

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.19) (2018) 329-333

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Page Enabled FSM Model For Multi Rate- High Throughput

Regex Pattern Matching System

S. Nagaraju
1
, P.Sudhakara Reddy

2*

Department of ECE, Jawaharlal Nehru Technical University, Ananthapuramu, Andhra Pradesh, India

*Corresponding Author Email: 2snagaraju02@gmail.com

Abstract

In recent years demands for high throughput NIDS systems are emerged with compatible Wildcard support for the detection of irregular
patterns like ClamAV. In this work we presented a single-compound FSM based state transition controller for regular ASCII based
patterns and counter enabled score generation model for regex patterns which contains both repeated characters and don’t cares void
segments. In many existing digital NIDS systems are token-stream based approaches were used with dedicated memory units to
accommodate byte oriented matching with moderate network payload speed. The NIDS efficiency is largely depends on both intrusion

byte size and the size of database. To mitigate this problem memory based digital NIDS system requires coordinated pattern matching. In
this work, FSM based one hot state encoding model with bit wise state transition controller is proposed which gives both parallel task
and high throughput payload validity check. Here during the payload monitoring if input segments are aggregated as tokens, the state
transition controller is used to enable the counter for token model and state transitions are carried out based on the regex patterns
received and the concurrent matches that are halted in parallel manner. To avoid clock synchronization over concurrent matching process
and variable rate matching process page wise integration of each sub groups are carried out which is driven by ADPLL unit. The
performance metrics of FSM state controlled payload monitoring is proved in terms of speed and memory efficiency over state-of-art-
the-art methods. Here in our proposed NIDS system consumes lesser memory resources and it is verified through comparison with state-
of-the-art methods.

Keywords: Regex patterns, Parallel processing, FSM, PAGE, Strings, tokens.

1. Introduction

In recent years the demands of network intrusion detection
systems which includes both normal string types of intrusions and
deep packet inspections based irregular regex types is emerged.
And also the system has to deal with wide range of pattern lengths
which requires both parallel task and efficient memory handling

technique to accommodate a large number of intrusions and rule
sets. In most cases the demands over high speed is meeting up
with efficient string matching unit.
It has been investigated in many works and proved several
methodologies to speed up the string matching process [1], [2],
and for effective pattern storage, SRAM based static memory cells
are most used [3]. However, there are several problems arises
while introducing SRAM cells in NIDS system since off chip data

processing will degrade the system performance. To solve these
limitations over speed constrains data buffering and network
routings are used to moderate the speed during memory reading
[4]. On the other hand FPGA-devices are equipped with on chip
block RAMs which are readily available, and provides higher
flexibility and throughput rate for NIDS system [5],
reconfigurable architecture will reduce overall hardware cost
significantly. In addition, I/O programming will achieve
satisfactory processing throughput. In general, FSM based pattern

matching unit always requires large number of states to match a
larger size patterns [6], [7], so allocating dedicated memory cells
for each character is difficult task to accomplish.

In many previous works considerable performance measures are

achieved with some significant memory reduction. Generally
around 3.2K regex patterns in the virus database are composed of
delimited symbols like *[8]. In [9] they presented hardware
efficient memory architectures to detect both regular (strings) and
the regex patterns. In [10] the relationship between the repeated
sequence in various patterns and its frequency of occurrence
weights are assigned to speed up the matching process. In this
work, we proposed FSM memory architectures to accommodate

both regular and irregular (ClamAV virus database) NIDS
patterns.
Here we aim to meet two basic demands of next generation NIDS
system such as memory requirement and parallel task. To
implement the network detection unit with low hardware cost
memory efficient one hot state encoding FSM unit is proposed. To
achieve high throughput demands PAGE based bit wise matching
unit is proposed. In general, if the patterns are stored as ASCII
values then the matching speed is restricted and both complexity

and computational time is linearly increased with input pattern
length. Moreover, the cost of a memory unit is very high for regex
kind of patterns; in general, external memory units are preferred to
combat with irregular patterns. Here we also incorporate another
major requirement of on-demand variable rate matching updating
process using ADPLL based page enabled hardware architecture.

