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Abstract 
 

Aditya Tokamak is a medium size fusion reactor that uses plasma for the generation of power. Magnetic fields are used to confine plasma 

inside the torus. Release of plasma from its confinement is called plasma disruption. Plasma disruption is a dangerous event, which damages 

the in – vessel components of the Tokamak. So the early stage prediction of plasma disruption is quite important. Wavelet transform is a 

powerful tool for the analysis of the non - stationary signals. In this paper, analysis of plasma disruption signals using Biorthogonal wavelet 

transforms is perform to identify disruption. Plasma current, Vloop, Halpha, Hard X ray, Mirnov coil signal, Soft X-ray are diagnostic 

signals. Performance is measured in terms of sensitivity and specificity. 
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1. Introduction 

Plasma disruption in Aditya Tokamak is measured by means of 

plasma current, Halpha, Vloop, SXR, HXR and Mirnov coil sig-

nals[1]. These signals are non stationary in nature. Considerable re-

search is carried out in this area [2]. Table 1 provides the survey on 

significant work done in this area.From the detailed literature sur-

vey, frequency transform cannot be used for analyzing these sig-

nals. Of the various transforms, Discrete Wavelet transform is the 

best suited transform for the analysis of non-stationary signals [3]. 

From heuristic analysis, it is found that Biorthogonal wavelets pro-

vide higher inter class variance and lesser intra class variance than 

that of other wavelets [4].  

Hence in this paper, Biorthogonal wavelet (2.2) is used for the de-

composition of these signals. Signals are decomposed into approx-

imation and detailed co-efficient. These co-efficients are then ag-

gregated using statistical parameters namely skewness, kurtosis and 

mean [5].  

2. Research data base 

In order to perform the research work, it is necessary to understand 

the diagnostic signals acquired from Aditya Tokamak.In this work, 

an extensive research database is created with 249 signals, out of 

which 103 are that of disrupted signals and the remaining are good 

signals. In each case, six diagnostic signals are acquired. In order to 

have a better understanding on these signals, the diagnostic signals 

of disruption and non-disruption are shown in the Fig 1-2.  

From Fig. 1 and 2, following conclusions are made. Significant am-

plitude in plasma current even after 70 ms, indicates a normal case. 

In case of disruption, plasma current reaches zero even before 70 

ms. Also a burst in Mirnov coil current, positive peak in Halpha and 

negative loop voltage support the fact that there is a disruption. 

Hence an efficient signal analysis technique is necessary to indicate 

these variations in automated signal analysis. 

 
Table 1: Literature Survey on Wavelet Transform Methods 

Author /Title of the paper 

/ Journal name/ year/ vol-

ume no. / pp 

Problem definition  Methodology 

Xiaojiao Chen et.al/ De-

sign on the Real-Time 

Wavelet Filter for ITER 
PF AC/DC Converter 

Control / IEEE Transac-

tions On Plasma Science/ 
JULY 2016/ VOL. 44, 

NO. 7, pp. 1178-1186. 

 To reduce the impact 
of regradation of noise 

on the control preci-

sion of the poloidal 
field of International 

Thermonuclear Experi-

mental Reactor. 

Daubechies 
wavelet is used 

for noise re-

moval. 

B.B.S.Kumar et.al / 
Analysis Using Biorthog-

onal Wavelet / Interna-

tional Journal Of Innova-

tive Research & Devel-

opment / June, 2013/ Vol 

2/ Issue 6 pp.545-565. 

To develop wavelet 
based techniques for 

image compression. 

 

Discrete Wave-

let Transform 

is used to ob-

tain a sparse 

matrix.  

H.O.Mota et.al/ A real-

time processing system 

for denoising of partial 
discharge signals using 

the wavelet transform/ 

IEEE Transactions/ 
2008/ pp-391-395 

To develop Discrete 

Wavelet Trans-
form(DWT) for de-

noising the partial dis-

charge signals 

Border distor-
tion is removed 

by using DWT. 

