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Abstract 
 
Background/Objectives:  The Advanced Encryption Standard is currently the most used algorithm for symmetric encryption. In this 
paper, we propose a hardware architecture of AES with an improved key generation unit. 

Methods/Statistical analysis: We employ the use of a four-stage sub-pipelined architecture for encryption and decryption of all standard 
key sizes (128, 192 and 256 bits) of the Advanced Encryption Standard (AES). The implementation features an LUT-based S-Box as 
well as on-the-fly key generation. The RTL of the architecture was designed using Verilog HDL and simulated with ModelSim. The 
verified design was then synthesized in Synopsis Design Compiler with 180nm TSMC cell libraries. 
Findings: Since the inception of AES, many implementations have been done in both software and hardware. For the purpose of 
robustness, the hardware implementation is much preferred. However, for area-constrained implementations, it is necessary for designers 
to present a very small area of the AES algorithm while keeping the AES structure and security unchanged. The proposed compact key 
generation unit contributed to the small area of 21.3K equivalent NAND2 gates. The S-Box was implemented as a ROM of size 

9.152KB. In order to match the encryption/decryption, the on-the-fly also key generation was accordingly made to output round keys 
every four cycles. With this structure, there was a high average throughput yield of 11.51Gb/s, 9.75Gb/s and 8.46Gb/s for the 128-bit, 
192-bit and 256-bit key lengths respectively, corresponding to a maximum frequency of 1GHz. 
Improvements/Applications: In the future, we will investigate more techniques to reduce the area of the S-Box and Mix Column 
structures. We will implement the design on an SoC system for verification and testing.  
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1. Introduction 

In recent times, information and the demand for it have increased 
due to technological advancements. From the start of the 
millennium up until now, there has been a steady rise in the 
demand and use of information due to improved banking, medical 
care, research, and many others. There are millions of smart 
mobile devices that facilitate in these areas of work and living. As 
part of making life easy for its users, these smart devices transmit 
sensitive information such as personal health diagnosis, daily 
routines, passwords and the like through the open internet. In fact, 

a smart home in today’s world may be seen as an evolution in 
technology, but in reality, it poses a huge security risk, since the 
smart devices in the home transmit data between themselves as 
well as over the insecure internet. In effect, the whole house can 
be controlled remotely and thus compromising sensitive 
information. There have been a lot of breaches in the security of 
government and private businesses as well as individuals 
worldwide [1]. There is therefore, the need to regularly protect 

data both in storage and transmission from falling into the hands 
of these malicious hackers. 

Two of the fields that are called into play when considering user 
data protection are cryptography and cryptanalysis. They involve 
the study of encryption, decryption, and techniques to counter 
activities by system intruders. Cryptography can further be 
classified into symmetric and asymmetric cryptography. In 
symmetric cryptographic systems, a single key is used for both 

encryption and decryption. In asymmetric cryptographic systems, 
however, a different key is used in both encryption and 
decryption. Examples of the symmetric systems include the 
Advanced Encryption Standard (AES) and the Data Encryption 

Standard (DES) while the asymmetric systems find examples in 
the Rivest-Shamir-Adleman (RSA) and Elliptic Curve 
Cryptography (ECC) [2].  

Since its inception in 2001, the AES algorithm has been very 
robust and is widely used in many systems such as smart cards, 
mobile phones, USB keys and banking systems [3]. The AES 
algorithm was designed to be implemented in both software and 
hardware. Although software-based encryption is very cost-
effective, it is not as robust as hardware-based encryption. Unlike 

software which can be easily exploited even remotely, an intruder 
will need physical access to the hardware before he can do some 
serious damage to the system [4,5,6]. It is the reason why there 
have been various researches into hardware implementations of 
AES since its standardization. Researchers’ main focus has been 
on optimization for area and throughput. Different design methods 
have been adopted in the research into these areas which are, 
iterative and unrolled architecture as well as sub-pipelined and 

