0.00	5836		0.09	0.04
3	23	0.0)02809	0.00	192		0.09	0.05
23	24	0.0	05592	0.00	4415		0.42	0.2
24	25	0.0)05579	0.00	4366		0.42	0.2
6	26	0.0	001264	0.00	0644		0.06	0.025
26	27	0.0	00177	0.00	0901		0.06	0.25
27	28	0.0)06594	0.00	5814		0.06	0.02
28	29		05007		4362		0.12	0.07
29	30		00316	0.00			0.2	0.6
30	31)06067		0.005996		0.15	0.07
31	32		01933	0.002253			0.21	0.1
32	33		002123		0.003301		0.06	0.04
8	34)12453		2453		0	0
9	35)12453		2453		0	0
12	36)12453		2453		0	0
18	37		003113		3113		0	0
25	38	0.0	003113	0.00	3113		0	0

5. Conclusion:

A new effort has been made to expansively examine and compare the performance of the DG at different loading factors corresponding to various load power factors has been done by the technique colliding body optimization. This paper elaborately shows comparison and influence of variations in voltage profile and total losses in the system with pre assumed load power factors 0.85, 0.87, and 0.89 corresponding to the various load factors of 0.75, 1 and 1.25 of total real power load. The best possible location of photovoltaic distribution generation is found at bus location at 30th bus for all the conditions, hence this method placement of the DG in radial distribution networks have the strong influence on the total power system loss and enhancing desirable voltage levels on the system. The consequences of projected approach have been carried out on standard 38 bus radial distribution network.

6. References:

[1] M.R.Siddappaji, Dr.K.Thippeswamy "Reliability Indices Evaluation and Optimal Placement of Distributed Generation for Loss Reduction in Distribution System by using Fast Decoupled Method" International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS-2017), 978-1-5386-1887-5/17/ ©2017 IEEE.

- [2] N.Rugthaicharoencheep, S.Auchariyamet "Technical and Economic Impacts of Distributed Generation on Distribution system" World Academy of Science, Engineering and Technology, International Journal of Electrical and Computer Engineering, Vol: 6, No: 4, 2012
- [3] Sn Singh, Jacob Ostergaard and Naveen Jain "Distributed generation in power systems: An overiew and key issues" 24th Indian engineering congress, NIT Surathkal, Kerala, December 10-13, 2009.
- [4] Maruthi Prasanna H.A, Likith kumar. M.V, T. Ananthapadmanabha "A Novel approach for Optmila Allocation of a Distributed generator in a Radial Distribution feeder for Loss minimization and Tail End Node voltage improvement during peak load" International Transaction of Electrical and Computer Engineers System, 2014, Vol.2, No.2,67-72.
- [5] R.Subramani and S.M. Balaji "Optimization In Distributed Generation Using Renewable Energy Resources – Review" International Journal Of Research Science & Management, Subramani et al., 4(11): November, 2017.
- [6] Subhodip Saha, Vivekananda Mukherjee "Optimal placement and sizing of DGs in RDS using chaos embedded SOS algorithm", IET Gener. Transm. Distrib., 2016, Vol. 10, Iss. 14, pp. 3671–3680
- [7] Meera P.S., S. Hemamalini " Optimal Siting of Distributed Generators in a Distribution Network using Artificial Immune System" International Journal of Electrical and Computer Engineering (IJECE) Vol. 7, No. 2, April 2017, pp. 641~649 ISSN: 2088-8708, DOI: 10.11591/ijece.v7i2.pp641-649
- [8] A.Kaveh and V.R.Madhavi "Colliding bodies optimization: a novel meta heuristic method" Center for Excellence for Fundamental Studies in Structural Engineering, Revised for CAS, January 2014.
- [9] Kaveh A, Talatahari S " A novel heuristic optimization method: charged system search, Acta Mech 213:267-289.
- [10] A.Kaveh, and P.Asadi "Optimum design of grillage system using CBO and ECBO algorithms" International journal of optimization in civil engineering int.J.Optim.Civil eng.,2016;6(1):77-100.
- [11] Gera Kalidas babu, P.V.Ramana rao "Optimal Placement of distributed generation using colliding bodies optimization" International journal of engineering and technology, 7 (3.3) (2018) 168-173.
- [12] ChandrasekharYammani, SyduluMaheswarapu, Sailajakumari Matam "Enhancement of voltage profile and loss minimization in Distribution Systems using optimal placement and sizing of power system modeled DGs " J. Electrical Systems 7-4 (2011): 448-457