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Abstract 
 

This paper is dedicated to the analysis of two (s, S) inventory systems. In this paper we study three different products inventory systems 
when productions of three different products are done alternately. The products are produced by a two-unit system with exponential fail-
ure and repair times. The sales time starts when k sets of the three different products are produced or when the two unit system fails. The 
double Laplace transform of the probability density function of the time to start sales and sales time and their means are obtained. Nu-
merical examples are presented with MATLAB ODE Tool. 
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1. Introduction 

Inventory management deals with physical goods or other prod-
ucts or materials used by a firm for the purpose of production and 

sale. Many of the usual models for production of products for 
sales do not consider failure and 1 repair times of machines in-
volved. In this model, two-unit system produces two products for 
sale. The three products are produced one by one. The sale time 
starts when k sets of products are produced or when the two-unit 
system fails whichever occurs first. Assuming the production and 
sale time of products have general distribution and the failure and 
repair rates of the two unit are constants the joint distribution 

function of time to start sales and sales time has been derived. 
Gaver [1] has studied correlated models assuming two types of 
shocks that can occur to a device causing major and minor damag-
es. Parvathi [2] have derived general analysis of two product in-
ventory model with production by two unit system and sales. Ra-
manarayanan [3] has discussed general analysis of 1-out of-2: F 
system exposed to cumulative damage process. Thangaraj and 
Ramanarayanan [6] have studied such models with general lead 

time and general inter-arrival time of demand with two fixed or-
dering levels of the inventory. Taylor[5] has discussed optimal 
replacement under additive damage and other failure methods. 
Usha and Ramanarayanan [7] have derived general analysis of 
system in which a two-unit system is a sub system. 

2. Model Description 

2.1 Assumptions 

The company three different products A, B and c and at a time 
only one type is produced. The production time of product A is 

random variable with cdf GX(. )  the product B has cdf  GY(. ) and 

that of product C has cdf GZ(. ). Products A, B and C are produced 

is successive manner. The production time X+Y+Z of a triplet has 
cdf G (.). 

3. The products are produced by a two-unit system which fails 
when the two-units are down and it works when at least one unit is 

good. Let the probability that either of two-unit fails during (t, t+

t) given that the two-unit are operating at time t, be λ1∆t + o( t) 

and the probability that one fixed unit fails during  (t, t+ t) 

Sale time starts when k numbers of triplet of products are pro-
duced or when the two-unit system fails. 

The products are sold in triplet and the selling time of a triplet is 
random variable with cdf S(.) and the selling time of product A is 

SA(. ). 

2.2 Analysis 

The probability of n number of triplet produced in (0,t) is consid-
ered 

= Gn(t) - Gn+1(t) where Gn(t) is the cdf of  ∑ (Xi + Yi + Zi)
n 
i=1  

When the nth triplet is produced at time x< t during t-x there are 
two possibilities. After the nth triplet production, 

The production for product A is over but for B is not over 

Their respective probabilities are given below. The probability of 
n number of triplet and one production of A is over before t 

http://creativecommons.org/licenses/by/3.0/
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 =  ∫ gn
t

0
(x) ∫ gX

t−x

0
(u)G̅Y(t − x − u)dudx.                       (1) 

To find the distribution function of the time to failure of the two-
unit system, the function P0,0(u) = P, at time u the two-unit sys-

tem is working is considered. The system does not fail during 
(0,u) \  at time 0 the two-unit of the system are working . 
 P0,1(u) = P ( at time u one unit is under repair, system does not 

fail during (0,u) \ (at time 0 the units are working).  P0,2(u) be the 

pdf of time to failure of the two-unit system,  P0,2(u) = P (the 

two-unit system fails during (u, u+du), it does not fail during (0,u) 
\ the two-unit are working at time 0). 

The P….. (.) Functions are calculated.  P0,0(x) Satisfies the fol-

lowing 

 P0,0(x) =  e−α1x  + ∫ α1e−α1u P1,0(x − u)
x

0

du 

Where  P1,0(x)= P (at time x the two-unit are working \ at time 0 

one unit is in failed state) 

 P1,0(x) =  ∫ βe−βue−α2ue−α1(x−u)
x

0

du

+ ∫ ∫ βe−βve−α2ue−α1(v−u)
v

0

du
x

0

 

 P1,0(x − v)dv. 

