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Abstract 

 

The behavior of reservoir systems can be investigated using Critical Period (CP) which determines the aggregation level 

of the data (monthly or annual) that are required to be utilized in the reservoir analysis. Currently there are a number of 

methods that could approximate the behavior of reservoir systems, however the efficiency of these approaches have not 

been studied and verified for the Malaysia Rivers. In this study two different hypothetical reservoirs on Malaysia Rivers 

are selected. The stream flow data are subjected to preliminary analysis and evaluation of the fittest probability 

distribution function. Afterwards, the CP is estimated by applying a Monte Carlo simulation technique and considering 

performance indices. The CP from this study is used to determine the within-year or over-year behavior and these 

results are compared with those of the previous well-known equations in this area. It is observed that existing equations 

are incomplete and other parameters such as reliability and vulnerability should be considered to predict the behavior of 

reservoir systems. Consequently two separate regression equations are proposed to estimate the CP of these reservoir 

systems in Malaysia and some suggestions are made to generalize and extend this study. 
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1. Introduction 

The analysis and simulation of a reservoir system is usually carried out using historical data, however it is unlikely that 

reservoir is subjected to the similar sequence of data in the future and droughts might occur in future that are more 

severe than historical ones [1]. Thus for a realistic analysis of reservoir systems, appropriate synthetic stream flow data 

generation techniques have been implemented that are widely used especially in developed countries [2], [3], [4]. 

The analysis of reservoirs is traditionally performed using techniques that involve time based reliability of 100%. 

However designing reservoir systems which are enormous facilities with 100% reliability is not economical. Moreover 

there are some periods in reservoir operation that due to unexpected demand pattern changes or droughts it is not 

possible to provide all the target demand. These periods are called failure periods. Hence, acceptance of failure period 

as a reality in designing stage of reservoirs is necessary and the involvement of performance indices such as reliability 

and vulnerability to control the performance of reservoirs during this period is desirable [5], [6], [7]. Reliability 

represents the time based probability in which reservoir can provide all the design demand and vulnerability exhibits the 

severity of failure [8], [9]. For instance reliability of 98% indicates the reservoir is able to provide all the design demand 

in 98% of the operational period and the vulnerability of 30% indicates the reservoir may not be able to provide 30% of 

the target demand during the failure period and it is necessary to find an alternative water resource during this period. 

Analysis of reservoir systems could be carried out by applying two general methods. First one is called probability 

matrix method which is developed in Australia and is based on direct modeling of reservoirs [10], [11]. The second 

approach is termed as critical period approach that is categorized under simulation and optimization classes [12]. 

Among the two methods, simulation approaches have enough flexibility to involve performance indices in the analysis. 

Therefore modified Sequent Peak Algorithm (SPA) that belongs to the simulation class is used in this study. In this 

approach it is feasible to involve both reliability and vulnerability indices in the analysis. 
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Critical Period (CP) is defined as a time when a full reservoir goes empty without spilling in the intervening period [13], 

however it differs from the North American definition which describes critical period as a time that is required for a full 

reservoir to become empty and then full again [14]. In this study the former definition of critical period is adopted and 

its North American equivalent is critical drawdown period [15].  

CP is applied to determine two important behavior types of reservoir systems. The behavior that is related to having 

critical period less than one year is called within-year and the one that is involved with critical period more than one 

year is termed over-year. These behaviors play a special role in understanding some important characteristics of 

reservoir systems such as storage capacity, reliability, vulnerability, resilience and sustainability [16]. Moreover it can 

be used to distinguish the appropriate aggregation of stream flow data (monthly or annual) that is required prior to 

perform the reservoir system analysis. For example if reservoir shows within-year behavior it is required to use twelve 

critical monthly flows in the analysis whereas if reservoir exhibits over-year behavior annual stream flow will be 

sufficient. 

Well-known criteria that are used to determine the behavior of reservoir systems is standardized demand parameter (m) 

that is defined as follows: 

  
   

  
                                                                                                                                                                              (1) 

Where α is the demand as a percentage of river’s Mean Annual Flow (MAF), CV denotes coefficient of variation of 

annual flow that is defined as standard deviation of annual flows divided by Mean Annual Flow (MAF). According to 

this approach if m > 1 the reservoir’s behavior will be within-year and if m < 1 its behavior will be over-year. And m = 

1 shows a transitional state between these two kinds of behaviors [17]. 

