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Abstract 
 

There has been an increasing interest in field of high-dimensional systems and their synchronization phenomena. This paper deals with 

complete synchronization between two identical 6-D hyperchaotic Lorenz systems based on nonlinear control strategy. The designed 

control functions for the synchronization between the drive and response systems are succeed to achieve complete synchronization with 

the states of both systems are measurable and the parameters are known. Numerical simulations have verified the analytical synchroniza-

tion technique. 
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1. Introduction 

Chaos control is one of the chaos treatment, which contains two 

aspects, namely, chaos control and chaos synchronization. Syn-

chronization means to control a chaotic system to follow another 

chaotic system[1]. Chaos control and chaos synchronization play 

very important topic in nonlinear dynamical systems and have 

great significance in the application of chaos [2]. Especially, the 

subject of chaos synchronization has received considerable atten-

tion due to its potential applications in engineering, physics, se-

cure communication, networks, control theory, artificial neural 

network. etc. [3], [4]. Historically, chaos control is discover by Ott 

et al. while synchronization is introduced by Pecora and Carroll in 

1990s which opens the way for chaotic systems synchronization [4 

- 6].  

Different kinds of synchronization phenomena have been present-

ed such as complete synchronization (CS), generalized synchroni-

zation (GS), lag synchronization, anti-synchronization (AS), pro-

jective synchronization (PS), generalized projective synchroniza-

tion (GPS) [7]. The complete synchronization (full or synchroni-

zation) play an important role in engineering applications such as 

secure communication [8]  

Initially, the synchronization phenomena are applied on low-

dimensional systems (3-D chaotic system). But, for these systems, 

there is just one positive Lyapunov exponent. In secure communi-

cation, messages masked by such simple chaotic systems are not 

always safe [7], [8]. It is suggested that this problem can be over-

come by using higher-dimensional hyperchaotic systems, which 

have increased randomness and higher unpredictability. Due to its 

higher unpredictability than chaotic systems, the hyperchaos may 

be more useful in some fields such as secure communication [9]. 

So, it's needed to discover hyperchaotic systems, these system are 

characterized as a chaotic system with more than one positive 

Lypunov exponent, and have more complex and richer dynamical 

behaviors than chaotic system. Historical, Rössler system is the 

first hyperchaotic systems which discover in 1979, Since then, 

many hyperchaotic systems have been discover [10], such as hy-

perchaotic Lorenz system [11], hyperchaotic Liu system[12], hy-

perchaotic Chen system, Modified hyperchaotic Pan system [12] 

as well as to propose a 5-D hyperchaotic system such as A novel 

5-D hyperchaotic Lorenz system [9]., a novel hyperjerk system 

with two nonlinearities. Currently, a novel 6-D hyperchaotic Lo-

renz is discover by Yang which contains four positive Lyapunov 

Exponents [13], [14]. 

Results of previous works indicated that the chaos synchronization 

with unknown parameters can be easily found compare with other 

hyperchaotic systems with known parameters [6,11]. 

The main contribution of this paper is the achieving synchroniza-

tion between two identical 6-D hyperchaotic Lorenz system via 

nonlinear control strategy when the parameters are known.  

2. System description 

The Lorenz system was the first 3-D chaotic system to be modeled 

and one of the most widely studied. The original system was mod-

ified into a 4-D and 5-D hyperchaotic systems by introducing a 

linear feedback controller. In 2015, Yang constructed a 6-D hy-

perchaotic system which contains four positive Lyapunov Expo-

nents 𝐿𝐸1 = 1.0034 , 𝐿𝐸2 = 0.57515 , 𝐿𝐸3 = 0.32785 , 𝐿𝐸4 =
0.020937 , and two negative Lyapunov Exponents 𝐿𝐸5 =
−0.12087, 𝐿𝐸6 = −12.4713 . The 6-D system which is described 

by the following mathematical form [13], [14]: 

 

{
 
 

 
 

 

�̇�1 = 𝑎(𝑥2 − 𝑥1) + 𝑥4          
�̇�2 = 𝑐𝑥1 − 𝑥2 − 𝑥1𝑥3 + 𝑥5
�̇�3 = −𝑏𝑥3+𝑥1𝑥2                  
�̇�4 =  𝑑𝑥4 − 𝑥1𝑥3                  
�̇�5 = − 𝑘𝑥2                            
�̇�6 = 𝑙𝑥2 + ℎ𝑥6                     

                                                       (1) 

 

Where a, b, c, d, k, l and h are constant. The Lorenz system has a 

hyperchaotic attractor when 𝑎 = 10, 𝑏 =
8

3
, 𝑐 = 28, 𝑑 = 2 ,  k =

8.4, 𝑙 = 1 and ℎ = 1. Figures 1-3 show the 3-D attractor of the 
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system (1), while figures 4-6 show the 2-D attractor of the system 

(1). 