The first term is the probability that the failed unit is repaired at u 
and no unit of the system fails during (0,x) and the second term is 
the probability that the failed unit is repaired at u and other unit 
does not fail during (0,u)  , a unit fails at v> u and at x all the two-
unit are working. 

Laplace transforms of the above equations give 

P∗
0,0(S) = (α2 + β + s)[s2 + s(α1 + α2 + β) + α1α2]           (2) 

Where * indicates Laplace transform. 

Using a similar argument 

 P0,1(x) =

 ∫ λe−λue−μ(x−u)e−λ2(x−u)x

0
du +

 ∫ ∫ λ1e−λ1ue−μ(v−u)e−λ2(v−u)v

0
du

x

0
  P0,1(x − v)dv. 

Taking Laplace transform 

   P∗
0,1(S) = λ1[s2 + s(λ1 + λ2 + μ) + λ1λ2]                            (3) 

The failure density  P0,2(x) satisfies 

 P0,2(x) =  ∫ λ1e−λ1uP1,2(x − u)du
x

0

 

Where P1,2(x)dx = P  (the two-unit system fails during ( x, x +
dx)\ at time 0 one unit of the system is under repair) 

P1,2(x) =  λ2e−λ2xe−μx + ∫ e−λ2u μe−μu P0,2(x − u)du
x

0
 

By Laplace transformation. 

P∗
0,2(s) = λ1λ2\[s2 + s(λ1 + λ2 +  μ) + λ1λ2]                           (4) 

Equation can be inverted easily 

P0,0(t) = (
1

2
)e−at[ebt + e−bt] + (

1

4b
)(λ2 − λ1

+  μ) e−at[ebt + e−bt] 

 

P0,1(t) = (
λ1

2b
) e−at[ebt + e−bt] 

P0,2(t) = (
λ1λ2

2b
) e−at[ebt + e−bt] 

Here p= (α1 + α2 +  β)/2   and 

 q= (
1

2
)√(α1 − α2)2 + (β2) + 2β(α1 + α2) 

P0,0(t) + P0,1(t) =Survival function of two-unit system 

                     = e−(p−q)t [
1

2
+

α2

4q
− 

α1

4q
+

β

4q
] + e−(p+q)t [

1

2
−

α2

4q
+

 
α1

4q
−

β

4q
] 

                     = r1e−(p−q)t + r2  e−(p+q)t 

P0,2(t) = pdf of two – unit system 

            = (
α1α2

2q
)[ e−(p−q)t − e−(p+q)t] 

            = r3[ e−(p−q)t − e−(p+q)t] 

Where r1 =  [
1

2
+

α2

4q
− 

α1

4q
+

β

4q
] , r2 = [

1

2
−

α2

4q
+ 

α1

4q
−

β

4q
], r3 =

 (
α1α2

2q
) 

The probability density function of T is 

fT(t) =  gk(t) r1e−(p−q)t + r2  e−(p+q)t + r3( e−(p−q)t −
e−(p+q)t) 

+ ∑ ∫ gi(x) ∫ gX(u)GY
̅̅̅̅

t−x

0

t

0

k−1

i=0

(t − x − u)dudx 

+ ∑ ∫ gi(x) ∫ ∫ gX(u)gY(v − u)Gz
̅̅ ̅

v

0

t−x

0

t

0

k−1

i=0

(t

− x − v)dudvdx} 

                                                                                                   (5) 

The first term of the right side of () is the part of the pdf that the 
time to produce k number of triplet is t and the two unit system 
has not failed upto time t. One part of the second term is the part 
of the pdf that the two unit system fails at time t, the time to pro-
duce I number of A and B triplet is x, the (i+1)th A product is pro-

duced at time x+u and the production of the (i+1)th B product is 
not over during (0,t-x-u) for o≤ i ≤ k − 1. The other part of the 

second term is part of the pdf that the two unit system fails at time 
t, the time to produce i number of A and B triplets is x and  the 
(i+1)th production of product A is not over during (0,t-x), o≤ i ≤
k − 1. 