fully pipelined architectures. There are two main hardware 
platforms which are considered when porting algorithms to 
hardware: Field Programmable Gate Arrays (FPGAs) and 
Application Specific Integrated Circuits (ASICs). FPGAs have 
been a choice of implementation for many as compared to ASICs 
since the former are cheaper and they can be reprogrammed 
several times with several designs. ASICs do not have this 
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advantage – a design on an ASIC is not updatable. However, 
ASICs have the advantage of design flexibility and strong tamper 
resistance which is needed in security systems as well as area 
constrained applications. Also, there exist delays in FPGA 

circuitry due to its programmability which greatly affects the 
speed of designs. In ASIC, the designer has a ‘blank sheet’ to 
design on, where he does not have any limitations by means of 
area and of speed (frequency). As a result of this, a circuit 
implemented on an FPGA is naturally slower than on ASIC [5]. 
Due to these and many other bottlenecks in FPGAs, we find it 
proper to implement our AES design in ASIC. 

The basic structure of AES consists of three modules; 

AddRoundKey, SubByte, ShiftRow and MixColumn and the key 
generation unit [7,8,9]. In the design of these modules, we can 
choose between using an on-the-fly key generation [10] or 
compute all the keys and store in memory to be retrieved when 
needed, at the end of the corresponding rounds [2]. There is also 
the option of implementing the S-Box as an LUT-based structure 
or as a composite field arithmetic combinational logic. When 
implemented this way, the critical path increases, thereby yielding 

a low frequency. In this paper, we propose a high throughput and 
small area AES with a compact on-the-fly key generation unit. 
The S-Box was implemented as a ROM unit.  

2. Overview of the AES algorithm 

The AES algorithm consists of three main parts – the Cipher, 

Inverse Cipher, and key generation unit. The Cipher module 
converts input text into gibberish by means of running four main 
sub-layers (AddRoundKey, SubByte, ShiftRow, and MixColumn) 
for a number of rounds. Inverse Cipher converts the unintelligible 
data back into the plaintext before encryption. It is made up of the 
inverse layers of the Cipher module with the exception of the 
AddRoundKey layer. Each of these layers is iterated upon for a 
number of rounds depending on the size of the 
encryption/decryption key [11,12,13]. Table 1 shows the different 

key sizes and the number of rounds required for each. The key 

generation unit takes as seed, an N-bit key (N is either 128, 192 or 
256) and creates corresponding round keys for each round.  

At the start of the encryption process, we XOR the input key with 
the input text. A state in AES is the 128-bit text that undergoes 

transformation to become the cipher. In order to have a good 
pictorial view of the AES state and operations, we represent it 
with a 4x4 matrix [10] as shown in figure 1.  From the initial 
AddRoundKey module, the state proceeds to the SubByte stage 
and then to the ShiftRow to MixColumn. Finally, it enters the 
AddRoundKey stage where it is XORed with the round key. The 
process continues until the last stage where the MixColumn layer 
is not performed. In decrypting the cipher text, we do the opposite 

of what we did in the encryption. This means that the MixColumn 
layer is not performed in the first round. The ShiftRow and 
SubByte operations are swapped while the MixColumn and 
AddRoundKey stages are also swapped. The standard architecture 
of AES Cipher and Inverse Cipher are shown in figure 2. The 
following sub-sections give a summary of each of the sub-layers. 

Table 1: AES rounds and sub-key lengths 

 Number 

of Rounds 

Sub-key 

Width 

Number of 

Sub-keys 

Total 

Number of 

Round Keys 

AES-128 10 4 x 32 11 11 

AES-192 12 6 x 32 8 13 

AES-256 14 8 x 32 7 15 

 

 
Figure 1: A state in AES. 

