

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.24) (2018) 258-263

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Hardware Design of AES Core with High Throughput and Low

Area

Alexander Owusu-Ansah Antwi, Kwangki Ryoo
*

Department of Information and Communication Engineering, Hanbat National University, Daejeon 34158, Republic of Korea

Corresponding author E-mail: kkryoo@gmail.com

Abstract

Background/Objectives: The Advanced Encryption Standard is currently the most used algorithm for symmetric encryption. In this
paper, we propose a hardware architecture of AES with an improved key generation unit.

Methods/Statistical analysis: We employ the use of a four-stage sub-pipelined architecture for encryption and decryption of all standard
key sizes (128, 192 and 256 bits) of the Advanced Encryption Standard (AES). The implementation features an LUT-based S-Box as
well as on-the-fly key generation. The RTL of the architecture was designed using Verilog HDL and simulated with ModelSim. The
verified design was then synthesized in Synopsis Design Compiler with 180nm TSMC cell libraries.
Findings: Since the inception of AES, many implementations have been done in both software and hardware. For the purpose of
robustness, the hardware implementation is much preferred. However, for area-constrained implementations, it is necessary for designers
to present a very small area of the AES algorithm while keeping the AES structure and security unchanged. The proposed compact key
generation unit contributed to the small area of 21.3K equivalent NAND2 gates. The S-Box was implemented as a ROM of size

9.152KB. In order to match the encryption/decryption, the on-the-fly also key generation was accordingly made to output round keys
every four cycles. With this structure, there was a high average throughput yield of 11.51Gb/s, 9.75Gb/s and 8.46Gb/s for the 128-bit,
192-bit and 256-bit key lengths respectively, corresponding to a maximum frequency of 1GHz.
Improvements/Applications: In the future, we will investigate more techniques to reduce the area of the S-Box and Mix Column
structures. We will implement the design on an SoC system for verification and testing.

Keywords: On-the-fly key generation, ASIC, Encryption, Decryption, CMOS, Sub-pipelined architecture

1. Introduction

In recent times, information and the demand for it have increased
due to technological advancements. From the start of the
millennium up until now, there has been a steady rise in the
demand and use of information due to improved banking, medical
care, research, and many others. There are millions of smart
mobile devices that facilitate in these areas of work and living. As
part of making life easy for its users, these smart devices transmit
sensitive information such as personal health diagnosis, daily
routines, passwords and the like through the open internet. In fact,

a smart home in today’s world may be seen as an evolution in
technology, but in reality, it poses a huge security risk, since the
smart devices in the home transmit data between themselves as
well as over the insecure internet. In effect, the whole house can
be controlled remotely and thus compromising sensitive
information. There have been a lot of breaches in the security of
government and private businesses as well as individuals
worldwide [1]. There is therefore, the need to regularly protect

data both in storage and transmission from falling into the hands
of these malicious hackers.

Two of the fields that are called into play when considering user
data protection are cryptography and cryptanalysis. They involve
the study of encryption, decryption, and techniques to counter
activities by system intruders. Cryptography can further be
classified into symmetric and asymmetric cryptography. In
symmetric cryptographic systems, a single key is used for both

encryption and decryption. In asymmetric cryptographic systems,
however, a different key is used in both encryption and
decryption. Examples of the symmetric systems include the
Advanced Encryption Standard (AES) and the Data Encryption

Standard (DES) while the asymmetric systems find examples in
the Rivest-Shamir-Adleman (RSA) and Elliptic Curve
Cryptography (ECC) [2].

Since its inception in 2001, the AES algorithm has been very
robust and is widely used in many systems such as smart cards,
mobile phones, USB keys and banking systems [3]. The AES
algorithm was designed to be implemented in both software and
hardware. Although software-based encryption is very cost-
effective, it is not as robust as hardware-based encryption. Unlike

software which can be easily exploited even remotely, an intruder
will need physical access to the hardware before he can do some
serious damage to the system [4,5,6]. It is the reason why there
have been various researches into hardware implementations of
AES since its standardization. Researchers’ main focus has been
on optimization for area and throughput. Different design methods
have been adopted in the research into these areas which are,
iterative and unrolled architecture as well as sub-pipelined and

fully pipelined architectures. There are two main hardware
platforms which are considered when porting algorithms to
hardware: Field Programmable Gate Arrays (FPGAs) and
Application Specific Integrated Circuits (ASICs). FPGAs have
been a choice of implementation for many as compared to ASICs
since the former are cheaper and they can be reprogrammed
several times with several designs. ASICs do not have this

