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Abstract 
 

Local binary pattern (LBP) captures isotropic structural information and completely fails in representing anisotropic information, howev-

er the horizontal elliptical LBP (H-ELBP) and vertical elliptical LBP (V-ELBP) represents partial anisotropic information only. In our 

earlier work we have derived ―circular and elliptical-LBP (CE-LBP)‖ captures both isotropic and anisotropic structural information with 

a feature vector size equivalent to LBP and it is easy to implement and invariant to monotonic illumination changes. The LBP, local ter-

nary pattern (LTP), CE-LBP and most of the extensions of LBP descriptor basically ignore the directional information. To address this 

and to capture both isotropic and anisotropic directional information, this paper proposes a ―circular and elliptical ternary direction pat-

tern matrix (CE-TDPM)‖. The CE-TDPM encodes the relationship between the central pixel and two of its neighboring pixel located in 

different angles (α, β) with different directions. The CE-TDPM evaluated the possible direction variation pattern for central pixel by 

measuring the first order derivate relationship among the horizontal and vertical neighbors (0o vs. 90o; 90o vs. 180o; 180o vs. 270o; 270o 

vs. 0o) and derived a unique code. The performance of the proposed method is compared with various other existing methods using the 

benchmark texture databases viz. Brodtaz, UIUC, Outex and MIT-VisTex. The performance analysis shows the efficiency of the pro-

posed method over the existing methods. 
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1. Introduction 

TEXTURE is one of the most important visual patterns and it 

represents the spatial arrangement of intensities of pixels of an 

image. Decent representation of texture is most important, crucial 

and beneficial in various applications like in video indexing [1], 

Content based image retrieval (CBIR) [2], lip reading [3], multi-

resolution representation to deal with scale changes [4], sound-

event classification [5], texture segmentation [6], web search [7] 

texture classification [8-10], scene recognition [11], object detec-

tion [12, 13] and image matching [14]. Illumination variation is a 

major issue in texture representation and it should be eliminated. 

The illumination may vary over different blocks of an image i.e. 

shadows and non-shadows. Illumination variation tends to be 

more or less uniform in local regions and they can be dealt effi-

ciently by applying local neighborhood based methods. That‘s 

why local based methods have become more popular in image 

classification when compared to global based methods. Further 

illumination variation in a local neighborhood can be viewed as 

monotonic gray-level changes. The illumination variations in local 

neighborhoods can be dealt effectively by finding the intensity 

differences between pixels instead of intensities of each and every 

individual pixel. In fact in the literature the texture spectrum [15] 

and the local binary pattern [8, 16] approaches computes the in-

tensity differences between center and neighboring pixels of a 

neighborhood. These methods have become popular in dealing 

with illumination variations. The aim of any texture representation 

scheme is to derive significant features that are robust to the varia-

tions of pose, viewpoint changes illumination, rotation and scale. 

There are many large extrinsic variations and complex intrinsic 

structures present in natural textures and that‘s why the texture 

classification has become a challenging problem to derive a robust 

classification approach [17, 20]. Various feature descriptors have 

been proposed over the past decades. 

Texton-based methods are popular and succeeded in the texture 

analysis in the early years. The texton based methods initially 

derived filter banks by dividing the image into 2 x 2 blocks and 

based on the filter bank responses texture patterns are derived [21, 

22]. Later many methods based on local neighborhood responses 

are proposed in the literature and the noted ones are scale-

invariant feature transform (SIFT) [23], Histogram of oriented 

gradients (HOG) [24], local binary patterns (LBP) [8] and its ex-

tensions [25- 32]. The local features derived by these methods can 

be easily integrated with other complex methods [33] like gray 

level co-occurrence matrix (GLCM) [34, 35] and these integrated 

methods could able to detect local structures, edges, orientation 

and other salient features. Some of the complicated and advanced 

methods are proposed in the literature: histogram model known as 

weber local descriptor (WLD) [36], to match the original image 

regions a patch model [37], to detect environmental changes in a 

mailto:mrsubbareddy@yahoo.com
mailto:drvvk114@gmail.com


602 International Journal of Engineering & Technology 

 
robust manner a wavelet-based multi-fractal spectrum 

(WMFS)[38] model, to represent the local regions with curves 

from gradients oriented texture curves (OTC) [39] model, im-

proved local difference binary (ILDB) [40] model.  The high-level 

features with semantic information can be obtained by deep learn-

ing methods easily. The deep learning techniques and deep learn-

ing features are studied recently in texture classification [41-46]. 

