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Abstract 
 
A new method is proposed to find suitable definitions of electrical power components in non-sinusoidal conditions, which based on the 

analysis of three-phase instantaneous power flows of both fundamental and all harmonics of signals in three-phase non-sinusoidal system. 
This paper also introduces an attempt to get the physical essence of the proposed three-phase power components for any non-sinusoidal 
unbalanced three-phase system. Therefore, we can use the formulas of these definitions with modern digital measurement technology in 
order to reach to revenue meter which enables us to identify the responsible for the harmonic distortion between customers and distribu-
tion utilities. The aim of this paper is presenting an analytical study that will rely on it in the next paper part B, in order to assess the con-
tributions of harmonic distortion for utility and the customer at the Point of Common Coupling (PCC). 
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1. Introduction 

1.1. Background 

Industrial process is heavily automated, to ameliorate its manufac-
turing efficiency and performance; consequently the industrial 
customers introduce highly nonlinear loads to the distribution 
systems, due to the excessive use of power electronic equipment. 
This can introduce a large amount of harmonic distortion through-
out the system.  
We should admit that, we are much more effective in producing 
harmonics than in their mitigation [1]. This situation should not be 

propagated; also it has already become an alarming situation in an 
engineering institute, where power quality is an essential require-
ment. To ensure quality power, it is necessary to carry out an ana-
lytical study for defining power components to identify the details 
of the quantities they pollute in each instance. The following cases 
may necessitate performing an analytical study [2]: 

 Harmonic pricing  

 Determining the quality of electric service, 

 Detection of the harmonic distortion sources, 

 Harmonic mitigation techniques. 

1.2. Previous work 

The conventional definition for power components and calculation 
methods became debatable under non-sinusoidal conditions; con-
sequently power component definitions were a field of meaningful 
research which created many theories. 
Budeanu [3] presented the first attempt in 1927, to find a solution 
for power definition under non-sinusoidal conditions. This defini-

tion apparent power S, distortion power D, active power P, and 
reactive power Q. Fryze [4] presented the second attempt in 1932, 
where the current sources is spilt to active components, and a non-
active components. 

Shepherd and Zakihani [5]contended that the conventional defini-
tion of Budeanu [3] for reactive power was based on a fallacy, and 
presented their definitions. Sharon 's definition[6] contended that 
the conventional definition of Budeanu [3] for active power may 
result in discontinuity in the reactive power compensation by line-
ar devices. 
Emanuel [7] considered that only two components were needed in 
the apparent power from a physical viewpoint : they were active 

power, and complementary power. 
Kuster [8] proposed an innovative definition for power component 
calculation. They divided the current of a power circuit into active 
current ip, inductive current iql and residual inductive current iqlr. 
Czarnecki [9] developed the notion of perpendicular decomposi-
tion of the current source, to decompose the voltage sources into 
generated , scattered, active, and reactive components to the three 
phase a symmetrical circuit [10]. Also he inserts unbalanced cur-

rent components iuon these components. 
Most of authors follow the ideas formulated by Fryze [4] , which 

decompose the load currents and power signal into different divi-
sions like: active and reactive [11]; orthogonal active and residual 
[12]; instantaneous active and instantaneous reactive [13]; active 
and inactive [14]; distortion less and distortion [15]; real and im-
aginary [16]; fundamental and non-fundamental [17]; active, reac-
tive, distortion, non-active and apparent power [2]. 
Reference [18] used Park vector as a method to define active and 
nonactive power component in nonsinusoidal three-phase system. 

Reference [19], presented an attempt to achieve the decomposition 
of total instantaneous power for the single-phase system.  
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In Reference [20], the formulation of instantaneous reactive power 
theory is developed. Also the authors proposed the non-
fundamental effective apparent power as new definition, which 
rely on the flow of instantaneous power [21]. 
In Reference [22], The power components defined in the IEEE 
Standard 1459-2010 [23] are revisit. As a result, new definitions 
for study and assessment of various power quantities like as non-
fundamental power, distortion power, and harmonic apparent 

power are introduced. 
All these fertile efforts are criticized among each other, [17], and 
[24-28]. Generally, there are some conflicts because of one or 
more of these reasons:  

 extremely decomposition,  

 shortage of physical essence,  

 inadequate summation,  

 sophisticated measurement,  
Finally, this Survey summarizes formerly published methods and 
deduces that: despite the often repeated claims that existing defini-

tions are capable to resolve all problems in every application, 
debate about these definitions is likely to continue for years to 
come. The only real consensus that has emerged is that the present 
definitions are not sufficient for economic studies under 
nonsinusoidal poly-phase systems [29]. 
Therefore, none of the above methods can produce a definition of 
power components, which satisfy all desired power properties 
under non-sinusoidal conditions 

1.3. Motivation 

Economic benefits from using power electronic equipment are 
much more visible than losses and bad consequences caused by 
harmonics produced by this equipment. As a result, the sources of 
harmonic distortion become increasingly distributed over distribu-
tion system.  
Defining of non-sinusoidal power components is still one of the 

most controversial subjects. In this paper, a new method which is 
rely on the analytical study of three-phase instantaneous power 
flows of both fundamental and harmonic signals is presented. It is 
attempting to get an obvious physical interpretation, and to subedit 
this for each power component in three-phase non-sinusoidal un-
balanced system. 
The study of harmonic has become a significant component in the 
analysis and design of the distribution system. Indeed, the analysis 
of harmonic has been vastly used for: 

 Planning of system , 

 Development of operating criteria, 

 Designing of equipment, 

 Troubleshooting, 

 Realization standard compliance, 

 Responsibility of harmonic distortion, etc. 
The authors of this paper were interested in the trend of harmonic 

distortion responsibility, and they provided many research papers 
to determine responsibility for the harmonic distortion in single 
phase and balanced systems [30-34]. In fact, the balanced three-
phase systems are uncommon; the same authors induced the pro-
posed method to produce an analytical study of power components 
that can determine the responsibility of harmonic distortion be-
tween the utility and the customer at the Point of Common Cou-
pling (PCC) in unbalanced systems. 