http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 330

2. Regex Pattern Matching

2.1. Pattern Matching

Pattern matching process is always has trade off complexity over the

performance results in terms of operating frequency. Our proposed
method is based on the bitwise pattern matching through LSB to
MSB matching approach. Instead of using the conventional ASCII-
based matching, we transform the regexes into combined token-with
multiple segments each contains several bytes of intrusion patterns.
A token is considered here as sub-pattern and ID is extracted for
each matched items along with the unified patterns. The tokens are
represented as alphabet set and the input byte-stream is transformed

into a bit-stream using FSM hardware units, where the number of
bits will remain same for all the token-stream irrespective to the
number of segments in the original payload. Whenever a token is
detected, the FSM-based detection system will only need to make a
finite number of state transitions.

2.2. Hardware based Approach

In recent years demands of digital NIDS systems to meet the

throughput requirements are keep on rising. Fully digitalized NIDS
systems can able to meet this demand but requires memory hungry
device to hold the intrusion patterns, large size memory blocks, and
also prominently need to carry out payload monitoring process as a
fully integrated compound blocks in a synchronized manner. In
General, finite state machines can only be used when pattern rule
sets are evaluated as one hot states and ASCII enabled character
matching is widely used which is not preferred for high performance

device modelling for the following reasons:

 Each state in FSM machines holds intrusion patterns as
ASCII character.

 Irrespective of NIDS rule sets used for payload monitoring,
the payload validity check is possible only end of pattern

matching process.

2.3. Pattern Matching

The regex features followed in the ClamAV pattern set are shown in
Table 1. A major concern in the ClamAV format is the string
repetition Y{p,q} (string Y repeats p to q times) and the Kleene
closure c* (character Y repeats any number of times-usually
unknown). Unlike ASCII-based pattern matching in network
intrusion detection system, ClamAV virus signatures are mostly

executable code. While both the number of internet users and
network traffic rate has been increased every year the demands for
high speed is unavoidable. And number of rules sets required for
efficient pattern matching is also increasing in its own kind due to
advancements in online markets and also its completion evolved
over networks. In hardware based NIDS system, entire rule sets and
patterns need to be stored in nonvolatile memory. The size of the
ClamAV pattern is about 10 MB (excluding the wildcard bytes in

the virus signatures). Designing memory unit for NIDS system for
the entire set of ClamAV virus patterns is entirely complicated task
to accomplish using on-chip memory units available in any FPGA
devices even with block RAM based advanced FPGA families.
Hardware based NIDS need to be run at very high speed.

2.4. Pattern Matching

The major disadvantage of identifying the virus signature using

string based pattern matching is not that simple since the nominal
variants of the hard-to-detect virus can easily pass through the anti-
virus system. Simple identical way to deal with this kind of virus is
that the register values in the matching code are masked off during
the signature specification. Hence, both wildcards and nibbles are
most commonly found in regex virus signatures. As shown in Table
1 regex virus signatures are mostly covered by nibbles, e.g.

Worm.FlyStudio-20. Along with the nibbles, repeated string bytes

are also quite common (e.g. Worm.Appaple-315). In some cases
extreme repetition of string bytes are found which contain several
instances of string bytes. Here all the possible combinations are
encountered and the patterns are expanded accordingly.

Table.1: Example virus signatures [8]

Virus name Signature

Exloit.HTML.ObjectType

3c6f626a65637420747970

653d222f2f2f2f2f2

f2f2f2f2f2f2f

Dos. Flip.Gen 0ebb????????????b2??81c1????eb

Worm.FlyStudio-20 5?5?5?5?f85?5?0f83

In conventional SRAM memory architecture byte information’s
are stored based on the address given and ASCII values are
forwarded as 8 bit and also capable of only one data read at a time.
Here this problem over memory efficiency is mitigated with input
payload-driven SRAM controller and sub pattern enabled
matching followed by bitwise comparison in states. As shown in
Fig. 1. In bitwise payload monitoring concurrent matching is done
but can be processed only 1 bit at a time from LSB to MSB in

each FSM machine. Overall metrics given by bit based matching
is used solve memory and throughout related problems associate
with a ASCII based matching process as the latency is major cause
with throughput rate.