 

 
Figure 2: Standard AES architecture for encryption and decryption 

2.1. SubByte/InvSubByte  

The SubByte/InvSubByte layer is a non-linear transformation of 
the state. It can be implemented as an LUT-based unit, (S-Box for 
encryption, or Inv S-Box for decryption) or as a composite field 
arithmetic combinational logic unit. With the combinational logic 
unit, Galois fields (GF) are employed in computing the substitute 
of each byte in a state. The process is described in [3]. As a result 
of the composite logic structure yielding a long critical path, the S-
Box and Inv S-Box have both been implemented with LUT-based 

logic in our design. There are sixteen identical S-Box/Inv S-Box 
modules in the Cipher/Inverse Cipher data path, and four identical 

S-Box modules in the key generation unit. In ASIC 
implementation, the S-Box is synthesized as a ROM unit and as 
BRAM in FPGAs. 

2.2. ShiftRow/InvShiftRow 

This operation is a free operation as it just involved byte rotation. 
Here, the rows of the State are rotated depending on the row 
number. The shifting is illustrated in figure 3. 
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Figure 3. Structure of ShiftRow/InvShiftRow operations 

It can be seen from figure 3 that rotating two bytes to the left is the 
same as rotating two bytes to the right in row 3 of both matrices. 
Also, from figure 3, in both encryption and decryption, row 1 is 

unchanged. Although the ShiftRow operation is of no cost itself, 
the output registers occupy some area in the design. With the 
knowledge of common operations, we can implement a shared 
ShiftRow module in order to save area by using lesser registers. 

2.3. MixColumn/InvMixColumn 

Each column of the State is multiplied by a fixed matrix. This 
matrix is unique to each of the encryption and decryption 

processes. The decryption step is more computationally intensive 
than that of the encryption. The standard MixColumn and 
InvMixColumn are computed in [7,8,9]. In hardware, 
multiplication by 02 or its multiple is nothing but a left-shift 
operation. By identifying and using this, we can avoid the use of 
multipliers, and hence reduce our area and critical path. The 
multiplication is thus shifting and XOR operations as depicted by 
equation (1) and table 2.  

             𝐴𝑖 · 01 =  𝐴𝑖 

             𝑖𝑓 ( 𝑀𝑆𝐵(𝐴𝑖) =  1)     

                     𝐴𝑖 · 02 =  (𝐴𝑖 ≪  1) ^ 8 ’𝑏00011011                      (1) 

            𝑒𝑙𝑠𝑒 

                     𝐴𝑖 · 02 =  𝐴𝑖 ≪  1 
            𝐴𝑖 · 03 =  (𝐴𝑖 · 02) ^ 𝐴𝑖 

 
Table 2: Multiplication in GF (28) for the MixColumn structure 

03 ∙ 𝐴𝑖 (𝐴𝑖 ∙ 02) + 𝐴𝑖  

04 ∙ 𝐴𝑖 02 ∙ (𝐴𝑖 ∙ 02) 

08 ∙ 𝐴𝑖 02 ∙ (𝐴𝑖 ∙ 04) 

09 ∙ 𝐴𝑖 (𝐴𝑖 ∙ 08) + 𝐴𝑖  

0B ∙ 𝐴𝑖 (𝐴𝑖 ∙ 09) + (𝐴𝑖 ∙ 02) 

0D ∙ 𝐴𝑖  (𝐴𝑖 ∙ 09) + (𝐴𝑖 ∙ 04) 

0E ∙ 𝐴𝑖  (𝐴𝑖 ∙ 08) + (𝐴𝑖 ∙ 04) + (𝐴𝑖 ∙ 02) 

We implemented our MixColumn module by taking advantage of 
parallel processing in hardware. This method contributes to the 

high frequency due to the reduced critical path. 

2.4. AddRoundKey  

In this module, we add the 128-bit state to the round key. At the 
beginning of the encryption/decryption process, the state 
(plaintext/ciphertext) is first XORed with the input key. This layer 
is its own inverse since the XOR function is its own inverse. 