By using this analysis, the voltages and currents measured at the 
Point of Common Coupling (PCC) are sufficient for determining 
the magnitude and direction of power for each harmonic order. 
Therefore the developed method can be performed in any power 
quality Analyzer, which observes the harmonic voltages and cur-
rents (amplitudes and phase angles) together. 

2. Analytical study of power components un-

der sinusoidal condition 

This Analytical study is based on an instantaneous power analysis 
for the calculation of power components in three-phase four-wire 
unbalanced system under sinusoidal condition. 

2.1. Instantaneous representation 

The line-to-neutral instantaneous voltages at time instant (t) are as 
follows: 
 

va(t) =  √2 Va sin(wt + αa)                                                       (1) 

vb(t) =  √2 Vb sin(wt  + αb − (2π 3)⁄ )                                     (2) 

vc(t) =  √2 Vc sin(wt + αc + (2π 3)⁄ )                                       (3) 

 
The line instantaneous currents at time instant (t) are as follows: 
 

𝑖𝑎(𝑡) =  √2 𝐼𝑎 𝑠𝑖𝑛(𝑤𝑡 + 𝛽𝑎)                                                       (4) 

𝑖𝑏(𝑡) =  √2 𝐼𝑏 𝑠𝑖𝑛(𝑤𝑡 + 𝛽𝑏 − (2𝜋 3)⁄ )                                      (5) 

𝑖𝑐(𝑡) =  √2 𝐼𝑐 𝑠𝑖𝑛(𝑤𝑡 + 𝛽𝑐 + (2𝜋 3)⁄ )                                       (6) 
 
Where the angular frequency(𝑤), voltage phase angles(𝛼), cur-

rent phase angles(𝛽). Using (1), and (4), the instantaneous power 

per phase (a) is defined as: 
 

𝑢𝑎(𝑡) = 𝑣𝑎(𝑡)𝑖𝑎(𝑡) = 2𝑉𝑎𝐼𝑎 𝑠𝑖𝑛(𝑤𝑡 + 𝛼𝑎)𝑠𝑖𝑛(𝑤𝑡 + 𝛽𝑎) 

           = 𝑉𝑎𝐼𝑎[𝑐𝑜𝑠( 𝛼𝑎  –  𝛽𝑎) − 𝑐𝑜𝑠(2𝑤𝑡 +  𝛼𝑎  + 𝛽𝑎)] 

𝑉𝑎𝐼𝑎[𝑐𝑜𝑠( 𝛼𝑎 –  𝛽𝑎) − 𝑠𝑖𝑛(2𝑤𝑡 +  𝛼𝑎  + 𝛽𝑎 − 𝜋 2⁄ )]                  (7) 

 
𝑢𝑎(𝑡) =                                                                                        (8) 

 

𝑉𝑎𝐼𝑎 𝑐𝑜𝑠( 𝛼𝑎 –  𝛽𝑎) + 𝑉𝑎𝐼𝑎 𝑐𝑜𝑠( 𝛼𝑎  –  𝛽𝑎)𝑠𝑖𝑛(2𝑤𝑡 + 2𝛽𝑎 −

𝜋 2⁄ ) + 𝑉𝑎𝐼𝑎 𝑠𝑖𝑛( 𝛼𝑎  –  𝛽𝑎)𝑠𝑖𝑛(2𝑤𝑡 + 2𝛽𝑎)                               
(9) 
 
𝑢𝑎 = 𝑃𝑎 + 𝑝𝑎(𝑡) + 𝑞𝑎(𝑡)                                                           (10) 

 
𝑢𝑎 = 𝑃𝑎 + 𝑠𝑎(𝑡)                                                                         (11) 

 
Where: 

 𝑠𝑎(𝑡): the instantaneous phasor power for phase (a)  

 𝑝𝑎(𝑡): the instantaneous active power for phase (a) 

 𝑞𝑎(𝑡): the instantaneous reactive power for phase (a) 

 𝑃𝑎 : the average or active power for phase (a)  

 𝑃𝑎 = 𝑉𝑎𝐼𝑎 𝑐𝑜𝑠( 𝛼𝑎 − 𝛽𝑎) , the amplitude of instantaneous 
active power for phase (a) 

 𝑄𝑎 = 𝑉𝑎𝐼𝑎 𝑠𝑖𝑛( 𝛼𝑎  − 𝛽𝑎) , the amplitude of instantaneous 
reactive power for phase (a) 

As the same, the instantaneous power per phase (b) is defined as: 
 
𝑢𝑏(𝑡) = 𝑣𝑏(𝑡)𝑖𝑏(𝑡)                                                                    (12) 

 