This gives the joint pdf of time to start sales T and total sales time 
of triplest S as follows considering the sales time of the triplets. 

fT,S(x, y) = gk(x)(r1e−(p−q)x + r2  e−(p+q)x) sk(y) 

+r3( e−(p−q)x − e−(p+q)x) {∑ ∫ gi

t

0

k−1

i=0

(u)GX
̅̅̅̅ (x − u)si(y)du 

+ ∑ ∫ gi(u) ∫ gX(v)GY
̅̅̅̅

x−u

0

x

0

k−1

i=0

(x − u − v)dvdu ∫ si(p)sA

y

0

(y

− p)dp

+ ∑ ∫ gi(u) ∫ gX(v)gy(w − v)Gz
̅̅ ̅

x−u

0

x

0

k−1

i=0

(x

− u − w)dwdudv 

                                  × ∫ si(p
y

0
)sA(y − p)sB(y − q)dpdq}        (6)                       

The double Laplace transform of the pdf is given by 
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fT,S

∗(ϵ, η)=∫ ∫ e−εxe−ηyfT,S(x, y)dxdy
∞

0

∞

0
 

= ∫ ∫ e−εxe−ηygk(x)(r1e−(p−q)x + r2  e−(p+q)x)sk(y)dxdy
∞

0

∞

0
 

+ ∫ ∫ e−εxe−ηyr3( e−(p−q)x − e−(p+q)x) ∑ ∫ gi
t

0
k−1
i=0 (u)GX

̅̅̅̅  (x −
∞

0

∞

0

u)si(y)dudxdy 

+ ∫ ∫ e−εxe−ηyr3( e−(p−q)x −
∞

0

∞

0

e−(p+q)x) ∑ ∫ gi(u) ∫ gX(v)GY
̅̅̅̅x−u

0

x

0
k−1
i=0 (x − u −

v)dvdu ∫ si(p)sA
y

0
(y − p)dp dxdy 

+ 

∫ ∫
e−εxe−ηy ∑ ∫ gi(u) ∫ gX(v)gy(w − v)Gz

̅̅ ̅x−u

0

x

0
k−1
i=0  (x − u − w)dwdudv 

 × ∫ si(p
y

0
)sA(y − p)sB(y − q)dpdq dxdy

∞

0

∞

0
 

fT,S
∗(ϵ, η) =  r1g∗k

(ε + p − q)s∗k
(η)+ r2g∗k

(ε + p + q)s∗k
(η) 

                  + r3 ∑ g∗i
(ε + p − q)  G̅∗

X(ε + p − q) s∗k
(η)k−1

i=0  

r3 ∑ g∗i
(ε + p + q)  G̅∗

X(ε + p + q) s∗k
(η)k−1

i=0  

+r3 ∑ g∗i
(ε + p − q)k−1

i=0  g∗
x

(ε + p − q)GY
∗̅̅ ̅̅̅(ε + p −

q)s∗i
(η)sA

∗(η) 

r3 ∑ g∗i
(ε + p + q)k−1

i=0  

g∗
x

(ε + p + q)GY
∗̅̅ ̅̅̅(ε + p + q)s∗i

(η)sA
∗(η) 

+r3 ∑ g∗i
(ε + p − q)k−1

i=0  g∗
x

(ε + p − q) g∗
Y

(ε + p − q)G∗̅̅ ̅
Z(ε +

p − q)s∗i
(η)sA

∗(η)sB
∗(η) 

−r3 ∑ g∗i
(ε + p + q)k−1

i=0  g∗
x

(ε + p + q) g∗
Y

(ε + p + q)G∗̅̅ ̅
Z(ε +

p + q)s∗i
(η)sA

∗(η)sB
∗(η) 

This gives on simplification 

fT,S
∗(ϵ, η) =  r1g∗k

(ε + p − q)s∗k
(η)+ r2g∗k

(ε + p + q)s∗k
(η) 

+r3 [
1−(g∗(ε+p−q)s∗(η))

k

1−g∗(ε+p−q)s∗(η)
] 

[G̅∗
X(ε + p − q) +  g∗

x
(ε + p − q)GY

∗̅̅ ̅̅̅(ε + p − q)sA
∗(η) +

 g∗
x

(ε + p − q) g∗
Y

(ε + p − q)G∗̅̅ ̅
Z(ε + p − q) sA

∗(η)sB
∗(η)]  

