

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.19) (2018) 164-167

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Formal Specification Languages: Features, Challenges and

Future Directions

Hussin Ahmed
1
, Azham Hussain

2*
, Fauziah Baharom

3

Human-Centered Computing Research Lab, School of Computing, Universiti Utara Malaysia, 06000, Malaysia.

*Corresponding Author Email: 2azham.h@uum.edu.my

Abstract

Natural language is used as a popular way for Software Requirements Specification (SRS) to ensure successful communication between
stakeholders. However, natural language suffers from ambiguity which motivated software community to devise Formal Specification
Languages (FSLs) to state requirements precisely. Since the advent of FSLs, a heated debate among researchers and practioners was
raised to judge on the practical use of FSLs in industry. In this research, a contemporary review is conducted to shed light upon the

features, challenges and future directions of FSLs.

Keywords: Requirements specification; formal specification, formal methods.

1. Introduction

It has been acknowledged frequently that the most arduous task in
software development is deciding precisely what to build (Ronen,
2017). For this reason, requirements definition is of high
importance to produce a high-quality software product. Hussain
and Mkpojiogu (2016) stated that software projects that

undermine requirements engineering suffer or are likely to suffer
from failures, challenges and other attending risks. Requirements
are considered as an input to design, implementation and
validation phase of software product development(Hussain,
Mkpojiogu, & Kamal, 2016).This gives rise to the importance of
SRS in software engineering which leads to understanding the
proposed functionality of the software for guiding subsequent
stages in Software Development Life Cycle (SDLC). SRS is

serving as a basis for all communications regarding the software
being developed. Moreover, it constructs an agreement between
stakeholders including customers, managers and software
developers to agree upon the contents of requirements. This
agreement will be a roadmap for developing software product.
Furthermore,Pressman (2010) referred to SRS as a mean to assess
the quality once software is built.
Hence, the basic objective of SDLC is transforming SRS into

computer instructions written in programming languages.
Programming languages are composed of two parts, syntax and
semantics (Bourque & Fairley, 2014). The syntax of a language
defines the grammars and rules which must be followed to write a
correct program and the semantics provides the meaning of the
program (Lee, 1992). The critical problem with SRS is that
content suffers from all the inherent limitations that results from
using any natural language document (Huertas et al., 2011).These

problems include inconsistency, incompleteness and ambiguity.
The most critical problem of natural language is ambiguity which
results in the possibility of different interpretations of the same
requirement statement.

Ambiguity leads to poor definition of requirements which affects

the functionality of software and eventually leads to unsatisfied
customers. Ambiguous requirements have a passive effect in
developing software products in terms of time, cost and quality.
Furthermore, writing ambiguous requirements leads to a great deal
of iteration to understand what customers really want to achieve
regarding the functionality of the software. Sommerville
(2010)argued that software developers might interpret ambiguous
requirements from their perspectives in a way that facilitates its

implementation; however, this is not what the customersreally
want. In such scenario,software engineering community was
obliged to develop FSLs to overcome the ambiguity of natural
language.

2. Literature Review

2.1 Overview of Formal Specification Languages

Over the years, many significant formal languages have been
devised to construct formal specifications like object Z (Smith,
2012), Z notation (Spivey, 1992) and VDM (Jones, 1990).

Generally, formal methods involve rigorous steps to develop FSLs
based on mathematical techniques. These techniques include
logic, discrete mathematics and abstract algebra to represent the
required information for software construction (Alagar
&Periyasamy, 2011). FSLs are the products of formal methods to
guide the requirements engineer to write requirements
specification. A formal language is defined traditionally as an
alphabet of symbols and a set of grammar rules for constructing
well formed formulas from the alphabet (Alexander, 1995). The

main objective of formal specification languages is to support the
delivery of high-quality software based on well defined syntax and
semantics.

