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Abstract 

 

This experiment examined the preprocessing for predicting of physical activity recognition model to access the relationship between time 

duration of sensors, the single tri-axial accelerometer, and fitness recognition (sitting, standing, walking, and running). The experimented 
with sixteen students (62.5% male and 37.5% female, age between eighteen through twenty-three year old) of the Informatics school at 
Walailak University. The authors had the experimental setup with the split dataset, 80% for training and testing, and 20% for validation, 
and repeated k-fold Cross-Validation (number=10, repeats=3) for resampling method to evaluate model performance for baseline mod-
els. When the authors measured model’s performance, the authors found the follows results. First – the raw dataset with 123,156 sam-
ples, the best models performance has accuracy level with KNN: k-Nearest Neighbor and RF: Random Forest is 100%. Second – the 
aggregate dataset time duration 1 second with 1,240 samples, the best models performance has accuracy level with RF: Random Forest is 
100%.Third – the aggregate dataset time duration 5 seconds with 251 samples, the best models performance has accuracy level with RF: 

Random Forest is 99.5%. Fourth – the aggregate dataset time duration 10 seconds with 128 samples, the best models performance has 
accuracy level with KNN: k-Nearest Neighbor is 96.82%. Fifth – the aggregate dataset time duration 15 seconds with 86 samples, the 
best models performance has accuracy level with KNN: k-Nearest Neighbor is 96. 21%.Sixth – the aggregate dataset time duration 20 
seconds with 66 samples, the best models performance has accuracy level with LDA: Linear Discriminant Analysis is 98%.Seventh – the 
aggregate dataset time duration 25 seconds with 54 samples, the best models performance has accuracy level with KNN: k-Nearest 
Neighbor is 96.33%. Moreover, finally, Eight – the aggregate dataset time duration 30 seconds with 46 samples, the best models perfor-
mance has accuracy level with KNN: k-Nearest Neighbor is 93.61%. In the future work, the authors planned to get more accuracy model 
by adding more features from another sensor, heart rate. Mining data collected from sensors provide valuable result in the physical activi-

ty recognition area. The improvement in performance is required especially in the healthcare field. The more increasing of using the 
wearable device, the wider opportunity in the data mining research area can be. 
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1. Introduction 

According to increasing trend of using the wearable device for 
health application, there are a lot of set up to research data mining 

from sensor data such as accelerometer and gyroscope. This ex-
periment examined the physical activity recognition model for the 
association between the single tri-axial accelerometer with three 
features on android smart watch and fitness recognition in sixteen 
students (62.5% male and 37.5%, age between eighteen through 
twenty-three year old) of the Informatics school at Walailak Uni-
versity. The experiment criteria are, each volunteer has to do 
physical activity: sitting, standing, walking, and running for five 
minutes by activity. Thus, the objective of this study is to assess 

the preprocessing dataset of physical activity recognition model 
for the association between single tri-axial accelerometer with 
three features on Android mobile phone and physical activity rec-
ognition in sixteen students while having physical activity. 
The physical activity recognition application on android wear was 
developed to support two primary functions on the model of ma-
chine learning algorithm, model training and model inference. 
For model training, the dataset, physical activity, was trained for 

sitting, standing, walking, and running with at least five minutes 

of each activity with the mixed gender of sixteen students. Next, 
the authors had processed the following steps: Define the problem, 
Summarize data, Prepare data, Evaluate algorithms, and Finalize 
model. Predicting and monitoring the student physical activity in 
daily used with model inference. 
The resampling methods: (1) Bootstrap (2) k-fold cross-validation 

with and without repeats (3) Leave one out cross-validation, were 
evaluated with Naive Bayes (NB) model. The authors found that 
The resampling method’s performance with Repeated k-fold 
Cross-Validation (number=10, repeats=3) has the highest accuracy 
level at 89.84%. So, In this experiment, the authors had the test 
setup with the split dataset, 80% for training and training, and 
20% for validation, and repeated k-fold Cross-Validation (num-
ber=10, repeats=3) for resampling method to evaluate model per-
formance for baseline models. 

