Diametral Paths in Total Graphs of Paths, Cycles and Stars

T. A. Mangam ${ }^{1}$, J. V. Kureethara ${ }^{1 *}$
${ }^{1}$ CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, India - 560029
*Corresponding author E-mail: frjoseph@christuniversity.in

Abstract

The diametral path of a graph is the shortest path between two vertices which has length equal to diameter of that graph. Total graph of a graph is a graph that has vertices representing all vertices and edges of the original graph and edges representing every vertex-vertex adjacency, edge-edge adjacency and edge-vertex incidence. In this paper, the number of diametral paths is determined for the paths, cycles and stars and their total graphs.

Keywords: Diametral path, Path, Cycle, Star, Diameter, Total graph

1. Introduction

Outliers provide very interesting and sometimes vital information in any system. In a graph, peripheral vertices are some types of outliers associated with its structure itself. Peripheral vertices are vital in identifying the diametral paths of a graph. Deogun and Kratsch introduced and discussed the concept of diametral paths. [3]
Recently, this authors have initiated the studies on diametral paths in total graphs.[4,5] Total graph of a graph is a graph that has vertices representing all vertices and edges of the original graph and edges representing every vertex-vertex adjacency, edge-edge adjacency and edge-vertex incidence. Hence, the number of edges in the total graph $T(G)$ of a connected graph G is
$\frac{1}{2} \sum_{v \in V(G)} d(v)(d(v)+2) .[4]$
It is proved that for a graph G, the diameter of $T(G)$, denoted by $\operatorname{diam}(\mathrm{T}(\mathrm{G}))$ is equal to $\operatorname{diam}(\mathrm{G})$ or $\operatorname{diam}(\mathrm{G})+1 .[4]$ The diametral paths in total graphs of Complete Graphs, Complete Bipartite Graphs and Wheels are studied in [5].
We now discuss on the number of diametral paths in paths, cycles and stars, and their total graphs. For more about graphs and various concepts in graphs that are not explained explicitly in this paper, refer to [1] and [6].

2. Paths

A path graph is a connected graph with uninterrupted sequence of distinct vertices and edges. A path with n vertices is denoted by P_{n}. Since $\operatorname{diam}\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}-1$, there is only one diametral path in P_{n} which is the path itself with peripheral vertices as its endvertices. It can be noted that $\operatorname{diam}\left(\mathrm{T}\left(\mathrm{P}_{\mathrm{n}}\right)\right)=\mathrm{n}-1$. There are four peripheral vertices in $T\left(P_{n}\right)$ which are represented by the endvertices and pendant edges of P_{n}. We now have the number of diametral paths of the total graph of a path in the next result.

Theorem 1The number of diametral paths of $T\left(P_{n}\right)$ is $2 n-1$.

Proof Consider a P_{n} with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and edges e_{1}, e_{2} $\ldots e_{n-1}$ such that each e_{i} is incident on v_{i} and v_{i+1} for $1 \leq i \leq n-1$. Since diam $\left(T\left(P_{n}\right)\right)$ is $n-1$, any diametral path in $T\left(P_{n}\right)$ will have one of the following pairs of vertices as end vertices.
(1) v_{1} and v_{n}
(2) v_{1} and e_{n-1}
(3) e_{1} and v_{n}

In case (1), there is exactly one diametral path between v_{1} and v_{n} in $T\left(P_{n}\right)$.
In case (2), there are $n-1$ diametral paths which are $\mathrm{v}_{1} \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{k}} \mathrm{e}_{\mathrm{k}} \ldots$ $\mathrm{e}_{\mathrm{n}-1}$ where $1 \leq \mathrm{k} \leq \mathrm{n}-1$.
In case (3), there are $n-1$ diametral paths which are $e_{1} e_{2} \ldots$ $\mathrm{e}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}+1} \mathrm{v}_{\mathrm{n}}$ where $1 \leq \mathrm{k} \leq \mathrm{n}-1$.
Hence total number of diametral paths in $T\left(P_{n}\right)=1+n-1+n-1=2 n-1$. We now move to the case of cycle graphs.

3. Cycles

A cycle graph is nothing but a path graph with the same initial and terminal vertices.

It can be noted that $\operatorname{diam}\left(C_{n}\right)=d=\lfloor n / 2\rfloor$ and $\operatorname{diam}\left(T\left(C_{n}\right)\right)=\lceil n / 2\rceil$. The number of diametral paths is determined in cycles and their total graphs.

Lemma 1 A cycle C_{n} has n diametral paths.
Proof Diameter of a cycle C_{n} is given by $\operatorname{diam}\left(C_{n}\right)=d=\lfloor n / 2\rfloor$. Let $\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}}$ be the n vertices of C_{n}. Considering the diametral paths from every vertex v_{i} through $\mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$ and one diametral path from v_{n} through v_{1}, there are n diametral paths. Hence cycle C_{n} has n diametral paths.
Theorem 2 The number of diametral paths in $T\left(C_{n}\right)$ is $n(n+1)$ when n is odd and $n(n+2)$ when n is even.