http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 165

2.2 Formal Specification Languages Review

Many publications addressed the applicability of FSLs in industry.
Clarke and Wing (1996) reviewed the practices of formal methods
and identified future directions for supporting the wide use of
formal methods. The emphasis on future directions are based on
developing reusable models and theories to prevent the repetitive
work in developing formal methods, creating different kinds of
abstractions, using efficient methods for decomposing global

properties into local properties, ease of learning and technology
transfer to the targeted audience. Moreover, the authors expected
that using formal methods will increase dependent on the
continuous support of developing new specification languages and
new verification techniques.
Lamsweerde (2000) reviewed the main formal specification
paradigms and discussed their evaluation criteria. Also, he
provided a brief assessment of the strengths and weaknesses of

formal specification technology. Lamsweerde (2000)concluded
that there is a long way to go before formal specifications can be
used by the average software engineer to gain visible
reward.Woodcock et al., (2009) conducted a survey to assess the
applicability of formal methods in industry. The focus was on the
increasing use of formal methods at the earlier stages of
specification and design. Using a structured questionnaire, data
was collected between November 2007 and December 2008 on 62
industrial projects. The survey illustrated that the respondents in

general were satisfied with the formal techniques used in their
projects.Kassab et al. (2014) used the Web-based QuestionProtool
to conduct a survey for assessing the use of formal methods. The
findings revealed that formal specifications techniques are still not
commonly utilized. Szmuc and Szpyrka (2015) have conducted a
short overview to determineadvantages and disadvantages of
formal methods. This overview led to a conclusion that formal
methods are applicable in specific areaswhere high reliability is

needed like Safety Critical Systems.Based on the aforementioned
publications, there is a need for contemporary and complementary
view to document the features, challenges and future directions of
FSLs.
On the basis of this research, the following research question and
research objective are formulated.
RQ: What are the features, challenges and future directions of
FSLs?

RO: The objective is to identify the features, challenges and future
directions of FSLs from the existing literature.

3. Methodology

In order to conduct this research, an analysis of literature review is
performed to answer the research question. There are three main

keywords used to collect relevant information regarding this topic
such as “requirements specification”, “formal method” and
“formal specification”. The review conducted based onmultiple
resources such as software engineering textbooks, journals and
conference publications.

4. Formal Specification Languages Features

FSLs have many features in contrast with informal ones. These
features will be discussed in the following sub-sections.

4.1 Revealing Design Flaws

If formal methods used early in software development, it can
reveal design flaws and detect potential errors that otherwise
would only possible be discovered in the costly testing and
debugging phases (Wing, 1990).Meyer (1993)has referred to some

potential flawsthat can be eliminated from SRS document. These
flaws include contradiction, inconsistency within the requirements

document; noise, extraneous information; silence, the lack of
information concerning a required component of the software;
forward reference, the use of items not yet defined in requirements
document; over specification, the burden of dealing withirrelevant

information; ambiguity, a lack of precise information concerning a
particular component and wishful thinking, the inclusion of
requirements not required by the software.However, using formal
methods earlier has a side effect to verify building the right
product from perspective of users. Hence, this feature can be
obtained when the stakeholders are familiar about formal methods
which can be applicable in certain sophisticated domains.

4.2 Overcoming the Conceptual Gap

The most marvelous feature of FSLs is the success of overcoming
the conceptual gap between requirements specification and
programming languages. This feature helps to overcoming the
heterogeneous concepts between requirements specification and
programming languages. As a result, this characteristic will secure
producing a clear understanding about the software product
functionality. This is important to resolve ambiguity in

requirements specification which creates a clear view for software
developers. Moreover, this feature will sustainthe capability of
producing code directly from requirements specification.

4.3 Automatic Analysis and Validation

FSLs enable an automatic analysis and promotevalidation. This
advantage will smooth the usage of tools for reasoning about most
of the representedknowledge in SRS which can help to reduce

time and effort. Automatic analysis will contribute to avoid
violation of syntax and semantics in SRS document. This is
important to facilitate writing SRS based on the predefined
grammar and help to avoid semantics errors like adding textual
variable to numerical.Moreover, it will boost the validation
process of the software product to ensure building the product
right.