−r3 [
1−(g∗(ε+p+q)s∗(η))

k

1−g∗(ε+p+q)s∗(η)
] 

[G̅∗
X(ε + p + q) +  g∗

x
(ε + p + q)GY

∗̅̅ ̅̅̅(ε + p + q)sA
∗(η) +

 g∗
x

(ε + p + q) g∗
Y

(ε + p + q)G∗̅̅ ̅
Z(ε + p + q) sA

∗(η)sB
∗(η)] (7) 

 

The Laplace transform of T is  

f ∗(ε, 0)= r1g∗k
(ε + p − q) + r2g∗k

(ε + p + q) + 

r3 [
1−(g∗(ε+p−q))

k

1−g∗(ε+p−q)
] 

[G̅∗
X(ε + p − q) +  g∗

x
(ε + p − q)GY

∗̅̅ ̅̅̅(ε + p − q) +

 g∗
x

(ε + p − q) g∗
Y

(ε + p − q)G∗̅̅ ̅
Z(ε + p − q)   −r3 

[
1−(g∗(ε+p+q))

k

1−g∗(ε+p+q)
] 

[G̅∗
X(ε + p + q) +  g∗

x
(ε + p + q)GY

∗̅̅ ̅̅̅(ε + p + q) +

 g∗
x

(ε + p + q) g∗
Y

(ε + p + q)G∗̅̅ ̅
Z(ε + p + q)  

On differentiation of equation  
∂

∂ε
f ∗(0, 0) =  −E(T)  

E (T) = -r1 g∗k−1(p − q)g∗′
(p − q)-r2g∗k−1(p + q)g∗′

(p + q) + 

r3    

[
k g∗k−1(p − q)g∗′

(p − q)

1 − g∗(p − q)
] 

[G̅∗
X(p − q) +  g∗

x
(p − q)GY

∗̅̅ ̅̅̅(p − q) + g∗
x
(p − q) g∗

Y
(p −

q)G∗̅̅ ̅
Z(p − q)  

-r3 [
1−(g∗(p−q))

k

(1−g∗(p−q))
2] g∗′

(p − q)[G̅∗
X(p − q) +  g∗

x
(p − q)GY

∗̅̅ ̅̅̅(p −

q) 

+ g∗
x

(p − q) g∗
Y

(p − q)G∗̅̅ ̅
Z(p − q)   

–r3 [
1−(g∗(p−q))k)

1−g∗(p−q)
] 

[{G̅∗′

X(p − q) + g∗′
(p − q)G̅∗

Y(p − q) + g∗
X

(p − q)G̅∗′

Y(p −

q)g∗
Y

(p − q)G̅∗
Z(p − q) +    g∗

X
(p − q)G̅∗′

Y(p − q)G̅∗
Z(p −

q) + g∗
X

(p − q)g∗
Y

(p − q)G̅∗′

Z(p − q)} 

 - r3 [
k g∗k−1(p+q)g∗′

(p+q)

1−g∗(p+q)
] 

[G̅∗
X(p + q) +  g∗

x
(p + q)GY

∗̅̅ ̅̅̅(p + q) + g∗
x
(p + q) g∗

Y
(p +

q)G∗̅̅ ̅
Z(p + q)  

+r3 [
1−(g∗(p+q))

k

(1−g∗(p+q))
2] g∗′

(p + q)[G̅∗
X(p + q) +  g∗

x
(p + q)GY

∗̅̅ ̅̅̅(p +

q) +  g∗
x

(p + q) g∗
Y

(p + q)G∗̅̅ ̅
Z(p + q)   

+r3 [
1−(g∗(p+q))k)

1−g∗(p+q)
][{G̅∗′

X(p + q) + g∗′
(p + q)G̅∗

Y(p + q) +

g∗
X

(p + q)G̅∗′

Y(p + q)g∗
Y

(p + q)G̅∗
Z(p + q) +    g∗

X
(p +

q)G̅∗′

Y(p + q)G̅∗
Z(p + q) + g∗

X
(p + q)g∗

Y
(p + q)G̅∗′

Z(p + q)}]                                                                                                