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

259 International Journal of Engineering & Technology

advantage – a design on an ASIC is not updatable. However,
ASICs have the advantage of design flexibility and strong tamper
resistance which is needed in security systems as well as area
constrained applications. Also, there exist delays in FPGA

circuitry due to its programmability which greatly affects the
speed of designs. In ASIC, the designer has a ‘blank sheet’ to
design on, where he does not have any limitations by means of
area and of speed (frequency). As a result of this, a circuit
implemented on an FPGA is naturally slower than on ASIC [5].
Due to these and many other bottlenecks in FPGAs, we find it
proper to implement our AES design in ASIC.

The basic structure of AES consists of three modules;

AddRoundKey, SubByte, ShiftRow and MixColumn and the key
generation unit [7,8,9]. In the design of these modules, we can
choose between using an on-the-fly key generation [10] or
compute all the keys and store in memory to be retrieved when
needed, at the end of the corresponding rounds [2]. There is also
the option of implementing the S-Box as an LUT-based structure
or as a composite field arithmetic combinational logic. When
implemented this way, the critical path increases, thereby yielding

a low frequency. In this paper, we propose a high throughput and
small area AES with a compact on-the-fly key generation unit.
The S-Box was implemented as a ROM unit.

2. Overview of the AES algorithm

The AES algorithm consists of three main parts – the Cipher,

Inverse Cipher, and key generation unit. The Cipher module
converts input text into gibberish by means of running four main
sub-layers (AddRoundKey, SubByte, ShiftRow, and MixColumn)
for a number of rounds. Inverse Cipher converts the unintelligible
data back into the plaintext before encryption. It is made up of the
inverse layers of the Cipher module with the exception of the
AddRoundKey layer. Each of these layers is iterated upon for a
number of rounds depending on the size of the
encryption/decryption key [11,12,13]. Table 1 shows the different

key sizes and the number of rounds required for each. The key

generation unit takes as seed, an N-bit key (N is either 128, 192 or
256) and creates corresponding round keys for each round.

At the start of the encryption process, we XOR the input key with
the input text. A state in AES is the 128-bit text that undergoes

transformation to become the cipher. In order to have a good
pictorial view of the AES state and operations, we represent it
with a 4x4 matrix [10] as shown in figure 1. From the initial
AddRoundKey module, the state proceeds to the SubByte stage
and then to the ShiftRow to MixColumn. Finally, it enters the
AddRoundKey stage where it is XORed with the round key. The
process continues until the last stage where the MixColumn layer
is not performed. In decrypting the cipher text, we do the opposite

of what we did in the encryption. This means that the MixColumn
layer is not performed in the first round. The ShiftRow and
SubByte operations are swapped while the MixColumn and
AddRoundKey stages are also swapped. The standard architecture
of AES Cipher and Inverse Cipher are shown in figure 2. The
following sub-sections give a summary of each of the sub-layers.

Table 1: AES rounds and sub-key lengths

 Number

of Rounds

Sub-key

Width

Number of

Sub-keys

Total

Number of

Round Keys

AES-128 10 4 x 32 11 11

AES-192 12 6 x 32 8 13

AES-256 14 8 x 32 7 15

Figure 1: A state in AES.

Figure 2: Standard AES architecture for encryption and decryption

2.1. SubByte/InvSubByte

The SubByte/InvSubByte layer is a non-linear transformation of
the state. It can be implemented as an LUT-based unit, (S-Box for
encryption, or Inv S-Box for decryption) or as a composite field
arithmetic combinational logic unit. With the combinational logic
unit, Galois fields (GF) are employed in computing the substitute
of each byte in a state. The process is described in [3]. As a result
of the composite logic structure yielding a long critical path, the S-
Box and Inv S-Box have both been implemented with LUT-based

logic in our design. There are sixteen identical S-Box/Inv S-Box
modules in the Cipher/Inverse Cipher data path, and four identical

S-Box modules in the key generation unit. In ASIC
implementation, the S-Box is synthesized as a ROM unit and as
BRAM in FPGAs.

2.2. ShiftRow/InvShiftRow

This operation is a free operation as it just involved byte rotation.
Here, the rows of the State are rotated depending on the row
number. The shifting is illustrated in figure 3.

