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Abstract 
 
A systematic reviewing process to assess the sensitivity of the input parameters of flapping wing kinematics for optimum level flight is 
presented. This is done prior to the development of a stroke optimization model to predict the aerodynamic performance of an insect 

(hawk moth) during flight. A systematic iterative process-population-based stochastic algorithm, known as particle swarming optimiza-
tion, is used. In the search for an optimal realistic wing kinematic motion, several constraints for stable flight are defined following the 
observational wing kinematics data from experiments on real insects. This is to avoid any physically-unrealistic solutions of the wing 
motion. Two stages of sensitivity analyses are conducted via partial sensitivity analysis, or one-at–a-time. First, sensitivity screening 
analyses are performed to gauge the dependability of the solution output, i.e. total force and total power, on each model input parameter; 
a total of 9 model input parameters. Then, the second stage of sensitivity analysis to measure on how the most sensitive model input pa-
rameters will affect the optimized kinematics are conducted. The results have shown that the wing length and the wing translational lift 
coefficient are the most sensitive aerodynamic model input parameters among other inputs. 
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1. Introduction 

Over the past decade, numerous studies have been conducted to 
optimize the flight performance of the flapping wing. These math-

ematical optimization studies have been directed to a wide range 
of analyses, focusing on various aspects of optimization such as 
wing-body dynamics [1], wing shape [2, 3], wing structural aero-
elasticity [4], flight stability [5], and wing kinematics [6-12]. Fol-
lowing assessment on some of the flight performance optimization 
of flapping wing studies [5, 9], genetic algorithms and gradient-
based optimizer are among those regularly used in the study of the 
flapping insect flight. In the meantime, several other studies opt to 

combine multiple optimization methods in the search of the opti-
mal solution [3, 7].  

Crucially, replicating the wing motion of an insect in flight would 
involve complex three-dimensional motion. Thus, an optimization 
procedure is required, and for this purposed, a systematic iterative 
process-population-based stochastic algorithm known as Particle 
Swarming Optimization [13] (PSO) has been adapted. This pro-
cess has proved to be useful in assisting in the search for an opti-
mal realistic wing kinematic motion [7, 14, 15], which is subjected 

with several constraints for stable flight. As noted by Chen et al. 
[16], when compared to the classical optimization methods, PSO 
is reportedly much simpler to implement, more efficient for com-
putation and has become one of the most popular optimization 
techniques for solving continuous optimization problems. Moreo-
ver, this method does not require assumptions about the problem 
being optimized and does not require that optimization problem to 
be differentiable, which is advantageous for the optimization prob-

lems with very large spaces of candidate solutions that are partial-
ly irregular, noisy and time dependent [17].   

Prior to the search of the kinematics of flapping wing model for 
optimum level flight, a systematic reviewing process to assess the 
uncertainty of the model input parameters is carried out via partial 
sensitivity analysis or one-at–a-time [18]. This is done to screen 
out the most sensitive parameters and see how they reflect on the 
optimized kinematics. The specified ranges for the optimization of 
the kinematic variables are defined following observational wing 
kinematics data from the experiments on real insects. This will 

give limits to all kinematic parameters and prevent any physically-
unrealistic solutions of the wing motion. 

2. Methodology 

2.1. Cost function and constraints 

The cost function of the optimization is the propulsive efficiency; 
with constraints on the flight stability, muscular power ratio, flight 
muscle ratio and wing kinematics. This optimization process is 
carried out iteratively, with stopping criterion of up to 1,000 itera-
tions and 10-4 tolerance, whichever that comes first. The specified 
range for the optimal model parameters are shown in Table 1. 

The upper bound value of Cη is set to be at a maximum of 5 [20]. 

This value is based on some studies of the real insects’ flight [21-
23] and is used here to avoid an unrealistically-high rate of wing 
rotation. Additionally, to comply with the physical power of the 
real insect, the available power must be limited [24]. Following 
Ref. [25-28], the maximum flight muscle ratio mmuscle minsect⁄  
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and the available muscular power ratio P mmuscle⁄  can be assumed 

to be equal to 60% and 150 W/kg, respectively. Hence, by equat-

ing these two values, the available power P minsect⁄  is estimated 

to be a maximum of 90 W/kg.  
 

