

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.20) (2018) 616-619

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

FPGA implementation of Leading One Detector using

Genetic Algorithm

Kishore Kumar ATA
1*

, Dr.Seshasayanan R
2

1Associate Professor, ECE Dept, KMM Institute of Technology & science, Thirupathi, Andhra Pradesh, India,

Research Scholar, Sathyabama University, Chennai, India.
2Associate Professor, Dept of ECE, Anna University, Chennai, India

*Corresponding Author Email:kishorettt@gmail.com ,se_sha_sa@yahoo.com

Abstract
Logarithmic conversion is a significant portion of numerous digital signals processing system, particularly in the fields of instruments
design. Twelve bits of fractional accuracy demands lesser memory usage and minimum arithmetic components. The logarithmic trans-
formation presented in this paper is able to support the logarithmic conversion of data with the number of bits up to sixteen. The pro-

posed work circles around Look up Table (LUT) based approach and follow a decimal linear estimation step. The implementation results
shows that the proposed architecture will operate at 43.7 MHz in FPGA fabric and at 101.9 MHz in TMSC 0.18-um technology.

Keywords: LOD, Genetic Algorithm, FPGA, LNS.

1. Introduction

A wide variety of logarithmic calculation is applied in the scien-
tific applications. Multimedia codes e.g., Gaussian Mixture Mod-
els are to be estimated or Bioinformatics codes for evolutionary
rebuilding under the Maximum Likelihood model [1, 2] demand

calculating log probability scores of evolutionary trees. Multipli-
cations via additions are normally used in logarithm to take care of
underflow problems. Compute-intensive applications which rely
on the logarithmic or skin segmentation algorithms like Phyloge-
netic likelihood function [3 – 5] or real-time image processing
applications with real-time constraints. FPGA specific implemen-
tations house any type of applications to harness features such as
improved speed, hardware prototype design or meeting real time

constraints. Phylogenetic co-processor for RAxML based on Max-
imum Likelihood (ML) model is carried out within the design and
framework of research [6,11]. Logarithmic function implementa-
tion based on FPGA is available in new generation FPGAs [7].
The function FloPoCo [8] is used to generate the above-mentioned
logarithm implementation.[17,18]

The above implementation delivers extraordinary arithmetical

precision, it might not be required always due to less clock fre-
quency. So, a remarkably quicker with slightly less precise loga-
rithm implementation is often desirable depending upon the appli-
cations. The proposed work discusses a reconfigurable architec-
ture for floating point logarithm approximation operating at higher
frequency compared with existing FPGA implementation[15].
Subsequently the logarithm is an important function and the pro-
posed unit will find a place for extensive range of applications

even beyond the scope of our research. Naturally most common
computation challenging algorithms are Digital signal processing
(DSP). It requires a large dynamic range of numbers and it should
be done in real time environment[16].
Logarithmic or floating point representation is imperative for im-

proved performance to handle large dynamic range. Mid 90’s saw
the advent of usage of FPGAs for mapping floating point arithme-
tic units [Fagin94, Louca96, Belonovic02, Underwood [04]. It is a
trade-off between the hardware complexity and the precision at-
tained with these implementations. Floating point representations
achieves dynamic range but fails as it is less precise together with
hardware complexity. Fixed point scores better against the floating
point representations in the above counts. Logarithmic number

system (LNS) is seen to achieve precision and a comparable range
but fails when it comes to hardware complexity again. The multi-
plication and division are often simplified to addition and subtrac-
tion in LNS but in few of the cases, floating point number repre-
sentations have been standard in LNS.

2. Backgrounds

2.1 Earlier Work

Study on floating point arithmetic units in FPGA catapulted with
the release of IEEE compliant floating point units [Fagin94]. IEEE
compliant realizations can be glanced in [Fagin94, Louca96, Un-
derwood04]. There are also implementations using variable word
sized due to flexibility of FPGAs. This provides the platform for
application specific optimizations [Belanovic02, Ho02, Liang03,
Liang03]. Incremental improvement in throughput and area is

achieved by optimizing the addition, subtraction, multiplication,
division and square root operations separately [Loucas96, Li97,
Wang03]. Lastly, realizations of floating point arithmetic units in
FPGA proved that in addition to introducing arithamtic operations,
several useful applications could well be carried out with FPGAs
[Walter98, Leinhart02]. Off late, research on logarithmic number
system resulted in employing the same in the place of floating
point units.