4.4 Reusability

FSLs can support reusability in software engineering projects.
This feature results from the capability of formal representations
to store the concepts and relations in a software repository which
could be employed to reuse existingspecifications in similar
software projects (Diamantopoulos et al., 2017). In other words,
software analysts have the capability to use the same building
blocks in FSLs to represent similar functionalities in ongoing
projects. Employing reusability will save time via avoiding

repetitive work and enhance the productivity of SDLC.
Furthermore, this feature will accelerate software development to
produce many software products.
The significance features of FSLs make them an ideal choice for
requirements specification in critical systems such as nuclear
missile system, auto pilot system and air traffic system. However,
using FSLs come with disadvantages and huge cost as well. In the
following section, an overview of these disadvantages.

5. Formal Specification Languages Challenges

5.1 Learning

It is observable that the vast majority of software projects still rely
upon natural language for specifying requirements. Normally,
people use natural language on a daily basisin comparison with
FSLs. In reality, FSLs are usually complex and require a
sophisticated mathematical knowledge which is difficult to be
achieved by naive users and in most of the designers and
practicing analysts (Fraser et al., 1991).This phenomena has been
documented in software engineering textbooks (Wiegers &

166 International Journal of Engineering & Technology

Beatty, 2013;Sommerville, 2010). Also, Pressman (2010) stated
that formal methods are so unfamiliar to most people. In practice,
formal languages require a high learning curve (Olajubu,
2015;Szmuc & Szpyrka, 2015). Taking into consideration that

newcomer in software projects who take the responsibility of
writing requirements specification might not be familiar about the
discipline of formalism. This results in enormous effort and time
to learn FSLsfor achieving a certain level of professionalism.

5.2 Verification

The second challenge of using FSLs is the difficulty of
verification. It is important that stakeholder understand the

presented requirements thus they would be able to verify it (Robie,
Baharom, & Mohd, 2014). Thus, the verification process requires
the involvement of customers to agree upon the requirements to be
developed. Reviewing requirements will be onerous task from
perspective of customers who cannot grasp the formal
specification terminologies. Unfortunately, this means that a FSL
usually does not serve as a basis for discussion and
communication. From an industrial point of view, Agerholm and

Larsen (1998) stated that only parts of the systems would benefit
from formal methods and the general skill level in industry is not
adequate to keep up with the techniques for fully formal
development.Additionally, Ryan (1993) clarified that some
requirements cannot easily be formalised. For instance, demands
that a user interface be "user-friendly” or a piece of code can be
"easily maintained”. As a consequence, software projects cannot
rely upon formal methods completely to verify requirements.

From this perspective, using natural language will be inevitable to
smooth the verification process and accelerate the agreement upon
SRS.

5.3 High Cost and Strenuous Effort

A third challenge of using FSLs is the high cost and strenuous
effort for stating comprehensive and precise requirements. Bollin
and Rauner-reithmayer (2014)emphasized that a lot of revisions
are needed to develop a specification that is close to the concepts

of the developers and customers have in mind. Interestingly, Pang
et al. (2016) argued that even an experienced users may commit
mistakes particularly in the case of developing complex formal
specifications. The main reason behind this difficulty is the
limited expressive capability of formal specification in
comparison with natural language which can be easily used to
express any sort of requirements.

5.4 Lack of Community Support

The fourth challenge is lack of support from government,
academic institutions and industry. For instance, Mandrioli (2015)
declared that among 157 project proposals by young researchers to
be funded by the Italian government, none of 157 proposals had a
minimum reference to formal system analysis and verification. If
there is a certain direction from the government to support the
applications of FSLs, many proposals will contribute to make

advantage of FSLs. In addition, formal methods and the
mathematics necessary to support them have not found their way
into standard software engineering curriculum (Alexander, 1995).
Tse and Pong (1991) noticed that users are not willing to try a new
method with which they are not familiar. These observations
revealed the magnificent role of academic communities to
encourage authors for writing interesting curriculum about the
discipline of FSLs. Enriching the knowledge domain of FSLs with

sufficient and interesting curriculum will help students and
practioners as well to be knowledgeable about using FSLs
effectively. Thirdly,the need of industrial support is highly
required to facilitate using FSLs. This requires developing tools
and Integrated Development Environment (IDE) to make the life
of using FSLs easier. Although model checkers, proof tools and

the like exist for formal models, they provide little support for the
software life cycle (Alexander, 1995). The lack of proper tools has
often been claimed to be a main obstacle to the industrial take up
of formal methods (Agerholm & Larsen, 1998). As a result, many

software companies would be reluctant to use FSLs due to lack of
productive tools to ease the work of software development.