Afterwards,  parameter m method was amended by including the coefficient of variation of annual flows, CV; so over-

year systems will have CV > 1 (or CV < 1 and 0 ≤ m ≤ CV) and within-year systems will have CV  < 1 and m satisfying 

the inequality CV ≤ m ≤ 1/ CV. The original and the modified parameter m methods were developed using some major 

reservoir data base in US [18]. 

However Montaseri and Adeloye (1999) showed that other than m and CV other parameters such as reliability and 

stream flow data length are important in the type of the behavior that reservoir systems would exhibit [16]. They 

developed regression equations to predict the CP of reservoir systems in England that is as follow: 

                                                                                                                                      (2) 

Where CP is critical period in months, Re is time based reliability between 0.9 and 1.0, Le is the length of stream flow 

data in years and m is standardized demand parameter (Equation 1). This equation is only calibrated for a few sites in 

England and may not be used elsewhere. Moreover other performance indices such as vulnerability are not considered 

in their study [16]. Thus, in this study after finding the CP by applying a Monte Carlo simulation approach in two 

hypothetical reservoirs of Malaysia new regression equations are developed to predict CP using both of reliability and 

vulnerability indices. As these two sites show different stream flow characteristics the equations are calibrated for each 

of them separately for obtaining high degree of accuracy. 

2. Methodology 

2.1. Catchment study and stream flow data analysis 
 

The study is carried out on two Malaysian rivers. Firstly, Melaka is the driest catchment in Malaysia which receives less 

than 2000 mm of rainfall annually. However Melaka has never had a dry season because monthly average rainfall is 

more than 100 mm. The second river catchment that is chosen for this study is Muar which receives about 2400 mm 

rainfall annually. Melaka and Muar both enjoy a year-round tropical rainforest equatorial climate which is warm, humid 

and sunny. The brief characteristics of river catchments are presented in Table 1. 

 
Table 1: Characteristics and Locations of the River Catchments 

site River Gauging station 
Record length 

Catchment Annual flow statistics 

Area Mean 
CV Skew ρ

*
 

(years) (Km
2
) (mm) (10

6 
 m

3
) 

1 Melaka Pantai Belimbing 51 (1962-2012) 350 531 186 0.40 0.48 0.16 

2 Muar Buluh Kasap 47 (1966-2012) 3130 434 1359 0.48 2.03 0.18 
*ρ: Auto correlation lag-1 

 

Primary data analyses have been carried out to ensure that stream flow data are of appropriate quality prior to time 

series analysis. This includes double mass diagram which shows that stream flow data for both sites are consistent and 

homogenous. Additionally, trend and run tests are applied on the data to make sure that data is stationary and it is the 

result of a random and natural process [19], [20]. Table 2 shows that test statistics for annual flows are within their 

allowable range and statistical hypothesizes that data are trend-free and random are valid. Finally the fittest probability 
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distribution function for stream flow data is determined using Probability Plot Correlation Coefficient (PPCC) test [21]. 

Table 3 shows that annual stream flow of both rivers exhibits the highest correlation coefficients for Pearson III 

distribution which makes it proper to be used in modeling stream flow data for time series analysis. The fitness of 

Pearson III distribution function to historical annual stream flow data is also shown in Figure 1. For monthly stream 

flow data Pearson III is also the dominant distribution function. 

 
Table 2: Distribution Free Test for Trend and Randomness of the Annual Flows at the 5% Significance Level 

Site 

                      Trend                   Randomness 

Test Critical value Test Critical value 

statistic at 5% level statistic at 5% level 

 
(t-distribution) 

 
(normal distribution) 

Melaka -1.17 ±2.02 0.72 ±1.96 

Muar 0.09 ±2.02 -1.35 ±1.96 

 
Table 3: Correlation Coefficients Obtained From the PPCC Test for Historical Annual Stream flow Data on the Study Catchments 

Site Normal Pearson III LN2 LN3 LP III 

Melaka 0.9865 0.9921 0.9796 0.9920 0.9863 

Muar 0.9055 0.9827 0.9717 0.9788 0.9826 
Note: The maximum PPCC for each site is underlined. 