Logarithmic microprocessor has been proposed [Colmen00]. The
complexity associated with the employability of LNS has prompt-

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 617

ed researchers to write algorithms for LNS addition/subtraction
[Lewis93, Colmen00, Lee03] and conversion from floating point
to LNS [Wan99, Wan99, Abed03]. Comparison of floating point
to LNS is reported in [Colmen99, Matousek02, Detrey03]. Col-
men et al. discusses the accuracy of LNS addition with that of
floating point addition by comparing the delay in ASIC environ-
ment. Delay comparison for a 20-bit and 32-bit word size in LNS
and floating point representation remain bleak in the context of

usage of both [Matousek et al]. Limitations of LNS library has led
to the implementations of floating point units for 20 bits and lesser
bit widths.

Logarithmic numbers is a special case of floating point numbers
where the exponent has a fractional part and the mantissa is per-
manently 1 [Koren02]. The value of the number A is

A = −1s × 2E

where S represents sign bit and the fixed point number is E. The
whole number sign is represented in the sign bit. EA represents
fixed point number in 2’s complement and represent negative
numbers by less than 1.0 value. Thus, LNS number system proved
good in representing small or big numbers.

Figure 1: Logarithmic number format

There is no specific choice to represent special values such as
exceptions, and zero which is not represented in LNS, so in this
paper we decided to adopt similar manner as Detrey et al
[Detrey03] to represent NaN, +/- infinity and zero using flag bits.

2.2 Multiplication

Addition of two fixed point logarithmic numbers yielded their
product in LNS [Koren02]. Here the product of two numbers is

obtained by adding the two fixed point logarithmic numbers which
is shown in equation 1.

log2(x,y) =log2(x)+log2(y) (1)

XORing the sign bit of the multiplicand and the multiplier gives
the product sign. The flags for NANs, zero and infinities are en-
coded for exceptions as per the IEEE 754 standard. The logarith-

mic numbers are represented in 2’s complement fixed point num-
bers and the addition is exact if overflow flag is not set, otherwise
result in ±∞. The overflow flag is set due to addition of two num-
bers becoming too large compared to word width length.

The two mantissas are multiplied and exponent terms are added in
the case of floating point multiplication [Koren02]. Using the
following property the exponent terms are added which is shown
in equation 2:

2
x
 x 2

y
 = 2

x+y
(2)

The exponents are having bias component and one bias is sub-
tracted from the addition result. Integers are used in the exponents
and there is a probability that the exponent’s addition will produce
an integer. This sets the overflow flag as it is huge to keep it in
exponent field and infinity exceptions is set. The range for two
mantissas are [1,2], the resultant product will have the range be-

tween [1,4) and for the mantissas renormalization one right shift is
possible. Increment is made in the exponent for a right shift of the
mantissa and another probability of overflow detection.

2.3 Division

Using the following equation 3 division in LNS becomes subtrac-
tion based on logarithmic property [Koren02]:

log 2 (x/y) = log2 (x) – log 2 (y) (3)

Multiplication sign and the division sign, which are one and the
same, is computed by XORing the sign bits of the two operands.
Difference causes the probability of the underflow to equal zero
due to subtraction. The result of the subtraction is larger than the

word width representation the underflow occurs. Floating point
division is obtained by subtracting the exponent terms [Koren02]
and dividing divisor’s mantissas by dividend’s mantissas. The
mantissas range is [1,2], quotients range is [0.5,2] and mantissa
requires one left shift for renormalization. One left shift means the
exponent decrement and underflow detection.