However mostly many researchers treated the texture representa-

tion as a low level problem. 

After finding the significant features recently many advanced 

classification methods, are investigated for classification purpose 

which include multinomial logistic regression [47, 48], support 

vector machines (SVMs) [49, 50], random forest [51], neural net-

work [52], rotation forest [53] and sparse representation-based 

classifier (SRC) [54-57]. The SRC is different from previous clas-

sifiers which make decisions based on standard classifiers (e.g., k-

nearest-neighbor [58] or SVMs [49], the decision rule of SRC is 

based on the minimum reconstruction error and it is used in many 

applications SRC [59-66]. All the above LBP based approaches 

and its extensions derived features from circular neighborhood. 

These methods have not considered any other topology and these 

methods basically have not considered the derivative directions. 

To address this, present paper extracts local features on optimized 

circular, horizontal and vertical elliptical neighborhood named as 

circular and elliptical neighborhood (CEN) and derives ternary 

derivative direction pattern code that captures both circular and 

elliptical derivative information.  

The rest of this paper is organized as follows. The proposed meth-

od presented in Section 2. In Section 3, results, discussions and 

comparisons with other methods is carried out under various natu-

ral databases. Section 4 concludes the paper. 

2. Derivation of Circular and Elliptical-

Ternary Derivative Pattern Matrix (CE-

TDPM) 

Local binary patterns (LBP) [16] have emerged as one of the most 

prominent and widely studied local texture descriptors in the field 

of computer vision and pattern recognition. This is mainly because 

of the merits of LBP i.e., simplicity, ability to capture image mi-

cro-structures, and robustness to illumination variations. The LBP 

represents the circular topology and in the literature different 

kinds of topologies that represent different kinds of structural 

information are derived. In the literature the topologies that repre-

sent horizontal and vertical lines [67], the lines and disk in terms 

of local quantized pattern (LQP) [68] are explored on LBP to have 

more discrimination power. Shu Liao et al. [69] derived Elliptical 

local binary patterns (ELBP) to exploit elliptical topology and 

later they are expanded to derive parabolic, hyperbolic, and spiral 

neighborhood topologies [70] and the local patterns and the local 

code on these i.e. elliptical, parabolic and hyperbolic, are derived 

in the same way as LBP. 

The circular neighborhood of LBP, represents only isotropic struc-

tural information and whereas the ELBP derives only anisotropic 

structural information. The LBP completely oversights the aniso-

tropic information and the ELBP on the other hand completely fail 

in recognizing the isotropic information. To address this in our 

earlier work we have proposed circular and elliptical LBP (CE-

LBP)[71],which represents more powerful isotropic and aniso-

tropic information of the local neighborhood. 

The common problem of LBP based methods like LBP, LTP, CE-

LBP etc., is all of them  pay no attention to the spatial distribution 

characteristics of texture in images e.g., the varying texture fea-

tures in different directions. This will cause some loss of im-

portant and functional texture information and by which the classi-

fication performance will be degraded. The texture information is 

derived using grey level variations between centre and neighbor-

ing pixel in two directions only i.e. positive or negative in LBP 

based methods.  And they completely ignore the information re-

garding the direction of local features. This observation made us 

to propose the computation of gray-level derivative variation pat-

terns on different directions and construct the spatial distribution 

pattern.  

  The grey level value of a pixel represents the fundamental infor-

mation of a texture image. The difference between adjacent neigh-

boring pixels also represents useful information and however it 

lacks the participation of central pixel, therefore it will miss the 

significant and fundamental information. To address this, the pre-

sent paper initially derives first order derivatives between centre 

pixel and sampling points of circular and elliptical neighborhood 

(CEN).The block diagram of the proposed model is given in Fig-

ure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

Figure 1: The block diagram of the proposed CE-TDPM. 