Table 2: Regular expression in the ClamAV virus signatures [8]

Symbol Meaning

?? match any byte, i.e. wildcard byte

c? match a high nibble (the four high bits)

?c match a low nibble (the four low bits)

(aa|bb|cc) match aa or bb or cc

!(aa|bb|cc) match any byte except aa and bb and cc (negation)

* match any no. of bytes (arbitrary displacement)

{n} match n bytes (exact displacement by n bytes)

?? match any byte, i.e. wildcard byte

3. Proposed NIDS System Architecture

3.1 Segment Divisions into Tokens

Here if the input rule set is a string, then it is not subdivided and it

is considered directly as bytes. In case of short segments patterns
detected directly using page enabled FSM units. If a pattern length
is large with regex contents, then the segmentation process is
carried out in two steps, first sub division of patterns and second
generation of trivial tokens. Then later on both these components
are merged as a single-byte, and then its corresponding ID is
generated as adjacent component which is distinct for each regex
patterns.

Fig. 1: FSM State Transition Controller

International Journal of Engineering & Technology 331

3.2 FSM State Transition Controller

Here FSM core enabled one hot state encoding model is
incorporated for bit wise state transition and matching process. Each
FSM state store one bit which is driven from LSB to MSB. All
payloads are sub divided into sub groups and parallel matching
process is accomplished with the help of 8 FSM machines as shown

in Fig. 2. Since concurrent operations are evolved in all FSM
machines and running in parallel manner whereas each pages
monitoring unique intrusion patterns and each FSM machines
monitoring payloads through bitwise comparison from LSB to
MSB. If any of these bits comparison fails and appropriate matching
process can be terminated through assertion, and successive bit
comparison is bypassed, payloads are validated.

3.3 Algorithm

The input patterns are divided into sub-patterns and each page is
equipped with unique group of intrusion patterns ASCII values.
Through configurable rule set selection, page enabled NIDS
systems were proposed with improved system performance where
the new patterns or rule sets are easily integrated. Finally, bitwise
pattern matching and FSM core enabled based bit transitions are
carried out between input payload and intrusions pattern length on

each page and the finally global match is triggered using partial
matching vector (PMV) scheme as shown in Fig. 3.

Fig. 2: Bit based Pattern Matching Algorithm

3.4 Regex System Architecture

The overall system architecture for patterns matching of the virus

detection including regex patterns sets is depicted in Fig. 4.
Hierarchical modules are built to detect the both types of tokens
for regex patterns and general string patterns as shown in Fig 4.
The input payload is converted into unified tokens, where the each
byte is converted into bit streams. The most simplified regex
signatures are divided into group of strings directly and complex
signature are divided into multiple segments.
The token detection units are responsible for finding the type of

tokens in the input payload stream, and the detected tokens are
merged with bit stream. If it is a string pattern, then the FSM state

transition will be initiated directly and end results are sent to the

output directly, and its reference location from SRAM memory is
synchronized for further processing by the memory controller. The
FSM unit is responsible for to form segments. If the converted
input segment is a NIDS pattern, then its ID is detected based
matching scoring results. If the segment has only string part then
ID is generated directly by the Scoreboard.

3.5 PAGE Enabled FSM Architecture

Here scalability is achieved using PAGE wised FSM matching
units each will represent unique regex patterns which take the
advantage of wildcards to realize the parallelism. The number of
FSM used for bitwise computation will be updated based on new
attributes included in the database and contributes linear
performance increase. Compare to core processing element based
approaches FSM based core processing consume lesser power and
exploits high scalability. FSM also has potential merits of high
performances and proportional to the higher frequency of

operation. There are two main reasons to limit the maximum
number of PEs. The proposed string matching has merits only for
conventional pattern sequence. Here with FSM based bit holding
states the constraints over a maximum number of core comparison
required to match the regex patterns and the problem over regex
pattern lengths is solved.