 

 
Fig. 1: Fitness of Pearson III Distribution Function to the Historical Annual Stream flow Data of Study Catchments 

 

2.2. Synthetic stream flow data generation 
 

Realistic analysis of reservoir systems should consider droughts that are more severe than historical ones. Hence data 

generation techniques are applied in this study [2]. Data generation models for reservoir system analysis must preserve 

the essential statistical characteristics of both annual and monthly historical stream flow data so the combination of 

Auto Regressive Lag one (AR (1)) to generate annual flows and Valencia and Schaake (V-S) to disaggregate annual 

flows to monthly flows are applied in this study rather than using a single model to generate monthly flows directly like 

Thomas-Fiering [22], [23].  The AR (1) model can be expressed by the following equation: 

                                                                                                                                                          (3) 

Where qi+1 and qi are the annual flows for the (i+1) Th and ith years;    is the mean of annual flows; zi is the standardized 

normal random variable; s is standard deviation and ρ is lag-1 serial correlation of annual flows. 

 In Equation (3) the annual stream flow data are standardized and then normalized, so    = 0 and s =1. As the dominant 

probability distribution function for annual flows is Pearson III, to transform the standardized data to normalized data 

Wilson-Hilferty transformation is used [1]. Later, these data are disaggregated into monthly flows using V-S matrix 

model [22]. As the generated data are still standardized and normalized they are transformed to the data that has 

Pearson III probability distribution using Wilson-Hilbert transformation and afterwards they are also converted from 

standardized data to ordinary stream flow data. The synthetic stream flow data are generated in 1000 sequences which 

each sequence is equal in length to historical data. Statistical characteristics of both historical and generated annual 

stream flow data are compared in Table 4. It is clear from this table that the performance of AR (1) model in preserving 

annual characteristics of stream flow is acceptable. The performance of V-S model in this sense is also satisfactory. 

 

2.3. Reservoir systems storage-yield-performance analysis 
 

The analysis of reservoir systems with performance indices is carried out using modified Sequent Peak Algorithm 

(SPA) [5], [24]. This algorithm is capable of undertaking both time based reliability and vulnerability in determining CP 

of reservoir systems [8], [6], [25]. The reservoir systems are simulated for 1000 sequences of synthetic data.  The 

analysis for every sequence is carried out assuming constant demands in all months of the year for 20%, 30%, 40%, 
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50%, 60%, 70%, and 80% of Mean Annual Flow (MAF). The combination of time based reliabilities of 90%, 93%, 

95%, 96%, 97%, 98%, 99% and 100% and the vulnerabilities of 0%, 5%, 10%, 15%, 20%, 25% and 30% are also 

undertaken in the simulation. Finally CP is calculated for each site with different combinations of demand, reliability 

and vulnerability by modified SPA. 

 
Table 4: Comparison between Statistical Characteristics of Historical and Generated Synthetic Annual Stream flow Data in Study Sites 

Site Data 
Mean SD 

CV Skew 
Serial correlation 

(×10
6
 m

3
) (×10

6
 m

3
) ( lag-1) 

Melaka 
Historical 185.75 73.54 0.396 0.478 0.160 

Generated 185.17 71.77 0.388 0.448 0.104 

Muar 
Historical 1359.00 656.23 0.483 2.026 0.175 

Generated 1351.84 619.29 0.458 1.861 0.125 

3. Results and discussion 

3.1. Within-year and over-year behavior 
 

Figure 2 shows the relationship between CP and parameter m for different time-based reliabilities in 30% vulnerability 

for both rivers. Each curve in Figure 2 includes 7 different demands of 20%, 30%, 40%, 50%, 60%, 70% and 80% of 

mean annual flows (MAF).  Figure 2 depicts that for 100% time-based reliability, the transition between within-year 

and over-year behavior (CP = 1 year) occurs at approximately m = 1.8 for Melaka river and m = 1.1 for Muar river. It is 

also noted that the magnitude of transitional m also depends upon time based reliability. For instance, at   90% 

reliability in Melaka River the transitional m is about 1.3. On contrary, parameter m method determines m = 1 as a 

transitional criteria between within-year and over-year behaviors [17]. Consequently parameter m approach is an 

approximate method and may not be complete and the real magnitude of transitional m depends upon other parameters 

such as reliability, vulnerability and length of data. Therefore later, parameter m  method was modified by including CV 

of annual flows so over-year systems will have CV > 1 (or CV < 1 and 0 ≤ m ≤ CV) and within-year systems will have 