Proof We complete the proof by analysing two cases.
A. Consider n to be odd.

Let $\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}}$ be the vertices and $\mathrm{e}_{1}, \mathrm{e}_{2} \ldots \mathrm{e}_{\mathrm{n}}$ be the corresponding edges of C_{n} such that each e_{i} is incident on v_{i} and $\mathrm{v}_{\mathrm{i}+1}$ for $1 \leq \mathrm{i} \leq$ $n-1$ and e_{n} incident on v_{n} and v_{1}. Hence $T\left(C_{n}\right)$ has vertices $v_{1}, v_{2} \ldots$ v_{n} and new vertices $e_{1}, e_{2} \ldots e_{n}$. When n is odd, $T\left(C_{n}\right)$ has a diametral path from every v_{i} to a specific e_{j}. Since $\operatorname{diam}\left(T\left(C_{n}\right)\right)=$ $\mathrm{d}=[\mathrm{n} / 2]$, every diametral path has one endvertex as v_{i} and the other endvertex $\mathrm{e}_{(i+d-1)}$ for $1 \leq \mathrm{i} \leq(\mathrm{n}-\mathrm{d}+1)$ and $\mathrm{e}_{(\mathrm{i}-\mathrm{d})}$ for the remaining i. The diametral path from v_{i} to $\mathrm{e}_{(i+\mathrm{d}-\mathrm{l})}$ or $\mathrm{e}_{(\mathrm{i}-\mathrm{d})}$ accordingly satisfies one of the following conditions.
[(1)] It can pass through only v_{i} 's.
[(2)] It can pass through only e_{i} 's.
[(3)] It can pass through v_{i} 's to some stage and e_{i} 's from

there.

In case (1), since each vertex v_{i} has two neighbors in $\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}}$, there are two diametral paths through only v_{j} 's, from each v_{i}.
In case (2), since each vertex v_{i} has two neighbors in $e_{1}, e_{2} \ldots e_{n}$, there are two diametral paths through only e_{i} 's, from each v_{i}. In case (3), there are $n-3 v_{j}$'s left through which the diametral path can pass when the initial vertex v_{j} and neighbors of the corresponding e_{j} are excluded. Hence there are $\mathrm{n}-3$ diametral paths in this case from each v_{i}.

Since there are n vertices, the number of diametral paths $=n(2+2+n-3)=n(n+1)$.
B. Consider n to be even.

Let $\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}}$ be the vertices and $\mathrm{e}_{1}, \mathrm{e}_{2} \ldots \mathrm{e}_{\mathrm{n}}$ be the corresponding edges of C_{n} such that each e_{i} is incident on v_{i} and v_{i+1} for $1 \leq i \leq n$ 1 and e_{n} incident on v_{n} and v_{1}. Hence $T\left(C_{n}\right)$ has vertices $v_{1}, v_{2} \ldots$ v_{n} and new vertices $\mathrm{e}_{1}, \mathrm{e}_{2} \ldots \mathrm{e}_{\mathrm{n}}$. Since $\operatorname{diam}\left(\mathrm{T}\left(\mathrm{C}_{\mathrm{n}}\right)\right)=\lceil\mathrm{n} / 2\rceil, \mathrm{T}\left(\mathrm{C}_{\mathrm{n}}\right)$ has diametral paths from every v_{i} to a specific v_{j}, e_{j} and $e_{(j-1)}$ and diametral paths with endvertices e_{i} 's. Since every diametral path with one endvertex as v_{i} has the other endvertex from one of the following categories.
[(a)] $\mathrm{v}_{\mathrm{i}+\mathrm{d}}$ or $\mathrm{e}_{(\mathrm{i}+\mathrm{d}-1)}$ or $\mathrm{e}_{\mathrm{i}+\mathrm{d}}$ for $1 \leq \mathrm{i} \leq \mathrm{n}-\mathrm{d}$
[(b)] v_{1} or e_{1} or e_{n} for $\mathrm{i}=\mathrm{d}+1$
[(c)] $\mathrm{v}_{\mathrm{i}-\mathrm{d}}$ or $\mathrm{e}_{\mathrm{i}-\mathrm{d}}$ or $\mathrm{e}_{(\mathrm{i}-\mathrm{d}-1)}$ for the remaining i.
We consider diametral paths in three cases.
[(1)] The endvertices are v_{i} 's .
[(2)] One endvertex is v_{i} and other is a specific e_{j}.
[(3)] The endvertices are e_{i} 's.
In case (1), there is a diametral path from each v_{i} only through vertices v_{j}^{\prime} 's to a specific v_{j}. Since there are $n v_{i}$'s, there are n diametral paths in this case.