3.6 Data Driven Rate Controller

Bit based pattern matching is the optimal method for a string
matching process as the overall performance rate is not depends
on the pattern length and the pattern type. Here only 8 FSM
machines are used and each one equipped with only three one hot
states. In the case of page enabled model, the probability of early
detection is also high which is also related to the ratio between
network data rates over number of patterns in data base. However,
parallel-processing is used to eliminate latency problems with

improved throughput rate.
To handle pattern with large sizes it is divided as group of sub
patterns. Consequently the incoming data is also divided multiple
streams and each one is forwarded into the subgroup as a sequence
of ASCII values. To improve the re-configurability and adopt
network traffic data rate of each incoming payloads page enabled
parallel matching schemes is proposed where the matching is done
in bit wise manner.

It has following merits,

 Complexity is greatly reduced by replacing 8 bit comparator by
1 bit comparator.

 Maximum of 3 FSM state transitions are used and overall 8
FSM machines only required irrespective of patterns length.

4. Evaluation Results

Here PAGE enabled NIDS system is used for matching regex
patterns with fully digitalized FSM based bitwise comparison and
sub pattern wise grouping for better optimization in digital NIDS
system. The hybrid memory controller is used to regulate both string
and regex type patterns for all patterns matching process and its

metrics over parallel matching is validated through exhaustive
pattern inputs using functional simulation. Input stimulus driven
FPGA synthesizer is used to prove the area efficiency in terms of
memory requirements. In this paper, pipelined mechanism is not
used to mitigate latency related problems and still achieves
moderate throughput rate several Gbps which is validated through
FPGA QUARTUS II EDA tool synthesizer and its design
complexity reduction is also proven. However, the accuracy and

complexity reduction is largely depending on patterns types used as
shown in Table 2.

International Journal of Engineering & Technology 332

Fig. 3: Proposed Pattern matching system for regex patterns.

Table 3: Throughput Performance Comparison of PAGE enabled FSM model

NIDS type Parallel task merits Fmax(Hz)]

Multi-Stride String matching[11] 1 byte 230MHz

LUT model [12] 3 byte 144MHz

Proposed PAGE enabled model 6 byte 783MHz

Table 4: State-of-the-art comparison for memory efficiency of FSM based state holding model

Methods Virus signatures Memory requirements

Or, N.L et al.[12] 88.9K strings + 3.2K regexes 3.74 MB

Pao et al.[11] 82K strings 2.4 MB

Proposed FSM model 88.9K strings + 9.6K regexes 1.39 MB

Token based model not required any comparison to monitor the
repeated sequence and don’t care types in regex patterns during

the counting process. Our FSM based core design consumes about
1.39 MB on-chip memories as shown in table 3 and table 4 for
accommodating both types of patterns. Compared to the multi
threading and LUT based approaches FSM engine model requires
fewer memory spaces which equipped both the strings (88.9K)
and regexes (9.6K). Hence, it is possible to detect both types of
intrusions concurrently with our design.

4.1 ADPLL Synthesizer

Here, memory controller driven variable rate pattern matching
system is validated for all types of regex signature sets and its
efficiency through PAGE enabled bitwise parallel matching process
is proved through exhaustive test bench simulation with ClamAV
virus database version. Input payload driven all digital PLL
synthesizer is also validated through hardware synthesis and its
performance level is also proved to be in several GHz to
supportnext generation networks (5G). As shown in Figure 3 the

best optimal operating speed of FSM state transition is determined
incoming payload rate of the projected samples and adoptively
optimization is configured using variable delay lines for adapting
the different bit-rate of input data streams.
This research advances the state-of-art in string matching process
in a number of ways such as bit wise computation, ADPLL based
synchronization for variable rate NIDS system and regex pattern
matching process. An attempt was made to integrate all the above

process to build PAGEs for combined auto string matching
followed by token and ID generation. Integration of all the
modules yields promising results in string matching process. The
major contributions of the proposed FSM core enabled NIDS
model are summarized as follows:

 Design of FSM technique for bit wise computation.