260 International Journal of Engineering & Technology

Figure 3. Structure of ShiftRow/InvShiftRow operations

It can be seen from figure 3 that rotating two bytes to the left is the
same as rotating two bytes to the right in row 3 of both matrices.
Also, from figure 3, in both encryption and decryption, row 1 is

unchanged. Although the ShiftRow operation is of no cost itself,
the output registers occupy some area in the design. With the
knowledge of common operations, we can implement a shared
ShiftRow module in order to save area by using lesser registers.

2.3. MixColumn/InvMixColumn

Each column of the State is multiplied by a fixed matrix. This
matrix is unique to each of the encryption and decryption

processes. The decryption step is more computationally intensive
than that of the encryption. The standard MixColumn and
InvMixColumn are computed in [7,8,9]. In hardware,
multiplication by 02 or its multiple is nothing but a left-shift
operation. By identifying and using this, we can avoid the use of
multipliers, and hence reduce our area and critical path. The
multiplication is thus shifting and XOR operations as depicted by
equation (1) and table 2.

 𝐴𝑖 · 01 = 𝐴𝑖

 𝑖𝑓 (𝑀𝑆𝐵(𝐴𝑖) = 1)

 𝐴𝑖 · 02 = (𝐴𝑖 ≪ 1) ^ 8 ’𝑏00011011 (1)

 𝑒𝑙𝑠𝑒

 𝐴𝑖 · 02 = 𝐴𝑖 ≪ 1
 𝐴𝑖 · 03 = (𝐴𝑖 · 02) ^ 𝐴𝑖

Table 2: Multiplication in GF (28) for the MixColumn structure

03 ∙ 𝐴𝑖 (𝐴𝑖 ∙ 02) + 𝐴𝑖

04 ∙ 𝐴𝑖 02 ∙ (𝐴𝑖 ∙ 02)

08 ∙ 𝐴𝑖 02 ∙ (𝐴𝑖 ∙ 04)

09 ∙ 𝐴𝑖 (𝐴𝑖 ∙ 08) + 𝐴𝑖

0B ∙ 𝐴𝑖 (𝐴𝑖 ∙ 09) + (𝐴𝑖 ∙ 02)

0D ∙ 𝐴𝑖 (𝐴𝑖 ∙ 09) + (𝐴𝑖 ∙ 04)

0E ∙ 𝐴𝑖 (𝐴𝑖 ∙ 08) + (𝐴𝑖 ∙ 04) + (𝐴𝑖 ∙ 02)

We implemented our MixColumn module by taking advantage of
parallel processing in hardware. This method contributes to the

high frequency due to the reduced critical path.

2.4. AddRoundKey

In this module, we add the 128-bit state to the round key. At the
beginning of the encryption/decryption process, the state
(plaintext/ciphertext) is first XORed with the input key. This layer
is its own inverse since the XOR function is its own inverse.

3. Proposed Hardware Structure

In our proposed architecture, the AES algorithm was implemented
as a four-stage sub-pipelined architecture. In each clock cycle, one
layer of a round is computed. Unlike the row shifting and column
mixing modules that were implemented as shared structures, the
byte substitution modules were not. The full architecture is shown

in figure 4. Choosing this style of implementation reduces the
critical path of the S-Box. In table 3, the 4-stage pipeline structure
is illustrated.

Table 3: Four-stage pipeline structure for encryption and decryption

ENCRYPTION

 T0 T1 T2 T3 T4 T5

PlainText1 AddRoundKey SubByte ShiftRow MixColumn AddRoundKey SubByte

PlainText2 AddRoundKey SubByte ShiftRow MixColumn AddRoundKey

PlainText3 AddRoundKey SubByte ShiftRow MixColumn

PlainText4 AddRoundKey SubByte ShiftRow

DECRYPTION

CipherText1 AddRoundKey InvShiftRow InvSubByte AddRoundKey InvMixColumn InvShiftRow

CipherText2 AddRoundKey InvShiftRow InvSubByte AddRoundKey InvMixColumn

CipherText3 AddRoundKey InvShiftRow InvSubByte AddRoundKey

CipherText4 AddRoundKey InvShiftRow InvSubByte

Figure 4: Proposed shared architecture for encryption and decryption

261 International Journal of Engineering & Technology

3.1. Key Generation

Figure 5: Overview of the key generation showing the word divisions

Figure 5 shows the overview of the standard key generation unit.
It consists basically, of the XOR, RotWord and SubByte
operations. The RotWord function rotates its input to the left by a
byte. The key (or sub-key) is divided into 4, 6 or 8 words each of
size 32 bits for the 128-bit, 192-bit, and 256-bit keys respectively.
The calculation of the leftmost word for the 128-bit key is shown
in equation (2).