CV < 1 and m satisfying the inequality CV ≤ m ≤ 1/ CV [18].  However Figure 2 indicates that there are some cases 

which CV < 1 for both rivers and CV ≤ m ≤ 1/ CV (0.388 ≤ m ≤ 2.577 for Melaka River and 0.458 ≤ m ≤ 2.183 for 

Muar River) which means reservoir should experience within-year behavior according to modified parameter m 

method. However the behavior of reservoir according to the Monte Carlo simulation results is over-year. For instance in 

Figure 2, for Melaka all the behavior cases are predicted as within-year by modified parameter m  method, however in 

reality the majority of the cases have over-year behavior so the modified parameter m method may be even less efficient 

than the original parameter m method in distinguishing between two different types of reservoir behaviors. 

 

 
Fig. 2: Relationship between CP and M Parameter for Vulnerability = 30% and Different Reliabilities in Melaka and Muar Rivers 

 

Consequently, the only reasonable approach to predict the behavior of reservoir systems is to modeling CP using 

regression equations involving effective parameters such as reliability and vulnerability. Hence in this study appropriate 

equations are developed for each site separately to predict CP. 

 

3.2. Modeling the critical period of reservoir systems 
 

3.2.1. The function of CP and parameter m 

 

It is perceived from Figure 2 that the relationship between CP and parameter m may have a power form. In this study to 

find the fittest type of relationship trial and error method is employed in the way that some kinds of relationships such 

as linear, power, logarithmic and exponential are fitted to the analysis results and the one with the highest R
2
- 
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coefficient is selected. It is observed that for both Melaka and Muar rivers the fittest equation between CP and m has a 

power form.  Therefore, the equation between CP and parameter m can be suggested as follows:  

                                                                                                                                                                                (4) 

This equation includes 7 demands consists of 20%, 30%, 40%, 50%, 60%, 70% and 80% of mean annual flows (MAF). 

CP is critical period measured in years. The parameters A and B depend upon site characteristics, Reliability and 

Vulnerability indices. The coefficients of A and B together with their R
2
- coefficients for different reliabilities and 

vulnerabilities are presented at Table 5. It is obvious from this table that Equation (4) has a very good fitness with 

simulation results because of closeness of R
2
 coefficients to one in all the cases which makes it appropriate to modeling 

CP. 

 
Table 5: Coefficients of A and B Together with their R2-Coefficients for Different Reliabilities and Vulnerabilities for Both Sites. 

Site Melaka Muar 
 

Melaka Muar 

Rel.
*
 Vul.