3. Proposed Hardware Structure 

In our proposed architecture, the AES algorithm was implemented 
as a four-stage sub-pipelined architecture. In each clock cycle, one 
layer of a round is computed. Unlike the row shifting and column 
mixing modules that were implemented as shared structures, the 
byte substitution modules were not. The full architecture is shown 

in figure 4. Choosing this style of implementation reduces the 
critical path of the S-Box. In table 3, the 4-stage pipeline structure 
is illustrated. 

Table 3: Four-stage pipeline structure for encryption and decryption 

ENCRYPTION 

 T0 T1 T2 T3 T4 T5 

PlainText1 AddRoundKey SubByte ShiftRow MixColumn AddRoundKey SubByte 

PlainText2  AddRoundKey SubByte ShiftRow MixColumn AddRoundKey 

PlainText3   AddRoundKey SubByte ShiftRow MixColumn 

PlainText4    AddRoundKey SubByte ShiftRow 

DECRYPTION 

CipherText1 AddRoundKey InvShiftRow InvSubByte AddRoundKey InvMixColumn InvShiftRow 

CipherText2  AddRoundKey InvShiftRow InvSubByte AddRoundKey InvMixColumn 

CipherText3   AddRoundKey InvShiftRow InvSubByte AddRoundKey 

CipherText4    AddRoundKey InvShiftRow InvSubByte 

 

 
Figure 4: Proposed shared architecture for encryption and decryption 
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3.1. Key Generation 

 

Figure 5: Overview of the key generation showing the word divisions 

Figure 5 shows the overview of the standard key generation unit. 
It consists basically, of the XOR, RotWord and SubByte 
operations. The RotWord function rotates its input to the left by a 
byte. The key (or sub-key) is divided into 4, 6 or 8 words each of 
size 32 bits for the 128-bit, 192-bit, and 256-bit keys respectively. 
The calculation of the leftmost word for the 128-bit key is shown 
in equation (2).  

𝑊[𝑖] = 𝑊[4(𝑖 − 1)] + 𝑔([𝑊[4𝑖 − 1])                                        (2) 

W represents a 32-bit word of the sub-key, where g is a special 

function that consists of S-Box, RotWord, and 
AddRoundConstant. The remaining words of the sub-key are 
calculated by equation (3). 

𝑊[4𝑖 + j] = 𝑊[4𝑖 + 𝑗 − 1] + 𝑊[4(𝑖 − 1) + 𝑗]                           (3) 

Where 𝑖 = 1,2 … ,10 and j = 1,2,3 . The calculation for the 192-

bit and 256-bit key modes is similar to that of the 128-bit keys. 
However, the limit of the integers 𝑖 and 𝑗 vary for each of the key 

sizes. The number of iterations in the key generation unit is 
different for each key size; there are 10, 8 and 7 iterations for 128-
bit, 192-bit, and 256-bit key modes respectively. These iterations 
do not correspond to the number of sub-keys.  

The proposed architecture of the key generation unit showing the 
main computation circuit can be seen in figure 6. The unit utilizes 
only three 32-bit XORs in the calculation of the sub-words. OUT1 
and OUT2 are computed each cycle and stored in a buffer, BUFF. 
After four cycles while operating in the 128-bit key mode, the key 
generation unit will output one round key, and, two round keys 
when operating in the 256-bit key mode. In the 192-bit key mode, 
the key generation unit will compute more than one round key in 

four cycles. There will be a remainder of 64 bits which will have 
to be carried into the next round. Consequently, we need to 
compute the sub-key for a new 6-word input key (192 bits). 
Meaning, for the 192-bit mode, two input keys will give rise to 
three round keys. The details are shown in table 4. For AES-256, 
another function, ℎ(𝑥), exists aside 𝑔(𝑥) which is basically an S-

Box of the 32-bit word, 𝑊4 . In hardware, we can implement 

resource sharing if a number of resources are used by different 
modules at different cycles or conditions. Since the 𝑔(𝑥) and ℎ(𝑥) 

functions [8] have S-Box in common and are computed in 
different cycles, we implemented them as a shared module. The 
shared hardware structure, SRRC is shown in figure 8. MD selects 

the output between ℎ(𝑥) and that from 𝑔(𝑥). Figure 7 shows the 

hardware structure of our proposed compact key generation unit. 
The full key generation of all the key modes is well illustrated in 
[7,8,9]. 