𝑢𝑏(𝑡) = 𝑉𝑏𝐼𝑏 𝑐𝑜𝑠( 𝛼𝑏  − 𝛽𝑏) + 𝑉𝑏𝐼𝑏 𝑐𝑜𝑠( 𝛼𝑏  − 𝛽𝑏) 𝑠𝑖𝑛(2𝑤𝑡 +
2𝛽𝑏  − (11𝜋 6)⁄ ) + 𝑉𝑏𝐼𝑏 𝑠𝑖𝑛( 𝛼𝑏  − 𝛽𝑏)𝑠𝑖𝑛(2𝑤𝑡 + 2𝛽𝑏 −
(4𝜋 3)⁄ )                                                                                      (13) 

 
𝑢𝑏 = 𝑃𝑏 + 𝑝𝑏(𝑡) + 𝑞𝑏(𝑡) = 𝑃𝑏 + 𝑠𝑏(𝑡)                                    (14) 

 
Also, the instantaneous power per phase (c) is defined as; 
 

𝑢𝑐(𝑡) = 𝑣𝑐(𝑡)𝑖𝑐(𝑡)                                                                     (15) 

 
𝑢𝑐(𝑡) = 𝑉𝑐𝐼𝑐  𝑐𝑜𝑠( 𝛼𝑐  − 𝛽𝑐) + 𝑉𝑐𝐼𝑐 𝑐𝑜𝑠( 𝛼𝑐  − 𝛽𝑐) 𝑠𝑖𝑛(2𝑤𝑡 + 2𝛽𝑐 +

(5𝜋 6)⁄ ) + 𝑉𝑐𝐼𝑐 𝑠𝑖𝑛( 𝛼𝑐  − 𝛽𝑐) 𝑠𝑖𝑛(2𝑤𝑡 + 2𝛽𝑐 + (4𝜋 3)⁄ )                  (16) 
 
𝑢𝑐(𝑡) = 𝑃𝑐 + 𝑝𝑐(𝑡) + 𝑞𝑐(𝑡) = 𝑃𝑐 + 𝑠𝑐(𝑡)                                 (17) 
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The total instantaneous power 𝑢(𝑡) is defined as: 

 
𝑢(𝑡) = 𝑢𝑎(𝑡) + 𝑢𝑏(𝑡) + 𝑢𝑐(𝑡)                                                 (18) 

𝑢(𝑡)=𝑉𝑎𝐼𝑎[𝑐𝑜𝑠( 𝛼𝑎  –  𝛽𝑎) − 𝑠𝑖𝑛(2𝑤𝑡 +  𝛼𝑎  + 𝛽𝑎 − 𝜋 2⁄ )]   + 

           𝑉𝑏𝐼𝑏[𝑐𝑜𝑠( 𝛼𝑏  –  𝛽𝑏) − 𝑠𝑖𝑛(2𝑤𝑡 +  𝛼𝑏  + 𝛽𝑏 − (11𝜋 6)⁄ )]+
   𝑉𝑐𝐼𝑐[𝑐𝑜𝑠( 𝛼𝑐 − 𝛽𝑐) − 𝑠𝑖𝑛(2𝑤𝑡 +  𝛼𝑐 + 𝛽𝑐 + (5𝜋 6)⁄ )]           (19) 

              𝑢(𝑡) =    [

𝑉𝑎𝐼𝑎 𝑐𝑜𝑠( 𝛼𝑎  –  𝛽𝑎) +

𝑉𝑏𝐼𝑏 𝑐𝑜𝑠( 𝛼𝑎 –  𝛽𝑎) +

𝑉𝑐𝐼𝑐 𝑐𝑜𝑠( 𝛼𝑎  –  𝛽𝑎)

]          

           + [

𝑉𝑎𝐼𝑎 𝑐𝑜𝑠( 𝛼𝑎 –  𝛽𝑎)𝑠𝑖𝑛(2𝑤𝑡 + 2𝛽𝑎 − 𝜋 2⁄ ) +

𝑉𝑏𝐼𝑏 𝑐𝑜𝑠( 𝛼𝑏  –  𝛽𝑏)𝑠𝑖𝑛(2𝑤𝑡 + 2𝛽𝑏 − (11𝜋 6)⁄ ) +

𝑉𝑐𝐼𝑐 𝑐𝑜𝑠( 𝛼𝑐  –  𝛽𝑐)𝑠𝑖𝑛(2𝑤𝑡 + 2𝛽𝑐 + (5𝜋 6)⁄ )

]        

          + [

𝑉𝑎𝐼𝑎 𝑠𝑖𝑛( 𝛼𝑎 − 𝛽𝑎) 𝑠𝑖𝑛(2𝑤𝑡 + 2𝛽𝑎) +

𝑉𝑏𝐼𝑏 𝑠𝑖𝑛( 𝛼𝑏 − 𝛽𝑏)𝑠𝑖𝑛(2𝑤𝑡 + 2𝛽𝑏 − (4𝜋 3)⁄ ) +

𝑉𝑐𝐼𝑐 𝑠𝑖𝑛( 𝛼𝑐 − 𝛽𝑐) 𝑠𝑖𝑛(2𝑤𝑡 + 2𝛽𝑐 + (4𝜋 3)⁄ )
]    (20)                        

                                                                                                    
𝑢(𝑡) = 𝑃 + 𝑝(𝑡) + 𝑞(𝑡)= 𝑃 + 𝑠(𝑡)                                           (21) 

 
Where: 

 𝑠(𝑡): the three –phase instantaneous phasor power 

 𝑝(𝑡): the three–phase instantaneous active power  

 𝑞(𝑡): the three-phase instantaneous reactive power 

 𝑃 : the three–phase average or active power (true power) 
 

Fig.1. display the instantaneous power per phase 𝑢𝑎(𝑡) , which 

follow a sinusoidal oscillation with a double frequency (2𝑓 =
2𝑤/2𝜋) shifted up by the average active power per phase 𝑃𝑎(𝑡). 
 