 Design of an ADPLL technique followed by FSM one hot state

handling transition leads some prominent features such as promising
delay and memory reduction.

 PAGE enabled integrations to achieve a framework for

scalability and re-configurability as shown in Fig.4.

Fig. 4: Adoptive variable payload match bit-rate report

5. Conclusions

Here we verified the functionality proposed FSM-based parallel
string matching scheme with minimized memory requirements for
compound string and regex patterns. The problem of moderate
pattern lengths with wild cards is successfully mitigated by dividing
the segments into small byte oriented tokens with a fixed length.
The memory-efficient architectures were proposed for both staring
matching and complex regex pattern matching and the actual

throughout requirements are maximized with PAGE based parallel
processing. The total memory requirements for the real time regex
rule sets is compared with state-of-the-art methods it is concluded
that the proposed FSM based model is useful for reducing memory
requirements and ADPLL equipped multi rate matching is useful for
moderate throughput rate in any NIDS engines.

References

[1] Dharmapurikar, S.; and Lockwood, J.W. (2006). Fast and scalable

pattern matching for network intrusion detection systems. IEEE

Journal on Selected Areas in Communications, 24(10), 1781-1792.

[2] Aho, A.V.; and Corasick, M.J. (1975). Efficient string matching: an

aid to bibliographic search. Communications of the ACM, 18(6),

333-340.

[3] Tuck, N.; Sherwood, T.; Calder, B.; and Varghese, G. (2004).

Deterministic memory-efficient string matching algorithms for

intrusion detection. In INFOCOM Twenty-third Annual Joint

Conference of the IEEE Computer and Communications Societies,

2628-2639.

International Journal of Engineering & Technology 333

[4] Xu, J.; Kalbarczyk, Z.; Patel, S.; and Iyer, R.K. (2002).

Architecture support for defending against buffer overflow attacks.

In Workshop on Evaluating and Architecting Systems for

Dependability.

[5] http://www.stoimen.com/blog/2012/03/27/computer-algorithms-

brute-force-string-matching.

[6] Boyer, R.S.; and Moore, J.S. (1977). A fast string searching

algorithm. Communications of the ACM, 20(10), 762-772.

[7] Sourdis, I.; and Pnevmatikatos, D. (2003). Fast, large-scale string

matches for a 10Gbps FPGA-based network intrusion detection

system. In International Conference on Field Programmable Logic

and Applications, 880-889.

[8] PCRE – Perl Compatible Regular Expressions,

http://perldoc.perl.org/perlre.html

[9] Pao, D.; Wang, X.; Wang, X.; Cao, C.; and Zhu, Y. (2011). String

searching engine for virus scanning. IEEE Transactions on

Computers, 60(11), 1596-1609.

[10] Gupta, A.; Thakur, H.K.; Gupta, T.; and Yadav, S. (2017). Regular

Pattern Mining (With Jitter) On Weighted-Directed Dynamic

Graphs. Journal of Engineering Science and Technology, 12(2),

349-364.

[11] Pao, D.; and Wang, X. (2012). Multi-stride string searching for

high-speed content inspection. The Computer Journal, 55(10),

1216-1231.

[12] Or, N.L.; Wang, X.; and Pao, D. (2016). MEMORY-based

hardware architectures to detect ClamAV virus signatures with

restricted regular expression features. IEEE Transactions on

Computers, 65(4), 1225-1238.

http://www.stoimen.com/blog/2012/03/27/computer-algorithms-brute-force-string-matching
http://www.stoimen.com/blog/2012/03/27/computer-algorithms-brute-force-string-matching
http://perldoc.perl.org/perlre.html