3. Statistical wavelet analysis 

Biorthogonal wavelet 2.2 is used for decomposing the diagnostic 

signal into approximation and detailed co-efficients. Statistical pa-

rameters namely skewness, kurtosis and mean are obtained on the 

approximation co-efficients. Skewness measures the alignment of 

the signal across the mean. Kurtosis is the measure of the flatness 
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of the signal, while mean measures the amplitude of the signal. 

Block diagram of the proposed work is shown in Figure 3. 

 

 
Fig. 1: Representation of the Diagnostic Disruption Signal. 

 

 
Fig. 2: Representation of the Diagnostic Non-Disruption Signal. 

 
Table 2: Statistical Parameters of the Plasma Current 

Sl.no Shot no Statistical Parameters (Plasma Current) 
  m1 s1 k1 

1 26152D 0.18 23.89 601.64 

2 26153D 0.12 21.46 540.79 
3 26154D 0.13 19.25 459.86 

4 26155D 0.23 20.28 449.13 

5 26156D 0.18 21.53 499.61 
6 26161D 0.14 19.3 463.35 

7 26164D 0.13 24.24 675.37 

8 26168D 0.17 25 673.51 
9 26170D 0.1 26.2 723.98 

10 26177D 0.3 19.21 392.38 

11 26179D 0.17 22.87 551.59 
12 26180D 0.21 20.32 459.16 

13 26181D 0.13 23.67 595.26 

14 G26329 0.02 13.79 211.79 
15 G26330 0.02 13.40 202.94 

16 G26331 0.02 13.50 207.42 

17 G26332 0.01 12.19 189.92 
18 G26336 0.02 14.36 221.66 

19 G26341 0.02 13.19 204.44 

20 G26347 0.02 14.31 225.40 
21 G26348 0.02 13.87 214.85 

22 G26373 0.02 12.72 192.21 

23 G26375 0.02 13.36 206.56 

24 G26381 0.02 13.46 206.83 

25 G26395 0.02 12.74 186.33 
26 G26397 0.02 13.01 195.08 

 

Table 3: Statistical parameters of the Vloop signal 
Sl. no Shot no Statistical Parameters (Vloop) 
  m2 s2 k2 
1 26152D 0.84 1.78 17.17 

2 26153D 0.7 1.95 22.69 

3 26154D 0.39 3.19 37.63 
4 26155D 1.21 0.85 9.31 

5 26156D 0.62 1.34 15.71 

6 26161D 0.59 1.29 13.67 
7 26164D 0.26 6.04 70.24 

8 26168D 0.07 2.72 39.29 

9 26170D 0.12 4.73 70.54 
10 26177D 0.79 1.03 12.55 

11 26179D 0.05 3.4 45.29 

12 26180D 0.07 2.84 37.62 

13 26181D -0.01 5.18 66.3 

14 G26408 0.17 0.24 3.13 

15 G26412 1.09 0.44 8.11 
16 G26413 0.68 0.47 7.97 

17 G26414 0.83 0.49 7.19 

18 G26419 1.05 1.11 16.65 
19 G26420 0.14 5.50 84.57 

20 G26421 1.05 1.82 19.46 

21 G26422 1.51 0.17 7.40 
22 G26423 0.82 1.64 19.96 

23 G26425 1.19 0.63 7.22 

24 G26427 0.95 1.06 12.92 
25 G26428 1.03 1.43 13.06 

26 G26429 0.99 0.90 13.91 

 

Mean, skewness and kurtosis determined for the approximation co-

efficients of Plasma current, Halpha, vloop, soft x ray and hard x 

ray are shown Tables 2-6. From the statistical parameters of the 

plasma current ,it observe that the mean value >.1, skewness >14 

and kurtosis >350 denotes disruption signal. In Vloop skewness >1 

and kurtosis >200 represents disruption, however the disruption is 

cannot predict by the mean. In Halpha mean <.05, Skewness is >10 

and kurtosis >200 represents disruption. In HXR the skewness is 

negative and kurtosis is >190 represents disruption. In SXR skew-

ness is positive and kurtosis is <250 disruptions. 