 
Fig. 1: Instantaneous Power Components Waveforms per Phase (A). 

 
The sinusoidal oscillation is described by a function known as the 
instantaneous phasor power per phase 𝑠𝑎(𝑡), which can be divided 

into two orthogonal sinusoidal functions; instantaneous active 
power  𝑝𝑎(𝑡) , and instantaneous reactive power 𝑞𝑎(𝑡). 

2.2. Phasor representation 

From the literature survey, it can be seen that the key point of the 
problem with the power component definition is the residual com-
ponent of the total power excluding the average real power [35]. 
From this viewpoint, focusing on sinusoidal power components 
only excluding the average active power components is presented, 
since there is a consensus in their definitions. Fig.2. show that the 
sinusoidal power components can be presented as vectors on a 
phasor diagram. 

 

 
Fig. 2: Phasor Diagram of the Power Component Vectors per Phase (A). 

 
Dash line … Va&Ia vectors (rotating speed𝜔) 

Solid line ----- power vectors (rotating speed2𝜔) 

 
The above diagram is known and accepted for the common engi-
neer. If we consider the line current of phase (a) as the reference 
for angles; i.e.𝛽𝑎 = 0, so the phasor current Ia will lie on the real 

axis. Fig.3. shows the power components in phasor diagram. 
 In this case, the phase difference between Va&Ia 

equal (𝛼𝑎  –  𝛽𝑎) =  𝛼𝑎 ; so the phase shift of reactive power Qa 

and active power Pa will always equal zero and (−𝜋/2) respec-

tively. In addition, the phase shift of phasor power Sa will 
ways( 𝛼𝑎 − 𝜋/2). This apparently stems from the conventional 

power triangle, and is beneficial for the study of power flow.  
The power vectors in Fig.3. Will rotate by (𝜋/2) anticlockwise 

direction to find Fig.4. very similar to the traditional four-quadrant 
power flow directions, which cited by reference[36]. Consequent-
ly, phasor power per phase 𝑠𝑎(𝑡) has been represented in phasor 

diagram as a vector 𝑆𝑎 which contains two perpendicular axes as 

reference direction for active and reactive power flow in Fig.4. 
 

 
Fig. 3: Three- Phase Power Components Current Phase (A) as A Refer-

ence Axis. 

3. Analytical study of power components un-

der non sinusoidal condition 

The analytical study for calculating power components for three-
phase unbalanced condition extends and adapts from the proce-
dures applied for identification of power components in single-
phase two-wire systems. [31]. 
 

 
Fig. 4: Phasor Diagram of Power Components per Phase (A), While Rotat-

ing It by 𝜋 2⁄  Anticlockwise. 
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3.1. Instantaneous representation 

Although the instantaneous voltage and the instantaneous current 
are distorted, they are still periodic under unbalanced non-
sinusoidal conditions and can be represented by Fourier series, 

which can decompose distorted signals into amplitude and phase 
angle of all the frequencies existing. 
The line-to-neutral instantaneous voltages at time instant (t) are 
represented by the following set of equations: 
 

𝑣𝑎(𝑡) =  ∑ √2𝑉𝑎𝑗 𝑠𝑖𝑛(𝑗𝜔𝑡 + 𝛼𝑎𝑗)    
∞
𝑗=0   

 𝑣𝑏(𝑡) = ∑ √2𝑉𝑏𝑗 𝑠𝑖𝑛(𝑗𝜔𝑡 + 𝛼𝑏𝑗 − (2𝜋 3⁄ )𝑗)∞
𝑗=0   

𝑣𝑐(𝑡) =  ∑ √2𝑉𝑐𝑗 𝑠𝑖𝑛(𝑗𝜔𝑡 + 𝛼𝑐𝑗 + (2𝜋 3)⁄ 𝑗)∞
𝑗=0                     (22)          

 
Similarly, the line currents can be written; 

 

𝑖𝑎(𝑡) =  ∑ √2𝐼𝑎𝑘 𝑠𝑖𝑛(𝑘𝜔𝑡 + 𝛽𝑎𝑘)∞
𝑘=0   

𝑖𝑏(𝑡) =  ∑ √2𝐼𝑏𝑘 𝑠𝑖𝑛(𝑘𝜔𝑡 + 𝛽𝑏𝑘 − (2𝜋 3)⁄ 𝑘)∞
𝑘=0   

𝑖𝑐(𝑡) = ∑ √2𝐼𝑐𝑘 𝑠𝑖𝑛(𝑘𝜔𝑡 + 𝛽𝑐𝑘 + (2𝜋 3)⁄ 𝑘)∞
𝑘=0                      (23)                  

 
Where: 

 j & k : are integer numbers. 

 𝑉𝑗 : jth harmonic voltage for each phase (RMS value), 

 𝐼𝑘 : kth harmonic current for each phase (RMS value). 