The current multiclass classification algorithms were selected to 
evaluate. When the authors measured model’s performance in the 
experiment, the authors found the follows results. First – the raw 
dataset with 123,156 samples, the best models performance has 
accuracy level with KNN: k-Nearest Neighbor and RF: Random 
Forest is 100%. Second – the aggregate dataset time duration 1 
second with 1,240 samples, the best models performance has ac-
curacy level with RF: Random Forest is 100%.Third – the aggre-

gate dataset time duration 5 seconds with 251 samples, the best 
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models performance has accuracy level with RF: Random Forest 
is 99.5%. Fourth – the aggregate dataset time duration 10 seconds 
with 128 samples, the best models performance has accuracy level 
with KNN: k-Nearest Neighbor is 96.82%. Fifth – the aggregate 
dataset time duration 15 seconds with 86 samples, the best models 

performance has accuracy level with KNN: k-Nearest Neighbor is 
96. 21%.Sixth – the aggregate dataset time duration 20 seconds 
with 66 samples, the best models performance has accuracy level 
with LDA: Linear Discriminant Analysis is 98%.Seventh – the 
aggregate dataset time duration 25 seconds with 54 samples, the 
best models performance has accuracy level with KNN: k-Nearest 
Neighbor is 96.33%. Moreover, finally, Eight – the aggregate 
dataset time duration 30 seconds with 46 samples, the best models 
performance has accuracy level with KNN: k-Nearest Neighbor is 

93.61%. 
The authors organize the content of this paper as follows; Section 
II Related works, Section III Methodology, Section IV Results and 
Discussion, Section V Conclusion and Future Works. 

2. Related Works  

The authors had reviewed the previous works that related to the 
physical activity recognition area and the ensemble algorithms 
area as follows. 

2.1. Physical Activity Recognition 

Saez Y. Et al. [26] mentioned that physical activity is the primary 
indicator of identifying a quality of person’s health. Much Physi-
cal activity recognition’s research had been studying: Ellis, K. et 

al. [11] presented the model of life living dataset that much variety 
and noisy data by using triaxial accelerometers and GPS: Global 
Positioning System. Morales J. &Akopian D. [19] presented the 
result of reviewed research papers which related to signals, data 
capture and preprocessing, unknown on-body locations and orien-
tations, selecting features, activity models, and classifiers, metrics 
for movement execution, and how to evaluate the usability of a 
system. Bieber G., Kirste T., and Gaede M. [13]  proposed Low 

sampling rate for physical activity recognition to prevent the pow-
er consumption of the sensors with high accuracy rate. Natalie 
Jablonsky N. et al. [24] investigated the performance of C5.0, 
decision tree algorithm, with tenfold cross-validation and 80/20 
training/test resample methods to multi-sensors and body’s loca-
tion dataset, triaxial accelerometers, with exergame hardware. 
Baldominos A., Saez Y., &Isasi P. [4] proposed the improvement 
of activity recognition model by using an activity recognition 

chain (ARC), optimized genetic algorithms with higher accuracy 
and lower sensors. They evaluated their model by using leave-one-
subject-out cross-validation with an average classification accura-
cy of about 94%.  

Obuchi M. et al. [23] studied the answer rate to ESM: Ex-

perience Sampling Method communicates to decrease peo-

ple’s mental burden by checking breakpoints during fitness 

and sending a message at that time. They found that the 

improvement was very well at a transition to their activity 

from "walking" to "sedentary." 
Ellis, K. et al. [11] presented the multi-level classifier with ran-

dom forest algorithm and HMM algorithm for physical activity 
prediction. Reiss A., Hendeby G., and Stricker D. [7] stated that 
ConfAdaBoost.M1 algorithm mostly improves the classification 
performance for more massive and more complex classification 
datasets of the physical activity recognition. Suarez I. et al.  [18] 
presented the result of improving the recognition accuracy of 
physical activities, public dataset, by using only the accelerometer. 
They managed by splitting an accelerometer data to a small- and a 

high-frequency component with a low-pass filter that provided a 
new set of features. We used it to a complement to the raw accel-
eration to reduce the number of sensors needed to recognize phys-

ical activities. Majethia R. et al. [25] identified a novel model, 
crowd-sourced sensor data. They tested their Generic algorithm 
with a large dataset and found that model accuracy was higher 
than 95%. 