 

 
Fig. 1: 3-D attractor of the system (1) in the (x1 , x2 , x3) space. 

  

 
Fig. 2: 3-D attractor of the system (1) in the (x1 , x3 , x5) space. 

 

 
Fig. 3: 3-D attractor of the system (1) in the (x3 , x4 , x5) space. 

 

 
Fig. 4: 2-D attractor of the system (1) in the (x2 , x5) plane. 

 
Fig. 5: 2-D attractor of the system (1) in the (x4 , x5) plane. 

 

 
Fig. 6: 2-D attractor of the system (1) in the (x1 , x6) plane. 

3. Chaos synchronization of the 6-D Lorenz 

hyperchaotic systems 

In this section, we study an engineering application of the 6-D 

Lorenz hyperchaotic system via. nonlinear chaos synchronization 

of two identical of Lorenz hyperchaotic system with known pa-

rameters. To begin with, the definition of synchronization used in 

this paper is given as  

3.1. Definition 

For two nonlinear dynamical systems:  

 

�̇�1 = 𝐹1(𝑋𝑖)                                                                                   (2) 

 

�̇�𝑖 = 𝐹2(𝑌𝑖) + 𝑈(𝑋𝑖 , 𝑌𝑖)                                                                  (3) 

 

Where𝑋𝑖 , 𝑌𝑖 ∈ 𝑅
𝑛, 𝐹1, 𝐹2: 𝑅

𝑛 → 𝑅𝑛, 𝑖 = 1,2,… , 𝑛 , 𝑈(𝑋𝑖 , 𝑌𝑖) is the 

nonlinear control vector, suppose that Eq. (2) is the drive system, 

Eq.(3) is the response system. The response system and drive sys-

tem are said to be chaos synchronized or (complete /full) synchro-

nized if for  

 

∀ 𝑋𝑖 , 𝑌𝑖 ∈ 𝑅
𝑛 , 𝑙𝑖𝑚

𝑡→
∞‖𝑌𝑖 − 𝛼𝑖𝑋𝑖‖ = 0,  

 

Where αi is the scaling factor taken the value 1 for complete syn-

chronization[15]. 

3.2. Design of nonlinear controllers with known parame-

ters 

According to the above definition, assume that the system (1) be 

the drive system and response system is given as the following 

form: 
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{
 
 

 
 

 

�̇�1 = 𝑎(𝑦2 − 𝑦1) + 𝑦4 + 𝑢1          
�̇�2 = 𝑐𝑦1 − 𝑦2 − 𝑦1𝑦3 + 𝑦5 + 𝑢2
�̇�3 = −𝑏𝑦3+𝑦1𝑦2 + 𝑢3                 
�̇�4 = 𝑑𝑦4 − 𝑦1𝑦3 + 𝑢4                  
�̇�5 = − 𝑘𝑦2 + 𝑢5                           
�̇�6 = 𝑙𝑦2 + ℎ𝑦6 + 𝑢6                     

                                            (4) 

 

Where 𝑈 = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6]
𝑇  is the nonlinear controller to 

be designed. 

The synchronization error dynamics between the 6-D hyperchaotic 

system (1) and system (4) is defined as 

 

{
 
 

 
 

 

𝑒1 = 𝑦1 − 𝛼1𝑥1
𝑒2 = 𝑦2 − 𝛼2𝑥2
𝑒3 = 𝑦3 − 𝛼3𝑥3
𝑒4 = 𝑦4 − 𝛼4𝑥4
𝑒5 = 𝑦5 − 𝛼5𝑥5
𝑒6 = 𝑦6 − 𝛼6𝑥6

                                                                          (5) 

 

The error dynamics is calculated as the following:  

 

{
 
 

 
 

 

�̇�1 = 𝑎(𝑒2 − 𝑒1) + 𝑒4 + 𝑢1                                     
�̇�2 = 𝑐𝑒1 − 𝑒2 + 𝑒5 − 𝑒1𝑒3 − 𝑥3𝑒1 − 𝑥1𝑒3 + 𝑢2
�̇�3 = −𝑏𝑒3+𝑒1𝑒2 + 𝑥1𝑒2 + 𝑥2𝑒1 + 𝑢3                 
�̇�4 =  𝑑𝑒4 − 𝑒1𝑒3 − 𝑥3𝑒1 − 𝑥1𝑒3 + 𝑢4                 
�̇�5 = − 𝑘𝑒2 + 𝑢5                                                      
�̇�6 = 𝑙𝑒2 + ℎ𝑒6 + 𝑢6                                               

                       (6) 