2.1 The Derivation of LBP 

The basic LBP represents a circular neighborhood with radius R=1 

and with 8-neighboring pixels i.e. a 3 x 3 neighborhood and this 

was later extended to higher radius ―R‖ with different number of 

sampling or neighboring pixels. The computer vision and image 

processing domains like age classification, face recognition, medi-

cal image processing and texture classification requires both iso-

tropic and anisotropic features for high success rate. However to 

derive complete anisotropic information one should consider both 

Horizontal and Vertical Elliptical structures and this creates lot of 

complexity. To have complete isotropic and anisotropic topology 

one should consider LBP, which represents complete Circular 

topology, Horizontal elliptical LBP representing partial elliptical 

topology and vertical elliptical LBP representing the other part of 

elliptical topology. The micro information of the texture in ELBP 

model is usually captured by using horizontal and vertical 

ELBP‘s. Our earlier work derived a completely new variant of 

LBP and ELBP, called CE-LBP, to capture both isotropic and 

anisotropic structural information, with minimal complexity and 

without losing any information from both the topologies. The 

basic LBP is derived on a 3 x3 neighborhood. The local patterns 

are derived in LBP, by thresholding the 8-neighboring pixels of 

3x3 neighborhood with the value of centre pixel (Figure 2). 
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Figure 2: 3 x 3 basic LBP neighborhood. 

The LBP considers only sign information, to derive local binary 

patterns of the neighborhood, because of which the LBP is invari-

ant to monotonic illumination changes. The LBP code of a pixel 

(xc,yc) is defined as : 
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Where Sc is the intensity value of centre pixel (xc,yc), Si corre-

sponds to the intensities of S-neighboring/ sampling pixels located 

on a circle of radius R centered at Sc. In practice, the neighboring 

pixels are sampled on a circle. The LBPd,R(xc,yc) derives an 

unique decimal number ranges from 0 to 2S-1.  

2.2 The derivation of CE-LBP 

To derive elliptical shape or elliptical neighboring or sampling 

points in both horizontal and vertical elliptical structures one need 

to consider horizontal (x-axis) radius, the vertical (y-axis) radius 

and the number of sampling points of the ellipse and they are usu-

ally denoted as  ‗hR‘ ,  ‗vR‘ and ‗S‘ respectively. The relationship 

between hR and vR determines the type of elliptical shape: verti-

cal or horizontal and is given in the following algorithm. The basic 

representation of LBP, H-ELBP and V-ELBP is given in Figure 3. 

 

Algorithm 1: 

begin 

Step 1: If hR == vR 

Then given structure is circular i.e. forms a LBP 

Step 2: if hR < vR 

      Then given structure is horizontal ellipse i.e. forms a H-

ELBP  

Step 3: if hR < vR 

Then given structure is vertical ellipse i.e. forms a V-ELBP 

end; 

The neighboring pixel co-ordinates (xi, yi) of the centre pixel 

(xc,yc) in elliptical structures are derived based on the following 

equations. 

angle-step=2*π/n                                                                       (2) 

x_i=x_c+hR*(cos⁡(i-1)*angle-step)                                         (3) 

y_i=x_c+vR*(cos⁡(i-1)*angle-step)                                         (4) 

The unique decimal code for              (     ) and V-

ELBPd,hR,vR (     ) at each centre pixel (xc,yc) is derived simi-

lar to LBP based on equation 5 and 6. 
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Where S(x) is defined as  

 ( )    ( )  {
       
     

                                                                      (6) 

The decimal codes of conventional LBP, H-ELBP and V-ELBP 

with 8-sampling or neighboring pixels ranges from 0 to 28-1 (255). 

Therefore to capture complete anisotropic information, we have to 

club both the histograms H-ELBP and V-ELBP i.e histogram 

ranges from 0 to 511. This gives a huge and huge histogram and 

thus increases dimensionality to a huge extent and thus not suita-

ble for any applications. 
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Figure 3: The representation of basic LBP, H-ELBP and V-ELBP. 