                                                                                                  (8) 

Similarly  
∂

∂η
f ∗(0, 0) =  −E(S) 

E(S) =  r1 g∗k(p − q)kE(s1) + r2g∗k(p + q)kE(s1) - r3kE(s1)  

[
 g∗k(p−q)

1−g∗(p−q)
] 

[G̅∗
X(p − q) +  g∗

x
(p − q)GY

∗̅̅ ̅̅̅(p − q) + g∗
x
(p − q) g∗

Y
(p −

q)G∗̅̅ ̅
Z(p − q)  

+ r3 [
1−g∗k

(p−q)

(1−g∗(p−q))
2] g∗′

(p − q) [ G̅∗
X(p − q) +  g∗

x
(p − q)GY

∗̅̅ ̅̅̅(p −

q) +  g∗
x

(p − q) g∗
Y

(p − q)G∗̅̅ ̅
Z(p − q)  

+ r3[
1−g∗k(p−q)

1−g∗(p−q)
]  {g∗

X
(p − q)g∗

Y
(p − q)G̅∗

Z(p − q)(E(SA)) +

g∗
X

(p − q)g∗
Y

(p − q)G̅∗
Z(p − q)(E(SB))}  + r3kE(s1)  

[
 g∗k(p+q)

1−g∗(p+q)
] 

[ G̅∗
X(p + q) +  g∗

x
(p + q)GY

∗̅̅ ̅̅̅(p + q) + g∗
x
(p + q)  g∗

Y
(p +

q)G∗̅̅ ̅
Z(p + q)  

+ r3 [
1−g∗k

(p+q)

(1−g∗(p+q))
2] g∗′

(p + q) [ G̅∗
X(p + q) +  g∗

x
(p + q)GY

∗̅̅ ̅̅̅(p +

q) +  g∗
x

(p + q) g∗
Y

(p + q)G∗̅̅ ̅
Z(p + q)  
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+ r3[
1−g∗k(p+q)

1−g∗(p+q)
]  {g∗

X
(p + q)g∗

Y
(p + q)G̅∗

Z(p + q)(E(SA)) +

g∗
X

(p + q)g∗
Y

(p + q)G̅∗
Z(p + q)(E(SB))}                                (9) 

Considering the special case in which X and Y are exponential 

random variables with parameters  λ ,μ and  . 

g∗
X

(p − q) =  
λ

λ + p − q
; g∗′

X
(λ) =  

−λ

(λ + p − q)2
 

g∗
Y

(p − q) =  
μ

μ + p − q
; g∗′

Y
(p − q) =  

−μ

(μ + p − q)2
 

g∗
Z

(p − q) =  
ν

ν + p − q
; g∗′

Z
(p − q) =  

−ν

(ν + p − q)2
 

G̅∗
X(p − q) =  

1

λ + p − q
; G̅∗′

X(p − q) =  
−1

(λ + p − q)2
 

G̅∗
Y(p − q) =  

1

μ + p − q
; G̅∗′

Y(p − q) =  
−1

(μ + p − q)2
 

                                     G̅∗
Z(p − q) =  

1

ν+p−q
;  G̅∗′

Z(p − q) =

 
−1

(ν+p−q)2
                                                                                      (10) 

 

E (T)    =    [1-( 
λμν

(λ+p−q)(μ+p−q)(ν+p−q)
)k] (

p+q

(p−q)2q
)                                               

          + k (
λμν

(λ+p−q)(μ+p−q)(ν+p−q)

k
) 

(
3p2+p(2λ+2μ+2ν)+(λμ+μν+νλ)

(λ+p−q)(μ+p−q)(ν+p−q)
)(

−α1

2q
 )    

          + [1-( 
λμν

(λ+p+q)(μ+p+q)(ν+p+q)
)k] (

p−q

(p+q)2q
)           

         + k (
λμν

(λ+p+q)(μ+p+q)(ν+p+q)

k
) 

(
3p2+p(2λ+2μ+2ν)+(λμ+μν+νλ)

(λ+p+q)(μ+p+q)(ν+p+q)
) (

α1

2q
 ) 

(11) 

And  

E(S) =   [1-( 
λμν

(λ+p−q)(μ+p−q)(ν+p−q)
)k]  