 𝛼𝑗 : The phase angle of the jth harmonic voltage 𝑉𝑗 with re-

spect to the chosen origin.  

 𝛽𝑗 : The phase angle of kth harmonic current 𝐼𝑘 with respect 

to the chosen origin. 
We will take the fundamental current of phase ‘’a’’ (𝐼𝑎1) as refer-

ence axis i.e.(𝛽𝑎1 = 0). This choice is beneficial, because it al-

lows all the harmonic powers to be  

 plotted in the same two-dimensional plane (with rota-
tion speed different) 

 compared with the power created by the fundamental 
voltage 𝑉1 and current 𝐼1(magnitude and direction) 

Using “(22),” “(23)”, the instantaneous power per phase (a) is 
calculated by the multiplying of instantaneous voltage and current 
per phase.  

 
𝑢𝑎(𝑡) = 𝑣𝑎(𝑡)𝑖𝑎(𝑡)                                                                    (24) 

 
𝑢𝑎(𝑡) = ∑ ∑ 2𝑉𝑎𝑗𝐼𝑎𝑘[𝑠𝑖𝑛(𝑗𝜔𝑡 + 𝛼𝑎𝑗) 𝑠𝑖𝑛(𝑘𝜔𝑡 + 𝛽𝑎𝑘)]

∞
𝑘=0

∞
𝑗=0              (25) 

 

      𝑢𝑎(𝑡) = ∑ ∑ 𝑉𝑎𝑗𝐼𝑎𝑘 [
𝑠𝑖𝑛 ((𝑗 − 𝑘)𝜔𝑡 +  𝛼𝑎𝑗 − 𝛽𝑎𝑘 + 𝜋 2⁄ )

+𝑠𝑖𝑛 ((𝑗 + 𝑘)𝜔𝑡 + 𝛼𝑎𝑗 + 𝛽𝑎𝑘 − 𝜋 2⁄ )
]∞

𝑘=0
∞
𝑗=0      (26) 

 
Similar; 
 
𝑢𝑏(𝑡) =

∑ ∑ 𝑉𝑏𝑗𝐼𝑏𝑘 [+
𝑠𝑖𝑛 ((𝑗 − 𝑘)𝜔𝑡 + 𝛼𝑏𝑗 − 𝛽𝑏𝑘 − (2𝜋 3)⁄ (𝑗 − 𝑘) + 𝜋 2⁄ )

𝑠𝑖 𝑛 ((𝑗 + 𝑘)𝜔𝑡 + 𝛼𝑏𝑗 + 𝛽𝑏𝑘 − (2𝜋 3)⁄ (𝑗 + 𝑘) − 𝜋 2⁄ )
]∞

𝑘=0
∞
𝑗=0   

                                                                                                    (27) 
Similar; 
 
𝑢𝑐(𝑡) =

∑ ∑ 𝑉𝑐𝑗𝐼𝑐𝑘 [
𝑠𝑖𝑛 ((𝑗 − 𝑘)𝜔𝑡 +  𝛼𝑐𝑗 − 𝛽𝑐𝑘 + (2𝜋 3)⁄ (𝑗 − 𝑘) + 𝜋 2⁄ )

+𝑠𝑖 𝑛 ((𝑗 + 𝑘)𝜔𝑡 + 𝛼𝑐𝑗 + 𝛽𝑐𝑘 + (2𝜋 3)⁄ (𝑗 + 𝑘) − 𝜋 2⁄ )
]∞

𝑘=0
∞
𝑗=0                         

                                                                                                   (28) 
For three–phase non-sinusoidal unbalanced system, the total in-
stantaneous power 𝑢(𝑡) is defined as: 

 
𝑢(𝑡) = 𝑢𝑎(𝑡) + 𝑢𝑏(𝑡) + 𝑢𝑐(𝑡)                                                 (29) 

 
Using “(26)”, “(27)”, and “(28)”, the total instantaneous power 
𝑢(𝑡) is defined as: 

 

𝒖(𝒕) =

∑

[
 
 
 
 𝑽𝒂𝒋𝑰𝒂𝒌 𝒔𝒊𝒏((𝒋 − 𝒌)𝝎𝒕 + 𝜶𝒂𝒋 − 𝜷𝒂𝒌 + 𝝅 𝟐⁄ )

+𝑽𝒃𝒋𝑰𝒃𝒌 𝒔𝒊𝒏((𝒋 − 𝒌)𝝎𝒕 + 𝜶𝒃𝒋 − 𝜷𝒃𝒌 − (𝟐𝝅 𝟑)⁄ (𝒋 − 𝒌) + 𝝅 𝟐⁄ )

+𝑽𝒄𝒋𝑰𝒄𝒌 𝒔𝒊𝒏((𝒋 − 𝒌)𝝎𝒕 + 𝜶𝒄𝒋 − 𝜷𝒄𝒌 + (𝟐𝝅 𝟑)⁄ (𝒋 − 𝒌) + 𝝅 𝟐⁄ ) ]
 
 
 
 

∞
𝒋=𝟎 ,𝒌=𝟎 +

∑

[
 
 
 
 𝑽𝒂𝒋𝑰𝒂𝒌 𝒔𝒊𝒏 ((𝒋 + 𝒌)𝝎𝒕 + 𝜶𝒂𝒋 + 𝜷𝒂𝒌 − 𝝅 𝟐⁄ )