The interesting feature of the basic LBP, H-ELBP and V-ELBP is 

all three operators require 8-neighboring pixels around the centre 

pixel (xc, yc) i.e Sc as shown in Figure 3. Out of these, the diago-

nal sampling pixels S1, S3, S5 and S7 are common among the three 

local patterns i.e. the LBP, H-ELBP and V-ELBP (Figure 3 and 

Figure 4(a)). The LBP and H-ELBP have two other sampling 

points S2 and S6 as common, where as S4 and S8 are common 

sampling points in between LBP and V-LBP only (Figure 3 and 

Figure 4(a)). The sampling points {S9 ,S11} and {S10, S12} are only 

required for V-ELBP and H-ELBP respectively (Figure 3 and 

Figure 4(a)). A huge histogram of size 212-1 is required, to capture 

both complete isotropic and anisotropic features completely, if one 

considers all the 12 sampling points to represent all the three de-

scriptors, which is high in complexity and may not suits for many 

applications (Figure  4(a)). The above histogram range can be 

reduced to 0 to 767, if one concatenates the individual histograms 

of the three operators or descriptors. 
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(a): The sampling points 

of LBP and V-ELBP and 
H- ELBP. 

 (b): The quantized sampling points of 

V-ELBP and H- ELBP. 
 CE-LBP 

 
Figure 4: The quantization process of sampling points of CE-LBP over the 
centre pixel Sc. 

 

Our earlier work ―circular and elliptical LBP (CE-LBP)‖ quantizes 

the total number of sampling points around Sc of circular and 

elliptical neighborhood, into 8 pixels by representing complete 

isotropic and anisotropic information as shown in Figure 4(b). The 

CE-LBP code of a pixel Sc with co-ordinate position (xc, yc) is 

derived as 

      (       )   ∑  (     )
 
                                           (7) 

with 
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where R1, hR and vR corresponds to the ‗R‘ of LBP, H-ELBP and 

V-ELBP respectively. The R2 corresponds to ‗hR‘ of H-ELBP 

and ‗vR‘- of V-ELBP. The CE-LBP(8,1,2) code ranges from 0 to 

255, with complete isotropic and anisotropic information. 

2.3 The Derivation of CE-TDPM 

The present paper derived four first order derivatives from sam-

pling points that forms 0o, 90o, 180o and 270o around the central 

pixel of the CEN and they can be represented as  

        (  )        (  )   (  (  )   (   ))                    (9) 

         (  )        (  )   (  (  )   (  ))                  (10) 

          (  )        (  )   (  (  )   (   ))              (11) 

          (  )        (  )   (  (  )   (   ))              (12) 

In the above the FD-CEN0
0
 and FD-CEN180

0 represents the sam-

pling points that are combined between circular and horizontal 

elliptic neighborhood. And in the same way FD-CEN180
0 and FD-

CEN270
0   combines vertical elliptic and circular neighborhood. 

This paper strongly believes that a good and high amount of tex-

ture information can be extracted between two first order grey 

level derivative direction sampling pixels that forms an angle o 

with respect to central pixel. Based on this assumption this paper 

derived a ternary relationship between two first order derivatives 

of circular and elliptical neighborhood (CEN).And these patterns 

are named as circular and elliptical ternary direction patterns (CE-

TDP).The CE-TDP derives a strong relationship between two first 

order grey level direction sampling points of CEN that forms an 

angle of 900 with respect to center pixel. This paper derived CE-

TDP matrix(CE-TDPM) from the CE-TDP coded image for tex-

ture classification and the block diagram of this is given in Figure 

1. 

The present paper derived four different CE-TDPs between two 

first order grey level direction sampling points of CEN located 

with angle of αo and βo around the central pixel. The four CE-

TDP are defined between i. 0o vs. 90o (CE-TDP1(  )) ii. 90o  vs. 

180o (CE-TDP2(  )) iii. 180o vs. 270o (CE-TDP3(  )) iv. 270o vs. 

0o (CE-TDP4(  )) 
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(13) 

 

One of the ternary patterns (0, 1, 2) will be assigned to CE-TDP 

by comparing the first order derivatives located at angle αo and βo 

with the central pixel (two local derivatives). The present paper 

derives a unique decimal number from these four CE-TDPs by 

concatenating the ternary values with base 3 as given in the Eq. 14 

and this unique decimal number represent the direction of the 

structural pattern. This decimal number is denoted as CE-TDP 

code. The CE-TDP code ranges from 0 to 80. 

         ∑               (  ) 
 
                                     (14) 

Where CE-TDPi(  )will have one of the three possible ternary 

values {0,1,2}. 