𝑊[𝑖] = 𝑊[4(𝑖 − 1)] + 𝑔([𝑊[4𝑖 − 1]) (2)

W represents a 32-bit word of the sub-key, where g is a special

function that consists of S-Box, RotWord, and
AddRoundConstant. The remaining words of the sub-key are
calculated by equation (3).

𝑊[4𝑖 + j] = 𝑊[4𝑖 + 𝑗 − 1] + 𝑊[4(𝑖 − 1) + 𝑗] (3)

Where 𝑖 = 1,2 … ,10 and j = 1,2,3 . The calculation for the 192-

bit and 256-bit key modes is similar to that of the 128-bit keys.
However, the limit of the integers 𝑖 and 𝑗 vary for each of the key

sizes. The number of iterations in the key generation unit is
different for each key size; there are 10, 8 and 7 iterations for 128-
bit, 192-bit, and 256-bit key modes respectively. These iterations
do not correspond to the number of sub-keys.

The proposed architecture of the key generation unit showing the
main computation circuit can be seen in figure 6. The unit utilizes
only three 32-bit XORs in the calculation of the sub-words. OUT1
and OUT2 are computed each cycle and stored in a buffer, BUFF.
After four cycles while operating in the 128-bit key mode, the key
generation unit will output one round key, and, two round keys
when operating in the 256-bit key mode. In the 192-bit key mode,
the key generation unit will compute more than one round key in

four cycles. There will be a remainder of 64 bits which will have
to be carried into the next round. Consequently, we need to
compute the sub-key for a new 6-word input key (192 bits).
Meaning, for the 192-bit mode, two input keys will give rise to
three round keys. The details are shown in table 4. For AES-256,
another function, ℎ(𝑥), exists aside 𝑔(𝑥) which is basically an S-

Box of the 32-bit word, 𝑊4 . In hardware, we can implement

resource sharing if a number of resources are used by different
modules at different cycles or conditions. Since the 𝑔(𝑥) and ℎ(𝑥)

functions [8] have S-Box in common and are computed in
different cycles, we implemented them as a shared module. The
shared hardware structure, SRRC is shown in figure 8. MD selects

the output between ℎ(𝑥) and that from 𝑔(𝑥). Figure 7 shows the

hardware structure of our proposed compact key generation unit.
The full key generation of all the key modes is well illustrated in
[7,8,9].

Figure 6: Proposed key generation unit architecture

3.1.1. Input Routing Logic

For every clock cycle, the combination, {CNT, KEY_MD,
START} selects the three input words, IN_1, IN_2, and IN_3 to
the Key generation unit based on equations (2) and (3). EN selects
between IN_2 and the output of the SRRC module. For AES-128

and AES-192, EN is high for the first cycle and low in the next
cycles for each sub-key computation of the left-most word. For
AES-256, it is high in the first and fifth cycles because we need to
compute 𝑔(𝑊3) as well as ℎ(𝑊4).

3.1.2. Proposed Key Generation Unit

Unlike the standard AES which utilizes 7 XORs, the proposed
Key generation unit circuit has only three for the same operation.
The key generation unit also consists of the SRRC module which
has an S-Box, RotWord and an 8-bit RoundConstant addition unit.
The 32-bit input into the SRRC module is first passed through the
S-Box and then rotated a byte to the left. The most significant byte

of the byte rotated word is XORed with a round constant. The
round constants correspond to the sub-key numbers (not round
keys) for each key mode. A sub-key of a particular key mode has
the same width as the input key for that mode (128 bits, 192 bits
or 256 bits). A round key, on the other hand, is exactly 128 bits in

length and is what is added to the state in the AddRoundKey
module. Figure 8 shows the shared module SRRC.M1 selects
between the output of SRRC and IN_1. M2 selects between the