 

The above  system is unstable. Based on the following law    

|𝜆𝐼6 − 𝐽𝐸1| = 0, the characteristic equation and eigenvalues 

is yield as 

 

 λ6 +
32

3
λ5 −

4069

15
λ4 +

1658

15
λ3 +

24004

15
λ2 −

9496

5
λ − 448 = 0 

    

{
  
 

  
 

 

λ1 = 2                                                                      
λ2 = 1                                                                      
λ3 = −8/3                                                              

λ4 = 11.36592689 − 8.10
−9𝑖                           

λ5 = −22.69162026 − 3.92820323010
−9𝑖

λ6 =  0.32569338 + 9.92820323010
−9𝑖      

  

  

So, some eigenvalues are positive real parts. Therefore, The 

error dynamics system(6) is unstable. Now, we try to control 

this system through the design the following control 
 

Theorem 1: For the error dynamics system (system 6) with non-

linear control 𝑈 = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6]
𝑇 such that  

 

{
 
 

 
 

 

𝑢1 = 0                                                                 
𝑢2 = −2𝑐𝑒1 − 𝑒6 + 𝑥3𝑒1                                
𝑢3 = −𝑥2𝑒1                                                        
𝑢4 =  −𝑑𝑒1 − 2𝑑𝑒4 + 𝑒1𝑒3 + 𝑥3𝑒1 + 𝑥1𝑒3
𝑢5 = −𝑒5                                                            
𝑢6 = −2ℎ𝑒6                                                       

                              (7) 

 

Then the system (6) can be controlled i.e., system (4) followed to 

system (1).  

Proof. According to the previous discussion, the error dynamics 

system (6) with controller (7) become 

 

 

{
 
 

 
 

 

�̇�1 = 𝑎(𝑒2 − 𝑒1) + 𝑒4                                    
�̇�2 = −𝑐𝑒1 − 𝑒2 + 𝑒5 − 𝑒6 − 𝑒1𝑒3 − 𝑥1𝑒3
�̇�3 = −𝑏𝑒3+𝑒1𝑒2 + 𝑥1𝑒2                              
�̇�4 = −𝑑(𝑒1 + 𝑒4)                                          
�̇�5 = −𝑘𝑒2 − 𝑒5                                            
�̇�6 = 𝑙𝑒2 − ℎ𝑒6                                               

                               (8) 

 

Now, based on the Lyapunov stability theory, we construct a posi-

tive definite on 𝑅6 Lyapunov candidate function as  

 

𝑉(𝑒) = 𝑒𝑇𝑃𝑒 =
1

2
[𝑒1
2 + 𝑒2

2 + 𝑒3
2 + 𝑒4

2 + 𝑒5
2 + 𝑒6

2]                      (9) 

 

Where  

 

𝑃 = 𝑑𝑎𝑖𝑔[1 2⁄ , 1 2⁄ , 1 2⁄ , 1 2⁄ , 1 2⁄ , 1 2⁄ ]                              (10) 

 

Differentiating 𝑉(𝑒) along the error dynamics (6), we obtain of 

the Lyapunov function 𝑉(𝑒) with respect to time is  

 

�̇�(𝑒) = 𝑒1�̇�1 + 𝑒2�̇�2+𝑒3�̇�3 + 𝑒4�̇�4 + 𝑒5�̇�5 + 𝑒6�̇�6                      (11) 

 

�̇�(𝑒) = 𝑒1[−𝑎𝑒1+𝑎𝑒2 + 𝑒4] + 𝑒2[−𝑐𝑒1 − 𝑒2 + 𝑒5 − 𝑒6 − 𝑒1𝑒3 −
               𝑥1𝑒3] + 𝑒3[−𝑏𝑒3+𝑒1𝑒2 + 𝑥1𝑒2] + 𝑒4[−𝑑𝑒1 − 𝑑𝑒4] +
                𝑒5[−𝑘𝑒2 − 𝑒5]+𝑒6[𝑙𝑒2 − ℎ𝑒6]  
 

�̇�(𝑒) = −𝑎𝑒1
2−𝑒2

2−𝑏𝑒3
2 − 𝑑𝑒4

2 − 𝑒5
2 − ℎ𝑒6

2 + (𝑎 − 𝑐)𝑒1𝑒2 +
(1 − 𝑑)𝑒1𝑒4 + (1 − 𝑘)𝑒2𝑒5 + (𝑙 − 1)𝑒2𝑒6 = −𝑒

𝑇𝑄𝑒              (12) 

 

Where 

 

 𝑄 =

(

 
 
 
 
 

𝑎
𝑐−𝑎

2

0
𝑑−1

2

0
0

𝑐−𝑎

2

1
0
0
𝑘−1

2
1−𝑙

2

0
0
𝑏
0
0
0

𝑑−1

2

0
0
𝑑
0
0

0
𝑘−1

2

0
0
1
0

0
1−𝑙

2

0
0
0
ℎ
)

 
 
 
 
 

                                    (13) 

 

So, 𝑄 is not diagonal matrix. In order to transform above symmet-

ric matrix to diagonal (Every diagonal matrix with positive diago-

nal elements are positive definite, while the symmetric (not diago-

nal) matrix it is possible to a positive definite. 