 

 
Fig. 3: Block Diagram of Proposed Work. 

 
Table 4: Statistical Parameters of the Halpha Signal 

Sl. no Shot no Statistical Parameters (Halpha) 
  m3 s3 k3 

1 26152D 0.03 16.56 367.52 
2 26153D 0.03 16.23 364.96 

3 26154D 0.04 14.51 298.87 

4 26155D 0.04 13.44 270.03 
5 26156D 0.03 14.51 289.73 

6 26161D 0.02 22.66 687.25 
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7 26164D 0.02 17.45 453.1 

8 26168D 0.02 22.8 724.94 

9 26170D 0.02 18.44 488.68 
10 26177D 0.03 14.39 326.62 

11 26179D 0.03 15.73 388.43 

12 26180D 0.03 16.76 432.67 
13 26181D 0.03 16.34 398.45 

14 G26331 0.66 5.35 31.12 

15 G26332 0.57 5.11 28.01 
16 G26336 0.70 5.26 29.38 

17 G26341 0.81 5.14 28.27 

18 G26347 0.72 4.88 25.86 
19 G26348 0.97 4.98 26.57 

20 G26373 0.55 5.39 31.12 

21 G26375 0.78 4.92 26.31 
22 G26381 0.62 5.23 29.53 

23 G26395 0.65 5.26 29.66 

24 G26397 0.85 4.96 26.07 
25 G26399 0.63 5.18 28.67 

26 G26400 0.79 4.96 26.26 

 
Table 5: Statistical Parameters of the Disrupted HXR Signal 

Sl. No Shot no Statistical Parameters (HXR) 
  m5 s5 k5 
1 26152D 0 -15.76 290 

2 26153D 0 -17.63 395.47 

3 26154D 0 -15.39 260.02 
4 26155D 0 -14.54 226.32 

5 26156D 0 1.23 1361.1 

6 26161D 0 -15.26 255.69 
7 26164D 0 -14.12 209.98 

8 26168D 0 -14.74 234.68 

9 26170D 0 -15.05 249.62 
10 26177D 0 -17.58 400.81 

11 26179D 0 -15.82 273.16 

12 26180D 0 -16.61 303.44 
13 26181D 0 -13.83 199.33 

14 G26397 0 13.56 185.93 

15 G26399 0 13.63 188.50 

16 G26400 0 13.55 185.44 

17 G26402 0 13.54 185.43 

18 G26404 0 13.55 185.54 
19 G26408 0 13.62 187.98 

20 G26412 0 13.56 186.01 

21 G26413 0 13.60 187.50 
22 G26414 0 13.58 186.77 

23 G26419 0 13.57 186.39 

24 G26420 0 13.57 186.26 
25 G26421 0 13.58 186.69 

26 G26422 0 13.58 186.69 

 
Table 6: Statistical Parameters of the SXR Signal 

Sl. no Shot no Statistical Parameters (SXR) 
  m6 s6 k6 
1 26152D 0 13.55 185.44 

2 26153D 0 13.56 185.81 

3 26154D 0 13.55 185.75 

4 26155D 0 13.54 185.15 

5 26156D 0 13.6 187.36 

6 26161D 0 13.65 189.24 
7 26164D 0 13.62 188.28 

8 26168D 0 13.6 187.19 
9 26170D 0 13.59 187.24 

10 26177D 0 13.69 190.69 

11 26179D 0 13.75 192.96 
12 26180D 0 13.8 195.09 

13 26181D 0 13.72 191.8 

14 G26331 1.12 83.65 9920.60 
15 G26332 -0.01 24.69 4080.30 

16 G26336 -0.01 -28.54 1125.10 

17 G26341 0.01 89.57 12446.00 
18 G26347 0.00 88.20 16424.00 

19 G26348 -0.02 -26.65 1365.40 

20 G26373 0.00 -38.07 3426.90 
21 G26375 0.00 -64.67 8551.60 

22 G26381 -0.01 28.60 12605.00 

23 G26395 -0.01 -40.37 2151.50 
24 G26397 -0.01 -48.51 4934.30 

25 G26399 0.00 25.22 6861.60 

26 G26400 -0.07 -11.54 1278.60 

4. Results and discussion 

Threshold limits for the classification of disruption and normal sig-

nals is shown in Table 7. 