output of Xr2 and Xr3. For encryption, the output of Xr2 is
selected, whereas, for decryption, that of Xr3 is selected. OUT1
and OUT2 are pushed into a 256-bit buffer, BUFF. The number of
bits of the sub-key has to match the 128-bit round key. For the
128-bit key mode, the size of a round key is the same as one sub-
key and can be calculated in two cycles and stored in BUFF. For
the 256-bit key mode, the computation of one sub-key generates
two round keys. The 192-bit key mode generates a result that is
the size of a round key (128 bits) plus a remainder of 64 bits. The

remaining 64 bits are stored in a temporal register, TMP_REG.
The next sub-key will also generate a round key and a half. Hence,
grouping these two we have three round keys matched with two
sub-keys. The details are given in sub-section 3.1.4.

3.1.3. S-Box, Rotword, and Roundconstant (SRRC)

This module is used in determining the leftmost word, 𝑊0 of the

sub-keys. For the 256-bit key mode, it is used again in
determining the fifth sub-word, 𝑊4 . This is well illustrated in

figure 7.

262 International Journal of Engineering & Technology

Figure 7: Structure of proposed SRRC module

3.1.4. Output Routing Logic

At the end of four cycles, the output routing has to decide which
bit-select of BUFF will be passed as the key. We have only shown
the output logic for Key generation unit during encryption since
there is little variation in the decryption process. From figure 8,

the output logic of the Key generation unit is shown. The output
logic's main function is to select the correct 128 bits as the round
key and also to feedback the generated sub-key into the input
routing logic as the next key input. For the AES-128 key mode,
the output RND_KEY is always the top 128 bits of BUFF. For the
256-bit key mode, it was earlier stated that one sub-key generates
two round keys. For this reason, when FETCH_CNT is zero, the
top 128 bits are selected as round key and a wait state is asserted

that sets the START signal to the Key generation unit to zero.
When FETCH_CNT is one, the bottom 128 bits are selected as the
round key and the START signal is asserted. For the 192-bit key
mode operation, FETCH_CNT has three possible values (0,1,2).
Table 4 shows the selection of round keys as well as the assertion
of START for the 192-bit key mode.

Figure 8: Output routing logic for key generation

Table 4: Round key selection for 192-bit key

ENCRYPTION

FETCH_CNT START RNDKEY TMP_KEY

0 1 BUFF1[255:128] BUFF1[127:64]

1 0 {BUFF2[255:192],

TMP_REG}

-

2 1 BUFF2[191: 64] -

DECRYPTION

0 1 BUFF1[191: 64] BUFF1[255:192]

1 0 {BUFF2[127:64],

TMP_REG}

-

2 1 BUFF2[255:128] -

3.2. Proposed Mixcolumn Common Unit

Figure 9 shows our proposed structure for the MixColumn layer.

We created a common unit in which each matrix multiplication is
done for both encryption and decryption. The matrix computations
involve left shift and XOR operations as described in table 2
above. There are four common units, one for each byte of the 32-
bit input vector, A. After the multiplication is done, the next step
is to route and XOR the corresponding outputs from the common
unit. The results are then assigned to the 32-bit output vector B.

Figure 9: Overview of proposed mixcolumn/invmixcolumn structure

4. Implementation Results

Table 5 shows the comparison of our module with various 180nm

implementations of AES. In all the implementations, efforts were
made to improve on throughput and area by means of one or more
of the various hardware implementation pathways of AES to
choose from. Usually, a pipelined hardware has a larger area as

263 International Journal of Engineering & Technology

compared to a non-pipelined one. By using a rolled architecture,
[2] gained an average throughput of 1.6Gbps. [3] adopted an on-
the-fly key generation scheme and composite S-Box structure that
caused a reduction in the area, but cost them in terms of the

critical path. Proposed_1 was synthesized for a maximum

frequency of 300MHz in order to compare to that of [10] since
their architecture was close to ours (three stage pipeline) and to
show that ours outperforms in terms of area and throughput. Our
design showed dominance in terms of area and throughput. The

remainder of the results is shown in table 5.