3. Methodology 

In this experiment, the physical activity dataset that the authors 
collected was the multiclass dataset with a label for sitting, stand-
ing, walking, and running. 
The process of data analysis: (1) Define the problem: load packag-
es, load dataset, split-out validation dataset. (2) Summarize data 
with descriptive statistics and data visualizations. (3) Prepare data 

with the technique of data cleaning, feature selection, data trans-
forms. (4) Evaluate algorithms both linear algorithms – LDA: 
Linear Discriminant Analysis and non-linear algorithms – KNN: 
k-Nearest Neighbors, SVM: Support Vector Machine, CART: 
Classification and Regression Trees, RF: Random Forest and 
compare algorithms, and (5) Finalize Model: predictions on 
validation dataset, create a standalone model on entire training 
dataset, and save the model for later use. 

Tools: R version 3.3, R-Studio, Windows 10 and caret package. 
Hardware: Desktop computer CPU i7, RAM 16 GB, GPU 
GTX1060. 
 

 
Fig. 1: Workflow of Predict Physical Activity Recognition 

 

 
Fig. 2: User Interface of Android Mobile Application for Collection the 

Physical Activity Dataset 

4. Result and Discussion  

The authors were experimental into two phase: First, Data collec-
tion phase – developed an Android Wear application for collecting 
data and collect data from participants, and Second, Data Analysis 
phase - manipulated and analyzed a dataset, and measurement 
models. 
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4.1. Experiment Setup 

Participants - the volunteers who comprise of undergraduate and 

graduate students from the School of Informatics, Walailak Uni-
versity. There are sixteen volunteers with age range from eight-
een-year-olds to twenty-three-year-olds. Among the volunteers, 
ten are males (62.25%), and six are females (37.50%). 
Procedure – First, Data Collection: The authors developed an an-
droid application for reading sensors’ data from the single tri-axial 
accelerometer in the Android smartwatch to collect physical activ-
ity dataset and managed the physical activity: sitting, standing, 

walking, and running dataset for every five minutes from the par-
ticipants. Second, Data Analysis: The authors manipulated and 
analyzed the dataset with R programming and its library with the 
step as follows: First, the authors summarized data with descrip-
tive statistics and data visualization. Second, the authors prepared 
data with data cleaning, feature selection, and data transformation. 
Third, the authors evaluated algorithms with test options and eval-
uation metric, spotted check algorithms both linear algorithms and 

non-linear algorithms to be based line algorithms, and compared 
algorithms. 
 

 
Fig. 3: Graph of Accelerometer (x, y, z) from the Original Dataset 

 

 
Fig. 4: Graph of Accelerometer (x, y, z) from the Aggregated Dataset with 

Break One Seconds 

4.2. Experiment Results 

After, the authors completed the data collection phase. The au-
thors managed and analyzed dataset as follows: prepared data 
preprocessing and evaluated the algorithms.  
 

1)  Preprocessing 
First, the authors had got the sensor data loggers (log file) in CSV 
extension file format from Android wear application. Second, the 
authors preprocessed the dataset with the following steps: Consol-
idated all log files into single dataset file with R programming. 