+𝑽𝒃𝒋𝑰𝒃𝒌 𝒔𝒊𝒏((𝒋 + 𝒌)𝝎𝒕 + 𝜶𝒃𝒋 + 𝜷𝒃𝒌 − (𝟐𝝅 𝟑)⁄ (𝒋 + 𝒌) − 𝝅 𝟐⁄ )

+𝑽𝒄𝒋𝑰𝒄𝒌 𝒔𝒊𝒏 ((𝒋 + 𝒌)𝝎𝒕 + 𝜶𝒄𝒋 + 𝜷𝒄𝒌 + (𝟐𝝅 𝟑)⁄ (𝒋 + 𝒌) − 𝝅 𝟐⁄ ) ]
 
 
 
 

∞
𝒋=𝟎 ,𝒌=𝟎   (30) 

 
Equation (30) will be divided into two parts depending on the 
values of j and k as follow: 

i)  If 𝑗 = 𝑘 = 𝑛, the part of 𝑢(𝑡) that is multiplying the voltages 

and currents of the same harmonic order will be called    
distortionless power. 

ii)  If  𝑗 ≠ 𝑘, the part of 𝑢(𝑡) that is multiplying voltages and 

currents of different harmonic order will be called dis-
tortion power. The voltages and currents have the same 
harmonic order "n" When 𝑗 = 𝑘 = 𝑛, the distortionless 

power𝑢𝑑(𝑡)can be expressed as: 

 
𝑢𝑑(𝑡) =  ∑ 𝑃2𝑛

∞
𝑛=0

𝑗=𝑘=𝑛
 + 

                                                                

       ∑ [

𝑉𝑎𝑛𝐼𝑎𝑛 𝑐𝑜𝑠(𝛼𝑎𝑛 − 𝛽𝑎𝑛) 𝑠𝑖𝑛( 2𝑛𝜔𝑡 + 2𝛽𝑎𝑛 − 𝜋 2⁄ )

+𝑉𝑏𝑛𝐼𝑏𝑛 𝑐𝑜𝑠(𝛼𝑏𝑛 − 𝛽𝑏𝑛) 𝑠𝑖𝑛( 2𝑛𝜔𝑡 + 2𝛽𝑏𝑛 − (2𝜋 3)⁄ (2𝑛) − 𝜋 2⁄ )

+𝑉𝑐𝑛𝐼𝑐𝑛 𝑐𝑜𝑠(𝛼𝑐𝑛 − 𝛽𝑐𝑛) 𝑠𝑖𝑛( 2𝑛𝜔𝑡 + 2𝛽𝑐𝑛 + (2𝜋 3)⁄ (2𝑛) − 𝜋 2⁄ )
]∞

𝑛=0
𝑗=𝑘=𝑛

  

+∑ [

𝑉𝑎𝑛𝐼𝑎𝑛 𝑠𝑖𝑛(𝛼𝑎𝑛 − 𝛽𝑎𝑛) 𝑠𝑖𝑛( 2𝑛𝜔𝑡 + 2𝛽𝑎𝑛)

 +𝑉𝑏𝑛𝐼𝑏𝑛 𝑠𝑖𝑛(𝛼𝑏𝑛 − 𝛽𝑏𝑛) 𝑠𝑖𝑛( 2𝑛𝜔𝑡 + 2𝛽𝑏𝑛 − (2𝜋 3)⁄ (2𝑛))

+ 𝑉𝑐𝑛𝐼𝑐𝑛 𝑠𝑖𝑛(𝛼𝑐𝑛 − 𝛽𝑐𝑛) 𝑠𝑖𝑛( 2𝑛𝜔𝑡 + 2𝛽𝑐𝑛 + (2𝜋 3)⁄ (2𝑛))

]∞
𝑛=0

𝑗=𝑘=𝑛
  

(31) 

 

𝑢𝑑(𝑡) = ∑ [𝑃2𝑛 + 𝑝2𝑛(𝑡) + 𝑞2𝑛(𝑡)] = ∑ [𝑃2𝑛 + 𝑠2𝑛(𝑡)]∞
𝑛=0

𝑗=𝑘=𝑛

∞
𝑛=0

𝑗=𝑘=𝑛
      (32)        

 

Where: 

 𝑠2𝑛(𝑡) : the three-phase instantaneous phasor power  
 𝑝2𝑛(𝑡) : the three-phase instantaneous active power  
 𝑃2𝑛 : the three-phase average or active power (true 

power) 
 𝑞2𝑛(𝑡) : the three-phase instantaneous reactive power  
 
i) The voltages and currents have different harmonic order 

When𝑗 ≠ 𝑘, the distortion power 𝑑(𝑡) can be expressed as: 

 

𝑑(𝑡) = ∑ 𝑑𝑛(𝑡)∞
𝑛=1                                                                      (33) 

 
Where, 𝑑𝑛(𝑡) is the nth harmonic distortion power, 

 
𝑑𝑛(𝑡) =

        ∑ [

𝑉𝑎𝑗𝐼𝑎𝑘 𝑠𝑖𝑛(𝑛𝜔𝑡 + 𝛼𝑎𝑗 − 𝛽𝑎𝑘 + 𝜋 2⁄ )

+𝑉𝑏𝑗𝐼𝑏𝑘 𝑠𝑖𝑛(𝑛𝜔𝑡 +  𝛼𝑏𝑗 − 𝛽𝑏𝑘 − (2𝜋 3)⁄ (𝑛) + 𝜋 2⁄ )