Table 5: Results and comparisons for 180nm CMOS process
 [2] [3] [6] [10] Proposed_1 Proposed_2

Frequency (MHz) 125 100 300 300 300 1000

Throughput (Gbps)

128

1.6

1.16

10.656

3.84 3.84 11.52

192 0.99 3.199 3.2 9.68

256 0.85 2.743 2.648 8.124

Gate Count (KGates) 58.445 19.5 - 39.98 20.51 21.63

Memory(S-Box) [Bytes] - - - - 9.152K

5. Conclusion

In this paper, we proposed a four-stage sub-pipelined architecture
of AES with a compact on-the-fly key generation. There are two

ways of implementing the SubByte currently: as a composite logic
or a look-up table. The composite field arithmetic implementation
of the S-Box increases the critical path and hence reduces the
throughput unless we use sub-pipelining, which then increases the
area due to additional registers. We chose to design the S-Box as
an LUT-based structure which allows for one-time access and
reduces critical path. We implemented a compact version of the
key generation that caused a reduction in area. The adopted four-

stage sub-pipeline structure causes an increase in the throughput.
The compact Key generation unit was proposed, which utilizes
three 32-bit XORs compared to the traditional AES which utilizes
7 XORs. A common unit for the MixColumn was also proposed to
help reduce the critical path by means of parallel computation.
The proposed AES was designed with Verilog HDL and
synthesized with Synopsys Design Compiler using a 180nm
CMOS cell library. The total operating frequency peaked at 1GHz,

giving rise to an average throughput of 11.51Gbps, 9.75Gbps, and
8.46Gbps for AES-128, AES-192, and AES-256 respectively. The
core area was 21.63 equivalent NAND2 gates and 9.152KB of
memory

Acknowledgment

This research was supported by the MSI (Ministry of Science, ICT

and Future Planning), Korea, under the Global IT Talent support
program (IITP-2017-0-01681) supervised by the IITP (Institute for
Information and Communication Technology Promotion).

References

[1] CSO online. The 17 biggest data breaches of the 21st century.

https://www.csoonline.com/article/2130877/data-breach/the-

biggest-data-breaches-of-the-21st-century.html. Revised January 2.

Accessed September 2, 2018.

[2] Shastry PVS, Kulkarni A & Sutaone MS (2012), ASIC

implementation of AES. Proceedings of the 2012 Annual IEEE

India Conference (INDICON) 1255-1259.

[3] Cao Q & Li S (2009), A high-throughput cost-effective ASIC

implementation of the AES Algorithm. Proceedings of the 2009

IEEE 8th International Conference on ASIC 805-808.

[4] Tales from the Crypt: Hardware vs Software [Internet]. Infosecurity

group. 2015. [updated 2015 June 23; cited 2018 Aug 31] Available

from: https://www.infosecurity-magazine.com/magazine-

features/tales-crypt-hardware-software

[5] Gaj K & Chodowiec P (2009) Cryptography Engineering: FPGA

and ASIC Implementations of AES. Boston: Springer US;

[6] Saravanan P, Devi RN, Swathi G & Kalpana P (2011), A High-

Throughput ASIC implementation of Configurable Advanced

Encryption Standard (AES) Processor. International Journal of

Computer Applications (IJCA) 3, 1-6.

[7] Advanced Encryption Standard.

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard.

Revised August 25. Accessed September 2, 2018.

[8] Rijmen V & Daemen, J (2002) The design of Rijndael: AES-The

Advance Encryption Standard. Berlin: Springer-Verlag.

[9] Paar C & Pelzl J (2010) Understanding Cryptography. Berlin

Heidelberg: Springer-Verlag.

[10] Li H (2006), Efficient and flexible architecture for AES. IEE

Proceedings - Circuits, Devices and Systems 153, 533-538.

[11] Dao VL, Nguyen AT, Hoang VP& Tran TA (2015), An ASIC

implementation of low area AES encryption core for wireless

networks. Proceedings of the 2015 International Conference on

Communications, Management and Telecommunications

(ComManTel) 99-102.

[12] López RL, García ML & Navarro EC (2018), Hardware

Architecture Implemented on FPGA for Protecting Cryptographic

Keys against Side-Channel Attacks. IEEE Transactions on

Dependable and Secure Computing 15, 898-905.

[13] Kalaiselvi K & Mangalam H (2015) Power efficient and high-

performance VLSI architecture for AES algorithm. Journal of

Electrical Systems and Information Technology 2, 178-183.

https://www.csoonline.com/article/2130877/data-breach/the-biggest-data-breaches-of-the-21st-century.html
https://www.csoonline.com/article/2130877/data-breach/the-biggest-data-breaches-of-the-21st-century.html
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