Cleaned data by removing a feature which had a null value. Fil-
tered only type of sensor: an accelerometer. Aggregated with 
arithmetic mean of those logs by time and activity as the follows: 
the completed dataset as an original dataset, the aggregate dataset 
with break one second, five seconds, ten seconds, fifteen seconds, 

twenty seconds, twenty-five seconds, and thirty seconds. A visual-
ized that dataset with line graph for each activity. Managed with 
the proper data format for training and testing the models.  
 

 
Fig. 5: An Aggregated Dataset with Arithmetic Mean by the Time Dura-

tion 
 

2) Split-Out Validation Dataset 
In this experiment, we used the split dataset, 80% for training and 
testing, and 20% for validation, and repeated k-fold Cross-
Validation (number=10, repeats=3) for resampling method to 

evaluate model performance for baseline models 
 

Table 1: The Result of Resampling Method with Naive Bayes 

Resampling Methods  with 

Naive Bayes 

Accu-

racy 

(%) 

Kappa 

(%) 

Bootstrap (n=100) 89.05 85.38 

k-fold cross-validation without repeats (num-

ber=10) 
89.67 86.22 

Repeated k-fold Cross-Validation (number=10, 

repeats=3) 
89.84 86.43 

Leave one out cross-validation 89.86 86.46 

 

From Table 1, The authors found that the result of resampling 
methods by using Naive Bayes (NB) model performance an accu-
racy level were Bootstrap (n=100) 89.05%. k-Fold cross-
validation without repeats (number=10) 89.67%. Repeated k-fold 
Cross-Validation (number=10, repeats=3) 89.84%. Leave one out 
cross-validation 89.86%. In this experiment, the authors selected 

to use the split dataset, 80% for training and testing, and 20% for 
validation and repeated k-fold Cross-Validation (number=10, 
repeats=3) for resampling method to evaluate model performance 
for baseline algorithms. 
 

3) Evaluate Algorithms 
When the authors were developing a predictive model, the authors 
need to assess the capability of the model on unseen data. Estimat-

ing predictive model accuracy need to train with unseen data. In 
this experiment, the authors presented five approaches for estimat-
ing model performance on unseen data. First, split a dataset into 
train and test subsets. Second, evaluate model accuracy using the 
bootstrap method. Third, evaluate model accuracy using k-fold 
cross-validation with and without repeats. Fourth, evaluate model 
accuracy using leave one out cross-validation.  
Model evaluation metric, There is two type of classification mod-

els. First, the authors used the metrics: (1) Accuracy and Kappa 
(2) Area under the curve (AUC), Sensitivity or recall, Specificity 
or the true negative rate (3) Logarithmic Loss to evaluate the Bi-
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nary. Second, the authors measured the metric: (1) Accuracy and 
Kappa (2) Logarithmic Loss for measuring the performance of the 
Multiclass class classifications. The root means square error 
(RMSE) and R2, called as R-squared, measured for Regression 
models. In this experiment, the collecting dataset was multi-class 

classification. So we considered model performance with the per-
centage of Accuracy and Kappa. Compare Algorithms - with base-
line algorithms. 
 

Table 2: The comparison of the evaluated algorithms 
Accuracy (%) 

 
30 25 20 15 10 5 1 0 

LDA 
91.9

4 

96.1

1 

98.0

0 

94.9

2 

96.1

8 

97.6

7 
97.68 98.26 

CAR

T 

67.7

8 

89.6

7 

94.7

7 

93.3

9 

95.8

6 

98.9

9 
87.42 85.15 

KNN 
93.6

1 

96.3

3 

95.7

7 

96.2

1 

96.8

2 

99.0

0 
99.87 

100.0

0 

SVM 
91.9

4 

92.8

3 

96.0

6 

95.2

6 

91.6

1 

95.7

0 
97.51 97.59 

RF 
91.6

7 

93.9

4 

95.8

9 

94.3

7 

96.1

8 

99.5

0 

100.0

0 

100.0

0 

Kappa (%) 