+𝑉𝑐𝑗𝐼𝑐𝑘 𝑠𝑖𝑛 (𝑛𝜔𝑡 + 𝛼𝑐𝑗 − 𝛽𝑐𝑘 + (2𝜋 3)⁄ (𝑛) + 𝜋 2⁄ )

]∞
𝑗=0,𝑘=0,𝑗≠𝑘 
𝑗−𝑘=𝑛,𝑗 >𝑘

  

 

     +∑ [

𝑉𝑎𝑘𝐼𝑎𝑗 𝑠𝑖𝑛(𝑛𝜔𝑡 −  𝛼𝑎𝑘 + 𝛽𝑎𝑗 + 𝜋 2⁄ )

+𝑉𝑏𝑘𝐼𝑏𝑗 𝑠𝑖𝑛(𝑛𝜔𝑡 − 𝛼𝑏𝑘 + 𝛽𝑏𝑗 − (2𝜋 3)⁄ (𝑛) + 𝜋 2⁄ )

+𝑉𝑐𝑘𝐼𝑐𝑗 𝑠𝑖𝑛 (𝑛𝜔𝑡 − 𝛼𝑐𝑘 + 𝛽𝑐𝑗 + (2𝜋 3)⁄ (𝑛) + 𝜋 2⁄ )

]∞
𝑗=0,𝑘=0,𝑗≠𝑘
𝑘−𝑗=𝑛,𝑗 < 𝑘

  

+ ∑ [

𝑉𝑎𝑗𝐼𝑎𝑘 𝑠𝑖𝑛(𝑛𝜔𝑡 +  𝛼𝑎𝑗 + 𝛽𝑎𝑘 − 𝜋 2⁄ )

+𝑉𝑏𝑗𝐼𝑏𝑘 𝑠𝑖𝑛(𝑛𝜔𝑡 + 𝛼𝑏𝑗 + 𝛽𝑏𝑘 − (2𝜋 3)⁄ (𝑛) − 𝜋 2⁄ )

+𝑉𝑐𝑗𝐼𝑐𝑘 𝑠𝑖𝑛 (𝑛𝜔𝑡 + 𝛼𝑐𝑗 + 𝛽𝑐𝑘 + (2𝜋 3)⁄ (𝑛) − 𝜋 2⁄ )

]∞
𝑗=0,𝑘=0,𝑗≠𝑘

𝑗+𝑘=𝑛,

  

                                                                                                    (34) 
From “(32)”, and “(33)”, the total instantaneous power 𝑢(𝑡) is: 

 
𝑢(𝑡) = 𝑢𝑑(𝑡) +  𝑑(𝑡)                                                                 (35) 

 

𝑢(𝑡) = ∑ [𝑃2𝑛 + 𝑠2𝑛(𝑡)]∞
𝑛=0 + ∑ 𝑑𝑛(𝑡)∞

𝑛=1                                (36) 

 
Because the harmonic order of voltages and currents is always an 
integer number, the nth instantaneous power 𝑢𝑛(𝑡) as, 

 
𝑢𝑛(𝑡) = 𝑃𝑛 + 𝑠𝑛(𝑡)+ 𝑑𝑛(𝑡)                                                      (37) 
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Where, adding phasor power 𝑠𝑛(𝑡) to distortion power 𝑑𝑛(𝑡) as 

both of them has the same harmonic order n, will produce the so-
called fictitious power 𝑓𝑛(𝑡) 
 
𝑓𝑛(𝑡) = 𝑠𝑛(𝑡) + 𝑑𝑛(𝑡)                                                               (38) 

𝑢𝑛(𝑡) = 𝑃𝑛 + 𝑓𝑛(𝑡)                                                                    (39) 

 
Finally, the total instantaneous power 𝑢(𝑡) as: 

 

𝑢(𝑡) =  ∑ 𝑢𝑛(𝑡)∞
𝑛=0                                                                     (40) 

 
The waveforms of the sixth order harmonic power components per 
phase are shown in Fig.5.  

 

 
Fig. 5: The Waveforms of Sixth Order Harmonic Power Components per 

Phase. 

3.2. Phasor representation 

The phasor diagram in Fig.6 represents the nth harmonic non-
sinusoidal power components per phase (a). By rotating the vec-
tors of power components by (𝜋/2) anticlockwise, we get the 

traditional power flow direction [31]. These power components 
will be second order harmonic power (they will be subscripted by 

number 2). By this way, power components for each harmonic 
order can be compared in magnitude and direction with power 
generated by 𝑉1&𝐼1 (useful power). 

Because all the harmonic power components have the same fre-
quency(𝑛𝑓), they have been represented in the phasor diagram. 

As a result, all the harmonic power components can be represent-
ed in a complex form in four quadrant reference direction. Note 
that all the phase angles of three-phase power components of the 
previous equations have increased by (𝜋/2) to get the traditional 

power flow direction. 
 

 
Fig. 6: Phasor Diagram of the Nth Harmonic Power Component Vectors 

per Phase (A). 

 
Dash line … V&I vectors (rotating speed𝑛𝜔/2) 

Solid line ----- power vectors (rotating speed 𝑛𝜔) 

4. Physical essence of power components 

It is an attempt to get physical interpretation of the proposed three-
phase power components for periodic current and voltage wave-
forms for any non-sinusoidal unbalanced three-phase four wire 
system. 