6. Conclusion and Future Directions

Generally, the difficulty of using FSLs leads to the gap between
its advantages and the real practice in software

development(Cataño, 2017;Martin et al., 2016;Wang & Miao,
2016). In order to increase the adoption of FSLs, many efforts
have to be done in three interlocking directions (see Figure 1).
Firstly, the direction of community support which requires support
from government, academic institutions and industry to initiate
projects based on formal methods. Secondly,
developmentdirection whichmotivates cooperation between
government, academic community and industrial institutions for

developinginteractive tools in order to support the users for
learning and using FSLs in developing software projects. This
entails developinguser friendly syntaxand interactive interfaces.
Szmuc and Szpyrka (2015) noticed that the engineers are
discouraged not only by more complicated notation but also lack
of advanced tools for specification and analysis of properties.
Creating interactive interfaces and productive tools of
FSLswillenhance and accelerate writing requirements in a timely

manner. Thirdly, teachingdirectionwhich requires creating
engagingcurriculum and comprehensive user guides to facilitate
the comprehension of formal methods. Moreover, the lecturers
have to change their methodology of teaching via providing in
depth explanation and sufficient examples of using FSLs to raise
the level of comprehension. The assumption is that, by raising
comprehensibility, one is also very likely raising acceptability
(Bollin & Rauner-reithmayer, 2014). This will encourage students,
researchers and practioners to be familiar about the conceptsof

formal methods.

Fig. 1: Future directions of formal specification languages

References

[1] Agerholm, S., & Larsen, P. G. (1998). A lightweight approach to

formal methods. In In International Workshop on Current Trends in

Applied Formal Methods (pp. 168–183).

[2] Alagar, V. S., & Periyasamy, K. (2011). Specification of software

systems. (D. Gries & F. B. Schneider, Eds.) (2nd ed.). Springer

Science & Business Media.

[3] Alexander, P. (1995). Best of both worlds [formal and semi-formal

software engineering]. IEEE Potentials, 14(5), 29–32.

[4] Bollin, A., & Rauner-reithmayer, D. (2014). Formal specification

comprehension: the art of reading and writing z. In In Proceedings

of the 2nd FME Workshop on Formal Methods in Software

Engineering (pp. 3–9). ACM.

Teaching

Development

Community
Support

International Journal of Engineering & Technology 167

[5] Bourque, P., & Fairley, R. E. (2014). Guide to the Software

Engineering Body of Knowledge (3.0). IEEE Computer Society

Press.

[6] Cataño, N. (2017). An empirical study on teaching formal methods

to millennials. In In Proceedings of the 1st International Workshop

on Software Engineering Curricula for Millennials (pp. 3–8). IEEE

Press. http://doi.org/10.1109/SECM.2017.1

[7] Clarke, E. M., & Wing, J. M. (1996). Formal methods: State of the

art and future directions. ACM Computing Surveys (CSUR), 28(4),

626–643.

[8] Diamantopoulos, T., Roth, M., Symeonidis, A., & Klein, E. (2017).

Software requirements as an application domain for natural

language processing. Language Resources and Evaluation, 51(2),

495–524. http://doi.org/10.1007/s10579-017-9381-z

[9] Fraser, M. D., Kumar, K., & Vaishnavi, V. K. (1991). Informal and

Formal Requirements Specification Languages: Bridging the Gap.

IEEE Transactions on Software Engineering, 17(5), 454–466.

http://doi.org/10.1109/32.90448

[10] Huertas, C., Gómez-ruelas, M., Juárez-Ramírez, R., & Plata, H.

(2011). A formal approach for measuring the lexical ambiguity

degree in natural language requirement specification: Polysemes

and Homonyms focused. In In Uncertainty reasoning and

knowledge engineering (URKE), 2011 International Conference

(pp. 115–118).

[11] Hussain, A., & Mkpojiogu, E. O. (2016). Requirements: Towards

an understanding on why software projects fail. In In AIP

Conference Proceedings. AIP Publishing.