                
λμνE(S)+(p−q)[(λμ+λν+λ(p−q))E(SA)+λμE(SB)]

p−q[(p−q)2+(p−q)(λ+μ+ν)+(λμ+μν+νλ)]
 

              +k( 
λμν

(λ+p−q)(μ+p−q)(ν+p−q)
)k E(S) ( 

−α1

2q
)                                           

            + [1-( 
λμν

(λ+p+q)(μ+p+q)(ν+p+q)
)k]       

       
 λμνE(S)+(p+q)[(λμ+λν+λ(p+q))E(SA)+λμE(SB)]

p−q[(p+q)2+(p+q)(λ+μ+ν)+(λμ+μν+νλ)]
                                               

         + k( 
λμν

(λ+p+q)(μ+p+q)(ν+p+q)
)k E(S) ( 

α1

2q
)                           (12) 

3. Numerical Examples 

This To illustrate the applications of the above result different 
values for α1 , α2 , β and k are taken E (T), E(S) are the following 

table for, E(S)=5, E(SA)=10, E(SB) = 15. 

Using formula (6.3.11) and (6.3.12), taking the values 
p=6,q=4.3875, k=1 to 8, λ = 1, μ = 2, ν = 3. E(T) and E(S) are 

found and the corresponding graphs are drawn. 

3.1 Numerical tabulation for obtaining of E (T) and E(S) values 

for     

                            Different values of k 

 
Fig.1: Graphs of E (T) and E(S) for table 3.1 

3.1 Inference  

As k increases from 1 to 8, E (T) increases and E(S) increases. 

Taking p=6, q=4.3875, λ =1 to 6 and vary k=1 to 6, 

Table 1: Numerical tabulation for obtaining of E (T) values 

k p q E(T) E(S) 

1 6 4.3875 0.3062 5.289 

2 6 4.3875 0.6429 6.9672 

3 6 4.3875 0.73025 7.5421 

4 6 4.3875 0.74793 7.7256 

5 6 4.3875 0.75114 7.7819 

6 6 4.3875 0.75169 7.7987 

7 6 4.3875 0.75178 7.8036 

8 6 4.3875 0.7518 7.805 

Table 2: Numerical tabulation for obtaining of E (T) values 

 E(T) 

k λ =1 λ =2 λ =3 λ =4 λ =5 λ =6 

1 0.30609 0.21309 0.18945 0.18534 0.18764 0.22923 

2 0.64285 0.5661 0.52851 0.50921 0.49876 0.48793 

3 0.73023 0.69918 0.67807 0.66461 0.65586 0.63515 

4 0.74793 0.7382 0.72951 0.72303 0.71831 0.70372 

5 0.75114 0.74847 0.7454 0.74277 0.74068 0.73283 

6 0.75169 0.75101 0.75003 0.74906 0.74823 0.74453 

Table 3: Numerical tabulation for obtaining of E (S) values 

 E(S) 

k λ = 4 λ = 5 λ = 6 λ = 7 λ = 8 λ = 9 

1 5.289 5.9182 6.5153 7.0984 7.677 8.2557 

2 6.9672 7.7633 8.4902 9.1782 9.844 10.4972 

3 7.5421 8.4241 9.2192 9.9623 10.6736 11.365 
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4 7.7256 8.6461 9.4729 10.2426 10.9762 11.6866 

5 7.7819 8.7179 9.5582 10.3394 11.083 11.802 

6 7.7987 8.7405 9.5861 10.372 11.1198 11.8425 

 

Fig. 2: Graphs of E (T) and E(S) for table 3.2 and 3.3 

3.2 Inference 

As k increases and the parameter  is fixed, the expected values of 

E (T) and E(S) increase. 

As k increases and the parameter  increases, the expected values 

of E (T) and E(S) decrease. 

4. Conclusion 

As increases from 1 to 6, E (T) increases and E(S) increases. 

(Seen in the Table 3.1) 

As k increases and the parameter  is fixed, the expected values of 

time to sales E (T) and sales time E(S) increase. As k is fixed and 

the parameter  increases, the expected values of time to sales E 

(T) decreases and sales time E(S) increases.(Seen in Table 3.2 and 

3.3) 
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