It is needful to remember, that all power components connect with 
their associated energies. Now, any power components can be 
measured if the formula for its calculation has been found. This 
section summarizes the Analysis and conclusion of the physical 
essence of the following components, for each n order power of 
harmonic.  

4.1. Real (average) active power- (𝐏𝐧) 

It is representing the power dissipated in a component of system 
resistance (constant value).  
The physical essence: it is the rate of the net transferred active 
energy (dissipative one) supplied by/ or to the system produced by 
the voltage and current having the same harmonic order 𝑛 2⁄ . 

4.2. Instantaneous active power-𝐩𝐧(𝐭) 

A sinusoidal function, which represent the active power oscillation 
with amplitude equals 𝑃𝑛. It is the associated power component 

with the system resistance. 
The physical essence: it is the rate of the active energy oscillations 
between utility (supply) and customer (load) with nth harmonic 

frequency. 

4.3. Instantaneous reactive power-𝐪𝐧(𝐭) 

A sinusoidal function, which represent the reactive power oscilla-
tion with amplitude equals 𝑄𝑛. It is the associated power compo-

nent with the potential or kinetic energy. 
The physical essence: it is the rate of the reactive energy (quad-
ergy) oscillations between utility (supply) and customer (load) 
with nth harmonic frequency. 

4.4. Instantaneous phasor power-𝐬𝐧(𝐭) 

A sinusoidal function, which represent the phasor power oscilla-
tion of with amplitude equals 𝑆𝑛. It is the summation of the two 

above active and reactive sinusoidal power. 
The physical essence: it is the rate of the phasor energy oscilla-
tions (summation of the active and reactive energy) between utili-
ty (supply) and customer (load) with nth harmonic frequency. 

4.5. Distortion power-𝐝𝐧(𝐭) 

A sinusoidal function, which represents the summation of all dis-

tortion power. It is generated by the cross products of harmonic 
voltages and harmonic currents of different frequencies, which 
produce 𝑛𝑓 frequency functions.  

The physical essence: it is the rate of the distortion energy oscilla-
tions between utility (supply) and customer (load) with nth har-
monic frequency. 
The authors [31] have validated experimentally different defini-
tion ns of distortion power. They deduce that existent definitions 
are not correct, neither from a physical nor numerical viewpoint 
due to the involvement of like voltages and currents in distortion 

power (excepting the Budeanu’s one). The proposed formulas of 
distortion power have overcome this feebleness of those incorrect 
formulas aforesaid. 

4.6. Fictitious power- 𝐟𝐧(𝐭) 

A sinusoidal function, which represents the summation of distor-
tion power and phasor power, these distortion power and phasor 
power have the same frequency 𝑛𝑓. 

 

𝐼𝑎𝑛 2⁄  

𝑄𝑎𝑛  𝑉𝑎𝑛 2⁄  

𝐹𝑎𝑛  𝑆𝑎𝑛  

𝑃𝑎𝑛  

𝐷𝑎𝑛  

Real Axis 

Imaginary Axis 

Axis 
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We have employed the same terminologies and symbols used in 
the IEEE dictionary [37], but with various meaning. In the IEEE 
dictionary, the fictitious power F is the vector summation of both 
distortion and reactive power F=jQ+kD (nonactive power). But 
here, the factitious power is the total sinusoidal (nonactive) part of 
the nth harmonic instantaneous power 𝑢𝑛(𝑡).  
We can deem it as a quantity corresponding to the IEEE power 
vectors, but in a two-dimensional plane, for each individual har-
monic order n. 

The physical essence: it is the rate of the fictitious energy oscilla-
tions (summation of distortion, reactive and active energies) be-
tween utility (supply) and customer (load) with nth harmonic fre-
quency. 

4.7. nth harmonic instantaneous power-𝐮𝐧(𝐭) 

The summation of the fictitious power 𝑓𝑛(𝑡) and the active (aver-

age) power 𝑃𝑛 for each harmonic order n. 

The physical essence: it is the rate of the fictitious energy oscilla-
tions plus active energy dissipation between utility (supply) and 
customer (load) with nth harmonic frequency. 

4.8. Total instantaneous power-𝐮(𝐭) 

The summation of all instantaneous power for each harmonic 
order n. 
The physical essence: it is the rate of all the fictitious energies 
oscillations plus the active energies dissipation between utility 
(supply) and customer (load). 

5. Conclusion 

Although the final objective of this analytical study is determining 
the responsibility of harmonic distortion in part B of this paper, 
but we have reached a new method for defining of the power 
component in the three-phase unbalanced system, which has inter-
esting advantages such as: 

 Using the same terminology and symbols of power compo-

nents employed in the IEEE dictionary. 

 The components of instantaneous sinusoidal power have been 

presented in the phasor forms as vectors. 

 These vectors can be represented in a phasor diagram. 

 Through a quick look to this phasor diagram, one can upright-

ly determine the direction of power components flow.  

 All the power components can be derived from direct 

measurment of periodic signal of voltages and currents at a 
single point. 

 Using the common units of power (W, VAR and VA).  

 There is no the need for complex mathematical models, the 

power component definitions are clearly presented. 
The next paper part B will present a new approach for determining 
the contribution of the harmonic distortion for each harmonic 
order power and consequently the responsibility of harmonic dis-
tortion at the PCC between the utility and the customer can be 
determined. 
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