Table 1: Range (or constraint) for optimal model parameters [19] 

Parameter 
𝑽∞ = 𝟓. 𝟎𝟎 𝒎/𝒔 

Lower limit Upper Limit 

𝑓 24.80 𝐻𝑧 

𝛽 49.200 53.200 

𝜙𝑚 49.400 50.450 

𝜃𝑚 1.00 20.00 

𝜂𝑚  1.00 90.00 

𝜙0 −30.00 30.00 

𝜃0 −30.00 30.00 

𝜂0 −90.00 90.00 

Φ𝜙  90.00  

Φ𝜃  −180.00 180.00 

Φ𝜂 −180.00 180.00 

𝐾 0.01 1.00 

𝑁 1 𝑜𝑟 2 

𝐶𝜂 0.01 5.00 

2.2. Working procedure 

In the optimization process, a group of particles is selected (e.g. 
10  particles for each optimized parameter), with the particles 

searching or swarming towards the desired solution simultaneous-
ly within a constrained-solution space. Each of the individual par-
ticles has a bidirectional link with its neighbours, and is assigned 
to communicate along the process. The communication and inter-
actions take place in a way that individual particles will reconfig-
ure their current position at each time step, by adding their veloci-
ty to their previous position. The procedure can be represented by 

the following Eqn. 1 and Eqn. 2, where 𝑗 is the target particle’s 

index; 𝑑 is the particle dimension; 𝑥𝑗 is the particle’s position; 𝑣𝑗 

is the velocity; 𝑝𝑗 is the best position found so far by 𝑗; 𝑞 is the 

index of 𝑗’s best neighbour; 𝑈(0, 𝛽𝑝𝑠𝑜) is a uniform random num-

ber generator; 𝛼𝑝𝑠𝑜 is the inertia weight or constriction coefficient 

and 𝛽𝑝𝑠𝑜 = 𝜓𝑝𝑠𝑜 2⁄  is the acceleration constant [29]. 

𝑣𝑗𝑑
(𝑡+1)

← 𝛼𝑝𝑠𝑜𝑣𝑗𝑑
(𝑡)

+ 𝑈(0, 𝛽𝑝𝑠𝑜) (𝑝𝑗𝑑 − 𝑥𝑗𝑑
(𝑡)

)

+ 𝑈(0, 𝛽𝑝𝑠𝑜) (𝑝𝑞𝑑 − 𝑥𝑗𝑑
(𝑡)

) 
(1) 

𝑥𝑗𝑑
(𝑡+1)

← 𝑥𝑗𝑑
(𝑡)

+ 𝑣𝑗𝑑
(𝑡+1)

 (2) 

The program systematically evaluates each single parameter vec-

tor of particle 𝑗 in the functions (𝑥𝑗𝑑
(𝑡+1)

 and 𝑣𝑗𝑑
(𝑡+1)

), and compares 

the result to the best result obtained by 𝑗 thus far. Each particle 

cycles around a region centred on the centroid of the previous best 
particle’s position and with the best neighbours. If the current 
result is the best so far, the best position is updated with the cur-
rent position, and the previous best function result is updated with 
the current result. As these variables are updated, each particle 
trajectory shifts to a new region, closer to the optima of the search 
space until the desired results from the improved function are 
obtained. This is shown in Figure 1.   

 

(a) 

 

 (b) 

 

(c) 

 

 (d) 

Fig. 1: Sample of particle swarming movement distribution from PSO 

analysis; (a) at 1st iteration; (b) at 5th iterations; (c) at 10th  iterations; (d) 

at 20th  iterations. 
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Fig. 2: Flow structure for the optimization program 

2.3. Sensitivity analysis 

Sensitivity analysis is a systematic reviewing process to assess the 

uncertainty of a model. In this study, two sensitivity analyses are 
conducted via partial sensitivity analysis or one-at–a-time [18]. 
Firstly, the sensitiveness of the aerodynamic model input parame-
ters on the results (total force and power) is assessed. Secondly, 
having determined the sensitive model input parameters, the varia-
tions in optimized kinematics are assessed. Each of the analyses is 
performed by changing the value of one parameter from its base-
line values (Table 2) while maintaining the others as a constant, 

and evaluating its effect on the results at that time.  