2.4 Logarithmic Converters

The 16 bit logarithmic converter is proposed and it is shown in

Figure 2. The result of the logarithms of a 16 bit binary number by
this implementation is attained by one clock cycle. The logarith-
mic converter implementation using hardware has two stages. The
stage one contained 16-bit shift register and LZD. The first stage
results in 4- digit MSB of input; the second stage consists of the
error rectification logic which completes the linear approximation
of decimal logarithmic with a size of 512 ×16 coefficients ROM.

Table 1 Approximate two digit decimal conversion for Logarithmic

conversion

N N Log N Log N Log N

Decimal Binary Exact Approx Binary
 Approx

1 00001 0 0 000.0000

2 00010 1 1 001.0000

3 00011 1.5849625 1.5 001.1000

4 00100 2 2 010.0000

5 00101 2.3219280 2.25 010.0100

6 00110 2.5849625 2.5 010.1000

7 00111 2.8073549 2.75 010.1100

8 01000 3 3 011.0000

9 01001 3.1699250 3.125 011.0010

10 01010 3.3219280 3.25 011.0100

11 01011 3.4594316 3.375 011.0110

12 01100 3.5849625 3.5 011.1000

13 01101 3.7004397 3.625 011.1010

14 01110 3.8073549 3.75 011.1100

15 01111 3.9068905 3.875 011.1110

16 10000 4 4 100.0000

17 10001 4.087463 4.0625 100.0001

618 International Journal of Engineering & Technology

Figure 2: Flow chart for the 2 digit decimal

2.5 Fitness Function

The fitness function for each chromosome is derived as fallows.
The out puts are calculated for the given set of possible inputs.
Then these outputs are compared with the actual outputs and the
degree of similarity is obtained. This constitutes the fitness value
for a given individual chromosomes. In agreement with the state-
ment “survival of the fittest”, the chromosomes have better fitness
is taken to the next generation iteratively till the required fitness is
obtained. Fitness function is used to compute individual fitness in
a population and depicted as a table below for 4-bit LOD is shown

below.

Table 2 Fitness Table representation of 4-bit LOD

 Input Output Zero Flag

X3 X2 X1 X0 Y3 Y2 Y1 Y0 V

0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 1 0

0 0 1 X 0 0 1 0 0

0 1 X X 0 1 0 0 0

1 X X X 1 0 0 0 0

2.6 Population

Out off the initially randomly selected 100 chromosomes, the best
50 chromosomes are selected based on the fitness function to rep-
resent the initial population. By this way a random initial popula-
tion is used as a building block for a functional combinational
circuit in full viz a 4-bit evolved LOD.

2.7 Evolved LODS

In the logarithmic representation of numbers, the integer and the
fractional pars are determined as fallows. The leading one bit posi-
tion determines the integer part. The LOD output is used to shift
the input, their by determining the fractional part. A circuit utiliz-
ing less hardware consumes less power and operating with high
speed to detect the leading one bit position is therefore the need of

the hour. This LOD outputs a logic one given input leading one
and zero otherwise. The building block for the LOD discussed by

Oklobdzija(1992) is a multiplexor. This helps in lessening the
delay. The evolved 4-bit LOD is used to construct higher order
LODs and it was discussed by Abed & Siferd (2006). To reduce
delay we have replace 2:1 multiplexer with logic gates. In the
proposed method lower order LOD circuit is evolved using the 2-

input logic gates derived from basic logic gates. In figure3, the
best know evolved 4-bit LOD is shown.

Figure:3: Evolved four bit LOD

In the proposed method, the lower order LOD circuit is evolved
using the 2-input logic gates derived from the basic logic gates.
Higher order LODs are considered with evolved 4 bit LOD as
illustrated by Abed &Siferd (2006). In figure3, the best know
evolved 4-bit LOD is shown.