 
30 25 20 15 10 5 1 0 

LDA 
89.3

7 

94.7

4 

97.2

7 

93.0

8 

94.9

0 

96.8

9 
96.91 97.67 

CAR

T 

56.7

5 

86.2

4 

89.4

2 

91.0

5 

94.4

8 

98.6

5 
83.08 80.03 

KNN 
91.5

9 

95.1

5 

92.6

3 

94.8

8 

95.7

3 

98.6

6 
99.82 

100.0

0 

SVM 
89.3

7 

90.3

1 

94.7

0 

93.5

5 

88.8

5 

94.2

7 
96.68 96.78 

RF 
89.0

5 

91.7

7 

92.6

6 

92.3

6 

94.9

2 

99.3

3 

100.0

0 

100.0

0 

 
From table 2, First – the raw dataset with 123,156 samples, the 
baseline models performance has accuracy level with LDA: Linear 
Discriminant Analysis is 98.25%, CART: Classification and Re-
gression Tree is 85.15%, KNN: k-Nearest Neighbor is 100%, 
SVM: Support Vector Machine is 97.58 %, and RF: Random For-
est is 100%. Second – the aggregate dataset time duration 1 se-
cond  with 1,240 samples, the baseline models performance has 
accuracy level with LDA: Linear Discriminant Analysis is 

97.68%, CART: Classification and Regression Tree is 87.41%, 
KNN: k-Nearest Neighbor is 99.86%, SVM: Support Vector Ma-
chine is 97.51%, and RF: Random Forest is 100%.Third – the 
aggregate dataset time duration 5 second  with 251 samples, the 
baseline models performance has accuracy level with LDA: Linear 
Discriminant Analysis is 97.67%, CART: Classification and Re-
gression Tree is 98.98%, KNN: k-Nearest Neighbor is 98.99%, 
SVM: Support Vector Machine is 95.70%, and RF: Random For-

est is 99.50%. Fourth – the aggregate dataset time duration 10 
second  with 128 samples, the baseline models performance has 
accuracy level with LDA: Linear Discriminant Analysis is 
96.18%, CART: Classification and Regression Tree is 95.86%, 
KNN: k-Nearest Neighbor is 96.82%, SVM: Support Vector Ma-
chine is 91.61%, and RF: Random Forest is 96.18%. Fifth – the 
aggregate dataset time duration 15 second  with 86 samples, the 
baseline models performance has accuracy level with LDA: Linear 

Discriminant Analysis is 94.92%, CART: Classification and Re-
gression Tree is 93.39%, KNN: k-Nearest Neighbor is 96.21%, 
SVM: Support Vector Machine is 95.26%, and RF: Random For-
est is 94.37%. Sixth – the aggregate dataset time duration 20 se-
cond  with 66 samples, the baseline models performance has accu-
racy level with LDA: Linear Discriminant Analysis is 98%, 
CART: Classification and Regression Tree is 94.77%, KNN: k-
Nearest Neighbor is 94.77%, SVM: Support Vector Machine is 

96.06%, and RF: Random Forest is 95.89%.  Seventh – the aggre-
gate dataset time duration 25 second  with 54 samples, the base-
line models performance has accuracy level with LDA: Linear 
Discriminant Analysis is 96.11%, CART: Classification and Re-
gression Tree is 89.67%, KNN: k-Nearest Neighbor is 96.33%, 

SVM: Support Vector Machine is 92.83%, and RF: Random For-
est is 93.94%.  Finally, Eight – the aggregate dataset time duration 
30 second  with 46 samples, the baseline models performance has 
accuracy level with LDA: Linear Discriminant Analysis is 
91.94%, CART: Classification and Regression Tree is 67.78%, 

KNN: k-Nearest Neighbor is 93.61%, SVM: Support Vector Ma-
chine is 91.94%, and RF: Random Forest is 91.67%. 
 