For treatment this problem, we modify the matrix 𝑃 to make the 

matrix 𝑄 is a positive definite. So, we modify the matrix 𝑃 by the 

following form 

 

𝑃1 = 𝑑𝑎𝑖𝑔[ 7/5 ,  1 2⁄  , 1 2⁄ , 7/10 , 5 84⁄ , 1 2⁄ ]                       (14) 

 

Then the derivative of the Lyapunov function as  

 

 �̇�(𝑒) = −2.8𝑎𝑒1
2−𝑒2

2−𝑏𝑒3
2 − 1.4𝑑𝑒4

2 − 0.119𝑒5
2 − ℎ𝑒6

2 =
               −𝑒𝑇𝑄1𝑒                                                                          (15) 

 

𝑄1 =

(

 
 

2.8𝑎
0
0
0
0
0

0
1
0
0
0
0

0
0
𝑏
0
0
0

0
0
0

1.4𝑑
0
0

0
0
0
0

0.119
0

0
0
0
0
0
ℎ)

 
 

                                  (16) 

 

Clearly, 𝑄1  is diagonal matrix with positive diagonal elements 

𝑄1 > 0 . Therefore,  �̇�(𝑒)  is negative definite. According to the 

Lyapunov asymptotical stability theory, the nonlinear controller is 

achieved. 

Based on the second method (Linearization method), the charac-

teristic equation and eigenvalues of system (8) is yield as 

 

λ6 +
53

3
λ5 +

1952

5
λ4 +

11398

5
λ3 +

26924

5
λ2 +

27912

5
λ +

31552

15
= 0                          

{
 
 

 
 

  

λ1 = −1                                     
λ2 = −8/3                                
λ3 = −1.4092                          
λ4 = −1.8748                          
λ5 = − 5.3580 + 16.4274 𝑖 
λ6 = − 5.3580 − 16.4274 𝑖 
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It is clear that all real parts of eigenvalues are a negative, there-

fore the propose controller (7) is succeeded to perform complete 

synchronization between systems (1) and (4)  . 

 

3.3. Numerical simulation 

For simulation, the MATLAB is used to solve the differential 

equation of controlled error dynamical system (6), based on 

fourth-order Runge-Kutta scheme with time step 0.001 and the 

and the initial values of the drive system and the response system 

are following (15,−12,17,−10,−9,4) and (−10,8,−2,4,2,−6) 

respectively. We choose the parameters = 10, 𝑏 =
8

3
, 𝑐 = 28, 𝑑 =

2, 𝑘 = 8.4, 𝑙 = 1 and ℎ = 1.  

Figures 7-12 show the complete/full synchronization of the hyper-

chaotic Lorenz system (1) and system (4). Figure 13 shows the 

convergent for system (6) with controller (7). 

 

 
Fig. 7: Complete synchronization of the states 𝑥1 and 𝑦1 for the Lorenz 

systems (1) and (4). 
 

 
Fig. 8: Complete synchronization of the states 𝑥2 and 𝑦2  for the Lorenz 

systems (1) and (4). 

 

 
Fig. 9: Complete synchronization of the states 𝑥3 and 𝑦3  for the Lorenz 

systems (1) and (4). 

 

 
Fig. 10: Complete synchronization of the states 𝑥4 and 𝑦4 for the Lorenz 

systems (1) and (4). 

 

 
Fig. 11: Complete synchronization of the states 𝑥5 and 𝑦5 for the Lorenz 

systems (1) and (4). 

 
Fig. 12: Complete synchronization of the states x6 and y6 for the Lorenz 

systems (1) and (4). 

 

 
Fig. 13: The Convergent of the error dynamics (6) with controller (7). 
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4. Conclusion 

In this article, chaos synchronization (complete synchronization) 

for 6-D hyperchaotic system is dealt with. When the parameters of 

this system are known, the controller was designed via the nonlin-

ear control strategy for controlling this high-dimensional sys-

tem based on the Lyapunov stability criteria. Obviously from this 

controller, we achieved complete synchronization although 

this system is higher-dimensional and more complex from low-

dimensional chaotic system. The effectiveness of these pro-

posed control strategies was validated by numerical simulation 

results. 
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