2.8 Mutation in 4-bit LOD

Figure 4: An example of point-mutation operator in LOD

In figure 4 the first output O0 is connected to the node 0 which
corresponds to the input terminal I0.The second output O1 is con-
nected to node 5. Node 5 is the output of bubbled AND gate (0)
whose input finds node 0 and node 1.The third output O2 is con-
nected to node 11. Node 11 is the output bubbled and gate (0)
whose input is connected to node 6 and node 2. Node 2 is the in-
put I2 and Node 6 is the output of an OR gate (1) whose inputs are

node 0 and 1 which corresponds to I0 and I1 respectively. Similar-
ly the fourth output O3 has three node 6,7 and 12 which are the
output of three logic gates as shown in the figure. Output node in a
chromosome changes the overall functionality of the circuit.

2.9 8-bit LOD

Two 4-bit LOD’s along with eight 2-input AND gates are used to
construct an 8-bit LOD. The enable signal to the AND gates in the
output stage is provided by the most significant 4-bit LOD zero
flag. Hence the output stage multiplexer is replaced by a set of
eight 2-input AND gates. Their by reducing the overall latency of
the 8-bit LOD.

Figure 5: 8-bit LOD constructed using the evolved 4-bit LOD

International Journal of Engineering & Technology 619

3. Comparison of Synthesis Results of Lod

The different parameters of the LOD circuit built using 4-bit
and 8-bit LOD are cell area and power Delay Product. The
tools used for the synthesis and analysis of cell area , delay and
power consumed by the LOD architectures is by Candence®
RTLCompiler® with TSMC 180nm library.

The LOD architecture of different sizes are shown in the below
table 5. Evolved architecture depict bettered improvement in

power, delay product along with area.

Table 5: Comparison Delay and power of various LOD circuits

Size of

the

circuit

Power (nW)

 Oklobdzija

(1992)

Abed et

al (2006)

Yemiscioglu

et al

Proposed

method

(LOD)

16-bit 2363.02 2154.33 2067.06 1706.15

32-bit 4255.32 3786.71 3589.62 2795.28

64-bit 7956.52 7567.19 7168.74 5468.40

Size of

the

circuit

Delay (ps)

 Oklobdzija

(1992)

Abed et

al

(2006)

Yemiscioglu et

al

Proposed

method

(LOD)

16-bit 821 854 843 831

32-bit 956 1021 994 978

64-bit 1254 1467 1402 1303

3.1 Synthesis Results of Logarithmic Converter

Device utilization summary:

Selected Device : 2s15cs144-6

Number of Slices: 71 out of 192 36%

Number of Slice Flip Flops: 12 out of 384 3%

Number of 4 input LUTs: 126 out of 384 32%

Number of bonded IOBs: 49 out of 90 54%

Timing Summary:

Speed Grade: -6

Minimum period: No path found
Minimum input arrival time before clock: 25.056ns

Maximum output required time after clock: 10.695ns
Maximum combinational path delay: 22.931ns

4. Conclusion

Various sizes of LOD are designed using automatic and evolu-
tionary hybrid approaches are discussed. The design of higher
order LODs from the evolved lower order LODs are highlighted.
The performance benefits in terms of cell area and power are seen

in gate level evolution of LOD circuits and shows a maximum
improvement of 48.8% in the power-delay product and an im-
provement of 45.3% in the cell area. Cadence® RTL Compiler®
with TSMC 180nm library is used in the synthesis and perfor-
mance comparison of the synthesized results. The convergence of
evolutionary algorithms takes more time as the complexity of the
circuit increases and the evolutionary algorithm may settle for a

local maxima or local minima. The proposed shuffling mechanism
introduced in this GA addresses this problem and makes sure that
the solution converges to a global minimum. The GA can be im-
plemented in a reconfigurable system where the required circuits
are evolved in the runtime and also fulfilling the user demands. A
comprehensive analysis on the convergence of the proposed GA
and its hardware implementation are needed to make it suitable for
implementing this GA in a real-time system.