In case (2), there are two diametral paths from each v_{i} to corresponding e_{j} through vertices v_{k} 's. Also there are two diametral paths from each v_{i} to corresponding e_{j} through e_{k} 's. There are diametral paths which pass through v_{k} 's to some stage and e_{k} 's from there. Since there are $n-4$ vertices left of the v_{i} 's when the initial vertex v_{i} and neighbours of the corresponding e_{j} 's are excluded, there are $n-4$ diametral paths from each v_{i}. Since there are $n v_{i} ' s$, the number of diametral paths is $n(2+2+n-4)=n^{2}$.

In case (3), from each e_{i}, there is a diametral path only through vertices e_{j} 's to a specific e_{j}.
Since there are $\mathrm{n}_{\mathrm{i}}{ }_{\mathrm{i}}$'s, there are n diametral paths in this case.
Hence the total number of diametral paths $=n+n^{2}+n=n(n+2)$.
We now proceed with the discussions on stars.

4. Stars

A star graph is a connected graph with exactly one vertex is adjacent to every other vertex and no two of the other vertices are adjacent to each other. It can be noted that $\operatorname{diam}\left(T\left(K_{1, n}\right)\right)=2$ for n ≥ 2. The number of diametral paths is determined in stars and their total graphs.

Lemma 2 A star $K_{1, n}$, $(n \geq 2)$ has ${ }^{n} C_{2}$ diametral paths.
Proof It is a known fact that $\operatorname{Diam}\left(\mathrm{K}_{1, \mathrm{n}}\right)=2$. Since there are n peripheral vertices, there are ${ }^{\mathrm{n}} \mathrm{C}_{2}$ diametral paths through the central vertex.

Hence the number of diametral paths $={ }^{n} C_{2}$.
Theorem 3 The number of diametral paths in $T\left(K_{1, n}\right)$ is $\left(\left(5 n^{2}\right)\right.$ $5 n) / 2$ for $\mathrm{n} \geq 2$.

Let $\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}+1}$ be the vertices and $\mathrm{e}_{1}, \mathrm{e}_{2} \ldots \mathrm{e}_{\mathrm{n}}$ be the corresponding edges of $K_{1, n}$ such that each e_{i} is incident on v_{i} and v_{n+1} for $1 \leq i$ $\leq \mathrm{n}$. Hence $\mathrm{T}\left(\mathrm{K}_{1, \mathrm{n}}\right)$ has vertices $\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}+1}$ and new vertices $\mathrm{e}_{1}, \mathrm{e}_{2} \ldots \mathrm{e}_{\mathrm{n}}$.

Since $\operatorname{diam}\left(T\left(K_{1, n}\right)\right)=2$, the peripheral vertices are $\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}}$, $e_{1}, e_{2} \ldots e_{n}$. Hence $T\left(K_{1, n}\right)$ has diametral paths with one endvertex to be v_{i} and the other endvertex to be v_{j} or $e_{j}(i \neq j)$. Since there are n peripheral vertices $v_{1}, v_{2} \ldots v_{n}$, the number of diametral paths through v_{n+1} with endvertices v_{i} and $v_{j}(i \neq j)$ is ${ }^{n} C_{2}$. Also a diametral path with endvertices v_{i} and $\mathrm{e}_{-}\{\mathrm{j}\}(\mathrm{i} \neq \mathrm{j})$ passes through $\mathrm{v}_{\mathrm{n}+1}$ or e_{i}. Since diametral path from each v_{i} can have $n-1$ possible endvertices $e_{1}, e_{2} \ldots e_{i-1}, e_{i+1} \ldots e_{n}$, there are $n-1$ diametral paths through $\mathrm{v}_{\mathrm{n}+1}$ and $\mathrm{n}-1$ diametral paths through e_{i}.
Since there are n such v_{i} 's, the number of diametral paths is $n(n-$ $1+n-1)=n(2 n-2)$.
Hence total number of diametral paths $={ }^{n} C_{2}+n(2 n-2)=\left(\left(5 n^{2}\right)-\right.$ $5 n) / 2$.

5. Conclusion

The number of diametral paths is determined for paths, stars and cycles and their total graphs are computed here. The focus of further research would be the decomposition or packing of total graphs of paths, cycles and starts into diametral paths.

References

[1] Buckley F \& Harary F (1990), Distance in Graphs, Perseus Books, New York
[2] Buckley F \& Lewinter M (1993), Graphs with all diametral paths through distant central vertices, Mathematical and Computer Modelling 17, 11, 35-41.
[3] Deogun JS \& Kratsch D (1995), Diametral path graphs. In: Nag1, M. (eds.) Graph-Theoretic Concepts in Computer Science, LNCS, 1017, Springer, Berlin, Heidelberg, 344-357.
[4] Mangam TA \& Kureethara JV (2017), Diametral Paths in Total Graphs, International Journal of Pure Applied Mathematics 117, 12, 273-280.
[5] Mangam TA \& Kureethara JV (2017), Diametral Paths in Total Graphs of Complete Graphs, Complete Bipartite Graphs and Wheels, International Journal of Civil Engineering and Technology 8, 5, 1212-1219.
[6] Ore O (1968), Diameters in Graphs, Journal of Combinatorial Theory, 5, 1, 75-81.