 
Fig. 6: Graph of the Comparison of the Evaluated Algorithms: Accuracy 

(%) 

 

 
Fig. 7: Graph of the Comparison of the Evaluated Algorithms: Kappa (%) 

 

4) Finalize Model 
First, the authors selected Random Forest algorithm to train with 
98,526 samples, three predictors, and four classes: 'sitting,' 
'standing,' 'walking,' 'running,' resampling: Cross-Validated (10 
fold, repeated three times) for the original dataset. The authors 

found that the final value used for the model was mtry: 2, Accura-
cy: 100%, and Kappa: 100%. 
Second, the authors selected Random Forest algorithm to train 
with 796 samples, three predictors, and four classes: 'sitting,' 
'standing,' 'walking,' 'running,' resampling: Cross-Validated (10 
fold, repeated three times) for the original dataset. The authors 
found that the final value used for the model was mtry: 2, Accura-
cy: 100%, and Kappa: 100%. 

 
Table 6: Confusion Matrix of Predictions on Validation Dataset with 

Random Forest (RF) Algorithm for the Original Dataset 

Prediction 
Reference 

sitting standing walking running 

sitting 6396 0 0 0 

standing 0 5774 0 0 

walking 0 0 5902 0 

running 0 0 0 6558 
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Table 7: Confusion matrix of Predictions on validation dataset with Ran-

dom Forest (RF) algorithm for the original dataset with break one seconds. 

Prediction 
Reference 

sitting standing walking running 

sitting 51 0 0 0 

standing 0 46 0 0 

walking 0 0 47 0 

running 0 0 0 53 

 

Then the authors use Random Forest algorithm to predict on vali-

dation dataset both the original dataset and the original dataset 
with break one seconds. The authors had got both the overall sta-
tistics: Accuracy: 100% and Kappa: 100%, the confusion matrix 
as shown in Table 6 and Table 7. 

5. Conclusion  

When the authors measured model’s performance, the authors 
found the follows results. First – the raw dataset with 123,156 
samples, the best models performance has accuracy level with 
KNN: k-Nearest Neighbor and RF: Random Forest is 100%. Se-
cond – the aggregate dataset time duration 1 second with 1,240 
samples, the best models performance has accuracy level with RF: 
Random Forest is 100%.Third – the aggregate dataset time dura-
tion 5 seconds with 251 samples, the best models performance has 

accuracy level with RF: Random Forest is 99.5%. Fourth – the 
aggregate dataset time duration 10 seconds with 128 samples, the 
best models performance has accuracy level with KNN: k-Nearest 
Neighbor is 96.82%. Fifth – the aggregate dataset time duration 15 
seconds with 86 samples, the best models performance has accu-
racy level with KNN: k-Nearest Neighbor is 96. 21%.Sixth – the 
aggregate dataset time duration 20 seconds with 66 samples, the 
best models performance has accuracy level with LDA: Linear 

Discriminant Analysis is 98%.Seventh – the aggregate dataset 
time duration 25 seconds with 54 samples, the best models per-
formance has accuracy level with KNN: k-Nearest Neighbor is 
96.33%. Moreover, finally, Eight – the aggregate dataset time 
duration 30 seconds with 46 samples, the best models performance 
has accuracy level with KNN: k-Nearest Neighbor is 93.61%.  
The results indicate that the authors can prepare the dataset with 
aggregated dataset with arithmetic mean with properly break dura-
tion time in seconds with the smaller samples while the model can 

provide the highest accuracy as the follows: the raw dataset with 
123,156 samples, the best models performance has accuracy level 
with KNN: k-Nearest Neighbor and RF: Random Forest is 100% 
and the aggregate dataset time duration 1 second with 1,240 sam-
ples, the best models performance has accuracy level with RF: 
Random Forest is 100%. 
In the future work, the authors planned to get more accuracy mod-
el by adding more features from another sensor, heart rate. Mining 

data collected from sensors provide valuable result in the physical 
activity recognition area. The improvement in performance is 
required especially in the healthcare field. The more increasing of 
using the wearable device, the broader opportunity in the data 
mining research area can be. 
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