Table 2: Model input parameters for sensitivity analysis 

Wing length Wing mean chord Wing mass 

𝑅 𝑐 ̅ 𝑚𝑤𝑖𝑛𝑔 

51.9𝑚𝑚 18.26𝑚𝑚 47𝑚𝑔 

Translational lift 

coefficient 

Drag coefficient at 

𝜶 = 𝟎𝟎 

Drag coefficient at 

𝜶 = 𝟗𝟎𝟎 

𝐶𝑡 𝐶𝐷(0) 𝐶𝐷(𝜋/2) 

1.631 0.07 3.06 

Rotational lift coeffi-

cient 

Non-dimensional 

viscous torque 

Non-dimensional 

viscous torque 

𝐶𝑟 𝜇1 𝜇2 

𝜋 0.2 0.2 

This approach allows the gauging of the dependability of the solu-
tion output on each input parameter and helps in determining the 
key parameters that most significantly affect the results. In addi-
tion, it would be useful in indicating the consistency of the opti-
mized output kinematics upon the changes of the determined sen-

sitive model input parameters. Flow structure for the optimization 
program is shown in Figure 2. 

3. Results and discussions 

The sensitivity analysis of the model input parameters on the re-
sults is performed using defined wing kinematics for optimum 
level flight of the hawk moth at velocity, V = 5 m/s (the wing kin-
ematics are given in Table 1).  

3.1. Sensitivity screening analysis 

As shown in Figure 3, the result indicates that the changes of wing 
length and wing translational lift coefficient have the greatest 

influence on both the total force 𝑭 and power 𝑷. This result is 

logical, since these are the key drivers allied with the total area of 
the wing aerodynamic surface (𝑹), and the aerodynamic efficiency 

(𝑪𝒕) of the wing. A larger wing area (or translational lift coeffi-

cient) will translate into generating a greater amount of force, and 
hence increasing the power required (𝑷 = 𝑭𝑽). 
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Fig. 3: Sensitivity screening analysis, showing the variation in total force 𝑭 (solid line) and power 𝑷 (dashed line). 𝑭 and 𝑷 are shown as percentage of the 
baseline values from Table 2. 

 

Fig. 4: Variations in optimized kinematics following the changes in each of the screened model input parameter  (𝑹, 𝑪𝒕). Changes in optimized kinematics 

are shown as percentages of the baseline values from level flight of the hawk moth at 𝑉  = 5 m/s

3.2. Sensitivity variations in the optimized kinematics 

From the sensitivity screening analysis of the model input parame-
ters, it is shown that the wing length and the wing translational lift 
coefficient are the most sensitive among other inputs. For the next 
part, the variations in optimized kinematics are measured by per-
forming another sensitivity analysis, following the changes in the 
screened model input parameters (𝑹, 𝑪𝒕). This analysis is intended 

to measure how the model input parameters will affect the opti-
mised kinematics. In this analysis, the model parameters are in-

creased (or decreased) by 5% and 10% from base value as given in 
Table 2; this provides an ample range for measuring the variations 
in the optimized kinematics. 

Figure 4 shows that an increase in model input parameter (𝑹, 𝑪𝒕) 

reduces the changes in the optimised kinematics, and vice-versa. 
Overall, the changes in the wing length delivered a greater impact 
on the optimised model input parameters than the wing transla-
tional lift coefficient. The changes in the model input parameters 

had a noticeable influence on the optimized frequency of the wing. 
Increasing the value of the model input parameters reducing the 
power required by up to ~30%. This is because an increase in the 
wing size produces wings with a bigger aerodynamic surface area 
that will benefit from lower flapping frequencies and hence reduc-
ing the power required [15]. 
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4. Conclusions  

Two stages of sensitivity analyses have been carried out, involving 
a total of 9 model input parameters. In the first stage, a sensitivity 
screening analysis is performed to gauge the dependability of the 
solution output on each model input parameter. This is followed 

by the second stage of sensitivity analysis to measure on how the 
most sensitive model input parameters will affect the optimised 
kinematics. By applying these two stages of sensitivity analyses 
approach, it would helps in determining the key parameters that 
most significantly affecting the results. As shown from the sensi-
tivity screening analysis, the wing length and the wing translation-
al lift coefficient are the most sensitive aerodynamic model input 
parameters among other inputs. This is due to the fact that a larger 

wing surface area and a larger value of translational lift coefficient 
will produce a much greater amount of force and correspondingly, 
increasing the amount of power required. From the second stage 
of the sensitivity analysis, inverse solution/relationship has been 
identified. By increasing the value of both of the sensitive model 
input parameters, i.e. wing length and wing translational lift coef-
ficient, the changes in all optimized kinematics are reduced. On 
the contrary, when both of them are reduced, all optimized kine-

matics are increased. Overall, the results obtained from this two-
stage sensitivity analyses are screened to be consistent. This find-
ing is useful as it will help to understand and correlate those as-
signed parameters with the physical nature of flapping wing. 
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