References

[1] R. E. Siferd and K. H. Abed , "CMOS VLSI implementation of a

low-power logarithmic converter," in IEEE Transactions on Com-

puters, vol. 52, no. 11, pp. 1421-1433, Nov. 2003

[2] Dongdong Chen, Younhee Choi, Li Chen, D. Teng, Khan Wahid

and Seok-Bum Ko, "A novel decimal-to-decimal logarithmic con-

verter," 2008 IEEE International Symposium on Circuits and Sys-

tems, Seattle, WA, 2008, pp. 688-691.

[3] M. Combet, H. L. Verbeek and Van Zonneveld, "Computation of

the Base Two Logarithm of Binary Numbers," in IEEE Transac-

tions on Electronic Computers, vol. EC-14, no. 6, pp. 863-867,

Dec. 1965

[4] M. F. Cowlishaw, "Decimal floating-point: algorism for comput-

ers," Proceedings 2003 16th IEEE Symposium on Computer Arith-

metic, 2003, pp. 104-111

[5] J.-P. Deschamps, G.J.A. Bioul, G.D. Sutter, Synthesis of Arithmetic

Circuits: FPGA, ASIC and Embedded Systems (Wiley, Hoboken,

2006)

[6] M. A. Erle and M. J. Schulte, "Decimal multiplication via carry-

save addition," Proceedings IEEE International Conference on Ap-

plication-Specific Systems, Architectures, and Processors. ASAP

2003, 2003, pp. 348-358.

[7] E. L. Hall, D. D. Lynch and S. J. Dwyer, "Generation of Products

and Quotients Using Approximate Binary Logarithms for Digital

Filtering Applications," in IEEE Transactions on Computers, vol.

C-19, no. 2, pp. 97-105, Feb. 1970.

[8] IEEE, Inc., IEEE 754-2008 Standard for Floating-point Arithmetic

(2008)

[9] T. Lang and A. Nannarelli, "A Radix-10 Combinational Multipli-

er," 2006 Fortieth Asilomar Conference on Signals, Systems and

Computers, Pacific Grove, CA, 2006, pp. 313-317.

[10] J. N. Mitchell, "Computer Multiplication and Division Using Bina-

ry Logarithms," in IRE Transactions on Electronic Computers, vol.

EC-11, no. 4, pp. 512-517, Aug. 1962.

[11] Nagarajan, G., and R. I. Minu. "Multimodal fuzzy ontology crea-

tion and knowledge information retrieval." Proceedings of the In-

ternational Conference on Soft Computing Systems. Springer, New

Delhi, 2016.

[12] J.M. Muller, Elementary Functions, Algorithms and Implementa-

tion (Birkhauser, Boston, 2005)

[13] S. L. SanGregory, C. Brothers, D. Gallagher and R. Siferd, "A fast,

low-power logarithm approximation with CMOS VLSI implemen-

tation," 42nd Midwest Symposium on Circuits and Systems (Cat.

No.99CH36356), Las Cruces, NM, 1999, pp. 388-391 vol. 1.

[14] T. Sasao, S. Nagayama and J. T. Butler, "Numerical Function Gen-

erators Using LUT Cascades," in IEEE Transactions on Computers,

vol. 56, no. 6, pp. 826-838, June 2007.

[15] MuhammedShafi. P,Selvakumar.S*, Mohamed Shakeel.P, “An Ef-

ficient Optimal Fuzzy C Means (OFCM) Algorithm with Particle

Swarm Optimization (PSO) To Analyze and Predict Crime Data”,

Journal of Advanced Research in Dynamic and Control Systems,

Issue: 06,2018, Pages: 699-707

[16] Selvakumar, S & Inbarani, Hannah & Mohamed Shakeel, P. (2016).

A hybrid personalized tag recommendations for social E-Learning

system. 9. 1187-1199.

[17] Nagarajan, G., et al. "Hybrid Genetic algorithm for medical image

feature extraction and selection." Procedia Computer Science 85

(2016): 455-462.

[18] Elangomenan, P., and G. Nagarajan. "Fuzzy-Based Multiloop Inter-

leaved PFC Converter with High-Voltage Conversion Sys-

tem." Proceedings of the International Conference on Soft Compu-

ting Systems. Springer, New Delhi, 2016.