**
 A B R

2
 A B R

2
 Vul. A B R

2
 A B R

2
 

1.00 0.00 2.28 -1.55 0.99 1.42 -2.28 0.98 0.00 2.28 -1.55 0.99 1.42 -2.28 0.98 

0.99 

0.05 

2.23 -1.55 0.99 1.39 -2.30 0.98 

0.20 

2.10 -1.57 0.99 1.27 -2.34 0.99 

0.98 2.21 -1.55 0.99 1.36 -2.29 0.98 2.00 -1.56 1.00 1.20 -2.32 0.99 

0.97 2.19 -1.54 1.00 1.34 -2.27 0.98 1.91 -1.52 1.00 1.13 -2.26 0.99 

0.96 2.17 -1.54 1.00 1.32 -2.26 0.98 1.85 -1.49 1.00 1.08 -2.19 0.99 

0.95 2.14 -1.51 1.00 1.32 -2.24 0.98 1.79 -1.44 1.00 1.06 -2.14 0.99 

0.93 2.11 -1.49 1.00 1.29 -2.22 0.98 1.68 -1.35 1.00 0.99 -2.00 0.98 

0.90 2.07 -1.46 0.99 1.27 -2.18 0.98 1.58 -1.24 0.99 0.92 -1.85 0.97 

0.99 

0.10 

2.19 -1.55 0.99 1.35 -2.32 0.98 

0.25 

2.05 -1.58 0.99 1.24 -2.36 0.99 

0.98 2.14 -1.55 0.99 1.31 -2.30 0.99 1.91 -1.56 1.00 1.15 -2.32 0.99 

0.97 2.10 -1.54 1.00 1.27 -2.28 0.98 1.83 -1.53 1.00 1.07 -2.26 0.99 

0.96 2.06 -1.52 1.00 1.24 -2.25 0.98 1.75 -1.48 1.00 1.01 -2.17 0.99 

0.95 2.00 -1.48 1.00 1.22 -2.21 0.98 1.66 -1.40 1.00 0.98 -2.11 0.99 

0.93 1.95 -1.45 1.00 1.18 -2.16 0.97 1.55 -1.30 1.00 0.91 -1.96 0.98 

0.90 1.89 -1.39 1.00 1.14 -2.08 0.97 1.45 -1.17 0.99 0.84 -1.76 0.97 

0.99 

0.15 

2.14 -1.56 0.99 1.32 -2.33 0.99 

0.30 

2.01 -1.60 0.99 1.21 -2.36 0.99 

0.98 2.07 -1.55 1.00 1.25 -2.31 0.99 1.85 -1.57 1.00 1.10 -2.33 0.99 

0.97 2.00 -1.52 1.00 1.20 -2.27 0.99 1.74 -1.52 1.00 1.02 -2.25 0.99 

0.96 1.95 -1.50 1.00 1.16 -2.22 0.98 1.64 -1.46 1.00 0.95 -2.16 0.99 

0.95 1.89 -1.47 1.00 1.13 -2.20 0.98 1.57 -1.40 1.00 0.91 -2.07 0.99 

0.93 1.81 -1.40 1.00 1.07 -2.08 0.97 1.45 -1.27 1.00 0.84 -1.91 0.99 

0.90 1.73 -1.32 1.00 1.02 -1.96 0.97 1.33 -1.12 0.99 0.77 -1.69 0.98 
* Reliability **Vulnerability 

 

3.2.2. Regression equations to estimate Critical Period 

 

To develop regression equations to predict CP it is required to express coefficients of A and B in Equation (4) as a 

function of reliability and vulnerability indices.  The A and B coefficients can be expressed as follow: 

                                                                                                                                                                                       (5) 

                                                                                                                                                                    (6) 

Where Re is the reliability indices between 0.90 and 1.00 and Vu is vulnerability indices between 0.00 and 0.30. 

The coefficients of a1, b1, c1, a2, b2 and c2 can be obtained through multiple regression analysis by employing the least 

squares method for each two sites separately using coefficients of A and B corresponding to different reliabilities and 

vulnerabilities that is presented in Table 5. Each of these equations is calibrated for 48 cases for both rivers separately 

(8 (reliabilities) × 6 (vulnerabilities)). The estimated coefficients and t-statistics are presented in Table 6. The t-statistics 

involves t-values and critical t-value. The t-values are obtained through dividing the estimated coefficient by their 

corresponding standard errors. The t-values show the significance of corresponding coefficients in regression analysis 

and their absolute values should be greater than critical t-value to be statistically effective in regression analysis. 

Critical t-value can be obtained by specified degree of freedom (DF) of regression analysis and assuming probability 

level (α) = 0.05 or 0.10 through a table in a statistical manual. In this analysis DF = 45 and α = 0.10 and the critical t-

value is 1.68.  It can be seen that absolute value of all t-values in Table 6 are greater than critical t-value (1.68) which 

implies that all variables are significant in the regression analysis. 
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Table 6: Estimated Regression Coefficients and T-Statistics 

Site Coef. 
A 

Coef. 
B 

Estimate t-value Critical t-value Estimate t-value Critical t-value 

Melaka 

a1 -1.74 -4.61 1.68 a2 1.20 4.40 1.68 

b1 4.11 10.61 1.68 b2 -2.82 -10.07 1.68 

c1 -1.70 -14.04 1.68 c2 0.18 2.02 1.68 

Muar 

a1 -1.35 -5.50 1.68 a2 1.56 3.86 1.68 

b1 2.83 11.24 1.68 b2 -3.95 -9.50 1.68 

c1 -1.25 -15.85 1.68 c2 0.23 1.78 1.68 

 

Summary statistics of regression analysis is presented in Table 7. The R
2
 is the coefficient of determination of 

regression analysis which is acceptable for all the cases in the analysis. SEE is standard error estimate of A and B. F-

Stat is F statistics or F value which is high enough in all cases. Degree of freedom of regression analysis is shown by 

DF which is 45 for all the cases and finally F-dist. is the probability that a higher value of F-stat occurred by chance and 

as it is seen, F-dist. values are 0.00 for all the cases in the analysis which implies that the high magnitude of F-stat is not 

occurred by chance and are valid. Consequently according to Table 6 and Table 7 it is concluded that the regression 

analysis is statistically efficient enough to estimate both A and B coefficients in the study sites. 