[12] Hussain, A., Mkpojiogu, E. O., & Kamal, F. M. (2016). The role of

requirements in the success or failure of software projects.

International Review of Management and Marketing, 6, 306–311.

[13] Jones, C. B. (1990). Systematic software development using VDM

(2nd ed.). Englewood Cliffs: Prentice Hall.

[14] Kassab, M., Neill, C., & Laplante, P. (2014). State of practice in

requirements engineering: contemporary data. Innovations in

Systems and Software Engineering, 10(4), 235–241.

http://doi.org/10.1007/s11334-014-0232-4

[15] Lamsweerde, A. Van. (2000). Formal Specification : a Roadmap. In

In Proceedings of the Conference on the Future of Software

Engineering (pp. 147–159). ACM.

[16] Lee, S. (1992). A formal methodology for the specification of

distributed systems from an object perspective. Louisiana State.

[17] Mandrioli, D. (2015). On the heroism of really pursuing formal

methods: title inspired by Dijkstra’s On the Cruelty of Really

Teaching Computing Science. In In Proceedings of the Third FME

Workshop on Formal Methods in Software Engineerin (pp. 1–5).

IEEE Press. http://doi.org/10.1109/FormaliSE.2015.8

[18] Martin, B., Bogusch, R., Fraga, A., & Rudat, C. (2016). Bridging

the Gap between Natural Language Requirements and Formal

Specifications. In In REFSQ Workshops.

[19] Meyer, B. (1993). On formalism in specifications. In Program

Verification (pp. 155–189).

[20] Olajubu, O. (2015). A textual domain specific language for user

interface modelling. In In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering (pp. 1060–1062).

ACM. http://doi.org/10.1007/978-1-4614-3558-7_84

[21] Pang, C., Pakonen, A., Buzhinsky, I., & Vyatkin, V. (2016). A

study on user-friendly formal specification languages for

requirements formalization. In In Industrial Informatics (INDIN),

2016 IEEE 14th International Conference (pp. 676–682). IEEE.

[22] Pressman, R. S. (2010). Software engineering: a practitioner’s

approach (7th ed.). Palgrave Macmillan.

[23] Robie, M. A. M., Baharom, F., & Mohd, H. (2014). Functional

requirements specification for e-tendering system using

requirement template. In In Knowledge Management International

Conference (KMICe), Langkawi, Malaysia.

[24] Ronen, B. (2017). Excessive software development : Practices and

penalties, 35, 13–27.

http://doi.org/10.1016/j.ijproman.2016.10.002

[25] Ryan, K. (1993). The role of natural language in requirements

engineering. In In Requirements Engineering, 1993., Proceedings

of IEEE International Symposium (pp. 240–242).

[26] Smith, G. (2012). The Object-Z specification language. Springer

Science & Business Media.

[27] Sommerville, I. (2010). Software Engineering: Pearson New

International Edition. Pearson Education Limited.

http://doi.org/10.1111/j.1365-2362.2005.01463.x

[28] Spivey, J. (1992). The Z notation : A Reference Manual. Prentice

Hall International.

[29] Szmuc, T., & Szpyrka, M. (2015). Formal methods—Support or

scientific decoration in software development? In In Mixed Design

of Integrated Circuits & Systems (MIXDES), 2015 22nd

International Conference (pp. 24–31). IEEE.

[30] Tse, T. H., & Pong, L. (1991). An examination of requirements

specification languages. The Computer Journal, 34(2), 143–152.

[31] Wang, X., & Miao, W. (2016). Automatic support for formal

specification construction using pattern knowledge. In In Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD) (pp. 363–372).

[32] Wiegers, K., & Beatty, J. (2013). Software requirements (3rd

Editio). Pearson Education.

[33] Wing, J. M. (1990). A specifier’s introduction to formal methods.

Computer, 32(9), 8–22. http://doi.org/10.1109/2.58215

[34] Woodcock, J. I. M., PETER GORM, L., Bicarregui, J., & JOHN, F.

(2009). Formal Methods : Practice and Experience Engineering

College of Aarhus. ACM Computing Surveys (CSUR), 41(4), 1–

40.