 

Figure 6: Proposed key generation unit architecture 

3.1.1. Input Routing Logic 

For every clock cycle, the combination, {CNT, KEY_MD, 
START} selects the three input words, IN_1, IN_2, and IN_3 to 
the Key generation unit based on equations (2) and (3). EN selects 
between IN_2 and the output of the SRRC module. For AES-128 

and AES-192, EN is high for the first cycle and low in the next 
cycles for each sub-key computation of the left-most word. For 
AES-256, it is high in the first and fifth cycles because we need to 
compute 𝑔(𝑊3) as well as ℎ(𝑊4). 

3.1.2. Proposed Key Generation Unit 

Unlike the standard AES which utilizes 7 XORs, the proposed 
Key generation unit circuit has only three for the same operation. 
The key generation unit also consists of the SRRC module which 
has an S-Box, RotWord and an 8-bit RoundConstant addition unit. 
The 32-bit input into the SRRC module is first passed through the 
S-Box and then rotated a byte to the left. The most significant byte 

of the byte rotated word is XORed with a round constant. The 
round constants correspond to the sub-key numbers (not round 
keys) for each key mode. A sub-key of a particular key mode has 
the same width as the input key for that mode (128 bits, 192 bits 
or 256 bits). A round key, on the other hand, is exactly 128 bits in 

length and is what is added to the state in the AddRoundKey 
module. Figure 8 shows the shared module SRRC.M1 selects 
between the output of SRRC and IN_1. M2 selects between the 

output of Xr2 and Xr3. For encryption, the output of Xr2 is 
selected, whereas, for decryption, that of Xr3 is selected. OUT1 
and OUT2 are pushed into a 256-bit buffer, BUFF. The number of 
bits of the sub-key has to match the 128-bit round key. For the 
128-bit key mode, the size of a round key is the same as one sub-
key and can be calculated in two cycles and stored in BUFF. For 
the 256-bit key mode, the computation of one sub-key generates 
two round keys. The 192-bit key mode generates a result that is 
the size of a round key (128 bits) plus a remainder of 64 bits. The 

remaining 64 bits are stored in a temporal register, TMP_REG. 
The next sub-key will also generate a round key and a half. Hence, 
grouping these two we have three round keys matched with two 
sub-keys. The details are given in sub-section 3.1.4.  

3.1.3. S-Box, Rotword, and Roundconstant (SRRC) 

This module is used in determining the leftmost word, 𝑊0 of the 

sub-keys. For the 256-bit key mode, it is used again in 
determining the fifth sub-word, 𝑊4 . This is well illustrated in 

figure 7. 
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Figure 7: Structure of proposed SRRC module 

3.1.4. Output Routing Logic 

At the end of four cycles, the output routing has to decide which 
bit-select of BUFF will be passed as the key. We have only shown 
the output logic for Key generation unit during encryption since 
there is little variation in the decryption process. From figure 8, 

the output logic of the Key generation unit is shown. The output 
logic's main function is to select the correct 128 bits as the round 
key and also to feedback the generated sub-key into the input 
routing logic as the next key input. For the AES-128 key mode, 
the output RND_KEY is always the top 128 bits of BUFF. For the 
256-bit key mode, it was earlier stated that one sub-key generates 
two round keys. For this reason, when FETCH_CNT is zero, the 
top 128 bits are selected as round key and a wait state is asserted 

that sets the START signal to the Key generation unit to zero. 
When FETCH_CNT is one, the bottom 128 bits are selected as the 
round key and the START signal is asserted. For the 192-bit key 
mode operation, FETCH_CNT has three possible values (0,1,2). 
Table 4 shows the selection of round keys as well as the assertion 
of START for the 192-bit key mode.  