 
Table 7: Ranges of the Statistical Parameter of the Signals 

Signal 
Threshold  
Mean Skewness Kurtosis 

Plasma N < .1  < 14 < 250 

Current D > .1 > 14 > 350 

Vloop 
N  - < 1 < 20 
D  - > 1 > 20 

Halpha 
N > .5 < 6 < 80 

D < .05 > 6 > 200 

Mirnov 
N  - -  -  

D  - > 13  - 

HXR 
N  - +ve < 190 

D  - -ve > 190 

SXR 
N  - -ve > 800 

D  - > 13 < 800 

 

Based on above limits, signals are classified as disruption or nor-

mal. Performance is evaluated in terms of True Positive, True Neg-

ative, False Positive and False Negative. Table 8 shows the perfor-

mance of the individual diagnostic signals and the overall perfor-

mance is shown in Table 9. 

 

 
Fig. 4: Probability of Detection for the Disruption Signals. 

 

 
Fig. 5: Probability of Detection for the Normal Signals. 

 
Table 8: Probability of Detection Based on Diagnostic Signals 

 Signal  Probability 

Plasma 

Cur-

rent 

Vloop 
Hal-
pha 

HXR SXR 

10 20 30 40 50 60 70 80 90 100
0

5

10

15

shots

ra
n
k

probability of detection (disruption signal)

 

 

count=60

actual

desired

20 40 60 80 100 120 140
0

5

10

15

shots

ra
n
k

probability of detection (Normal signal)

 

 

count=88

actual

desired
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G as G  
True  

Positive  
93 69 90 92 68 

G as D  
False Nega-
tive  

53 77 56 54 78 

D as D  
True  

Negative  
26 97 96 25 30 

D as G  
False  

Positive  
77 6 7 78 73 

sensitivity (%) 63.70 47.26 61.64 63.01 46.58 
specificity (%) 25.24 94.17 93.20 24.27 29.13 

 
Table 9: Overall Probability of Detection 

Probability Count 

True Positive  88 / 146 

False Negative  58 / 146 
True Negative  60 / 103 

False Positive  43 / 103 

 

From the above Table 9, sensitivity and specificity are 60.27% and 

58.25% respectively. And also the predictive value for a positive 

result (PV+) and a negative result (PV-) are 59.45% and 50.84%. 

 Fig.4 Probability of detection for the disruption signals 

The graphical representation of the Probability of detection of the 

disruption and normal signals are shown in figure 4 and 5. In total, 

12 possible ranks are calculated from the statistical parameters of 

all the diagnostics signals. The desired rank of disruption is consid-

ered as 6. If the rank is greater than 5,then consider as disruption 

otherwise normal. By this condition fig.4 shows that the probability 

of detection of disruption is 60 out of 103 signals and normal is 88 

out of 146 signals is shown in fig.5 

5. Conclusion and future work 

In this paper, an automated plasma disruption analysis technique is 

developed using Discrete Wavelet Transform. Statistical parame-

ters namely mean, skewness and kurtosis are determined on the di-

agonal co-efficient. Performance is analyzed in terms of true posi-

tive, false negative, true negative and false positive. Sensitivity and 

specificity were also calculated. Sensitivity and specificity are 

60.27% and 58.25% respectively. And also the predictive value for 

a positive result (PV+) and a negative result (PV-) are 59.45% and 

50.84%.In order to improve the performance further, it is necessary 

to identify an appropriate transform. 
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