 

3.2.3. Performance of equation to estimate critical period 

 

Having executed the regression analysis, calibrating the CP equations and checking the efficiency of the analysis 

statistically, it is pertinent to evaluate the performance of these equations in predicting CP. The evaluation is performed 

by the comparison between predicted and observed results of reservoir simulation. The CP equations for Melaka and 

Muar are as follow: 

                                  
                                                                                                                (7) 

                                
                                                                                                         (8) 

Where, CP is the critical period in years, Re is time-based reliability indices between 0.90 and 1.00 and Vu is 

vulnerability indices between 0.00 and 0.30. 

 
Table 7: Summary Statistics of Regression Analysis 

Site Melaka Muar 

 
A B A B 

R
2
 0.91 0.74 0.92 0.71 

SEE 0.08 0.06 0.05 0.09 

F-stat 215.6 63.8 261.8 56.3 

DF 45 45 45 45 

F-dist. 0.00 0.00 0.00 0.00 

 

The performance of Equations (7) and (8) are shown in Figure 3.  The simulation of critical period is executed for each 

site to consists of 336 cases (8(reliabilities) ×6(vulnerabilities) × 7(demands)) where each case represents a point plotted 

in Figure 3. It is observed that for both sites the points are located around y = x line which means that the observed 

results from simulation  are accurately reproduced by the estimated results from regression equations  even when CP is 

less than one year and the reservoir behavior is within year. This is encouraging because there are currently a few 

relationships to predict CP for within-year behavior. The correlation coefficient between observed CPs and estimated 

CPs are 0.9939 and 0.9867 for Melaka and Muar rivers, respectively and also the standard error in evaluating CPs are 

0.1686 and 0.3667 for two sites, respectively which generally show the regression equations to predict CP  perform very 

well. 
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Fig. 3: Performance of Developed Regression Equations in Prediction of Critical Period 

4. Conclusions 

Reservoir has to be analyzed using Monte Carlo Simulation approach in order for the results to be realistic and to 

consider droughts that are more severe than historical ones and may occur in future. Moreover, it is necessary to use 

performance indices such as reliability and vulnerability in reservoir analysis to economize the planning of reservoir 

systems and also to control the performance of reservoirs during failure periods. 

Developing regression equations to predict CP is a powerful tool to determine the behavior of reservoirs systems and to 

identify the aggregation level of the data that should be employed in designing stage of reservoirs. 

The main specific outcomes of this study are as follow: 

1) Combination of AR(1) and V-S data generation models under Pearson III probability distribution function for 

both monthly and annual stream flow data in Melaka and Muar are efficient enough to preserve historical data 

characteristics such as mean, standard deviation, skewness and auto-correlation lag one. 

2) Within-year and over-year behavior of reservoirs in Melaka and Muar rivers may not be identified by parameter 

m or modified parameter m methods even when the reliability is 100%. Therefore, to determine the real behavior 

of reservoir systems it is necessary to develop regression equations to predict CP. 

3) CP of reservoir systems is not only dependent upon draft and variation of stream flow but also it is influenced by 

other parameters such as performance indices (reliability and vulnerability). 

4) Regression equations are developed to predict the CP of reservoir systems in Melaka and Muar rivers separately. 

The performance of these equations are very good even when CP < 1 year. This is encouraging because there are 

currently a few relationships that can predict CP of within-year behavior. 

5) The CP equations are developed for Melaka and Muar rivers separately because these two sites are different and 

developing single CP equation for these two sites may decrease the accuracy. However these equations can be 

used for any sites in Malaysia provided that their key annual stream flow characteristics particularly CV and 

skewness are close to Melaka and Muar. 

6) The task of developing CP prediction equations in Malaysia has begun with this study and there is potential and 

necessity to develop CP equations for other sites in Malaysia separately. Moreover as an extension to this study it 

is also recommended to develop CP equations and to generalize this equation for different hydrologic regions in 

Malaysia. 
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