 
Figure 8: Output routing logic for key generation 

Table 4: Round key selection for 192-bit key 

ENCRYPTION 

FETCH_CNT START RNDKEY TMP_KEY 

0 1 BUFF1[255:128] BUFF1[127:64] 

1 0 {BUFF2[255:192], 

TMP_REG} 

- 

2 1 BUFF2[191:  64] - 

DECRYPTION 

0 1 BUFF1[191:  64] BUFF1[255:192] 

1 0 {BUFF2[127:64], 

TMP_REG} 

- 

2 1 BUFF2[255:128] - 

3.2. Proposed Mixcolumn Common Unit 

Figure 9 shows our proposed structure for the MixColumn layer. 

We created a common unit in which each matrix multiplication is 
done for both encryption and decryption. The matrix computations 
involve left shift and XOR operations as described in table 2 
above. There are four common units, one for each byte of the 32-
bit input vector, A. After the multiplication is done, the next step 
is to route and XOR the corresponding outputs from the common 
unit. The results are then assigned to the 32-bit output vector B.  

 

 

Figure 9: Overview of proposed mixcolumn/invmixcolumn structure 

4. Implementation Results 

Table 5 shows the comparison of our module with various 180nm 

implementations of AES. In all the implementations, efforts were 
made to improve on throughput and area by means of one or more 
of the various hardware implementation pathways of AES to 
choose from. Usually, a pipelined hardware has a larger area as 
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compared to a non-pipelined one.  By using a rolled architecture, 
[2] gained an average throughput of 1.6Gbps. [3] adopted an on-
the-fly key generation scheme and composite S-Box structure that 
caused a reduction in the area, but cost them in terms of the 

critical path. Proposed_1 was synthesized for a maximum 

frequency of 300MHz in order to compare to that of [10] since 
their architecture was close to ours (three stage pipeline) and to 
show that ours outperforms in terms of area and throughput. Our 
design showed dominance in terms of area and throughput. The 

remainder of the results is shown in table 5. 

Table 5: Results and comparisons for 180nm CMOS process 
 [2] [3] [6] [10] Proposed_1 Proposed_2 

Frequency (MHz) 125 100 300 300 300 1000 

Throughput (Gbps) 

128 

1.6 

1.16 

10.656 

3.84 3.84 11.52 

192 0.99 3.199 3.2 9.68 

256 0.85 2.743 2.648 8.124 

Gate Count (KGates) 58.445 19.5 - 39.98 20.51 21.63 

Memory(S-Box) [Bytes] - - - - 9.152K 

5. Conclusion 

In this paper, we proposed a four-stage sub-pipelined architecture 
of AES with a compact on-the-fly key generation. There are two 

ways of implementing the SubByte currently: as a composite logic 
or a look-up table. The composite field arithmetic implementation 
of the S-Box increases the critical path and hence reduces the 
throughput unless we use sub-pipelining, which then increases the 
area due to additional registers. We chose to design the S-Box as 
an LUT-based structure which allows for one-time access and 
reduces critical path. We implemented a compact version of the 
key generation that caused a reduction in area. The adopted four-

stage sub-pipeline structure causes an increase in the throughput. 
The compact Key generation unit was proposed, which utilizes 
three 32-bit XORs compared to the traditional AES which utilizes 
7 XORs. A common unit for the MixColumn was also proposed to 
help reduce the critical path by means of parallel computation. 
The proposed AES was designed with Verilog HDL and 
synthesized with Synopsys Design Compiler using a 180nm 
CMOS cell library. The total operating frequency peaked at 1GHz, 

giving rise to an average throughput of 11.51Gbps, 9.75Gbps, and 
8.46Gbps for AES-128, AES-192, and AES-256 respectively. The 
core area was 21.63 equivalent NAND2 gates and 9.152KB of 
memory 
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