 

This paper computed GLCM on CE-TDP coded image and de-

rived CE-TDPM and the four GLCM features on CE-TDPM are 

evaluated.   

1. Contrast : 

Contrast = ∑      
   {∑ ∑  (   ) 

   
 
   } |   |                        (15) 

2. Correlation : 

Correlation = ∑ ∑
*   +  (   ) {     }

     

   
   

   
                         (16) 

 

3. Energy : 

  

Energy= ∑  (   )                                                                         (17)  

 

4. Homogeneity or Angular Second Moment (ASM): 

  

ASM= ∑ ∑ * (   )+    
   

   
                                                            (18) 

3. Results and Discussions 

To investigate the classification accuracy, we have identified four 

well known and popular texture databases i.e.Brodtaz [72], UIUC 

[73], Outex [74] and MIT-VisTex [75].The images of these data-

bases are captured under varying conditions like lighting, illumi-

nation and varying sizes. Each database consists of various classes 

and each class consists of various images. This paper compared 

the proposed CE-TDPM descriptor with LBP, CE-LBP, ULBP 

based methods, H-ELBP, V-ELBP and concatenation of H-ELBP 

and, V-ELBP (HV-ELBP).  This paper used the machine learning 

classifiers Liblinear and multilayer perceptron for classification 

purpose.  

This paper selected 30 different homogeneous texture images from 

Brodtaz database with a dimension of 640 x 640 pixels. The sam-

ple images are shown in Figure 5. This paper divided each image 

into 25 non-overlapped texture images of size 128x128. This re-

sults a dataset of 750 images (30 x 25). The proposed classifiers 

were trained by using 10 samples of each class (30 x 10=300 im-

ages in total and the remaining 15 samples per class were used for 

validation (30 x 15=450 images in total).  

 
Figure 5: Samples of the 30 classes randomly selected from the Brodatz 
database. 

 

The sample images of UIUC database are shown in Figure 6. This 

database includes 25 classes and each class consists of 40 images. 

This results a total of 1000(25x40) texture images. The size of 

each image is 640x480. In our experiments we have partitioned 

640 x 480 images into 15 non-overlapped images of size 128x128. 

This leads to a total of 15000 (25x 40 x 15) images and a total of 

600 (40 x 15=600) images per class. In our texture classification 

experiments, 300 training images are randomly chosen from each 

class, while the remaining 300 images are used as test set. 



International Journal of Engineering & Technology 605 

 

 
Figure 6: Samples of the 25 classes from the UIUC database. 

 

The Outex database contains two test suits: Outex-TC-10(TC12-

000) and Outex-TC-12(TC12-001). Two subsets of the Outex 

dataset, testsuite TC10 (also known as Outex_TC_00010 in [74]) 

and testsuite TC12 (also known as Outex_TC_00012 in [74]) are 

used for texture classification. Both TC10 and TC12 are composed 

of 24 texture classes of images under 128 × 128 resolutions for 

nine rotation angles (0°, 5°, 10°, 15°, 30°, 45°, 60°, 75°,and 90°) 

and on each rotation angle, there are 20 images. These images are 

captured under three illumination conditions namely 1. ―inca‘  2. 

t184 3. Horizon. The total number of images in TC10 and TC12 

are 4320 and 9120, respectively. All images in TC10 are under the 

same illuminant inca, and this leads to 4320 (24 × 9 × 20 = 4320) 

images in total. , There are 480 images in TC12 under inca in a 

single direction (24 x 20=480). There are 4320 t184 images and 

4320 horizon images in TC12 under nine rotation angles (24 x 20 

x 9=4320). This leads to a total of 9120 images in TC12. Both 

TC10 and TC12 share the same training dataset of the 480 ―inca‖ 

images but use different test datasets.  

For the TC10 dataset, with illumination condition ―inca‖ with 0o 

of rotation (24 x 20=480 images), is used for training purpose in 

the present paper. The remaning images with other 8-rotations are 

used for testing (24 x 8 x 20=3840 images). For TC-12 dataset, the 

24 x 20 images of illumination ―inca‖ and rotation angle zero 

degrees are adopted for the training process. All the 24 x 20 x9 

samples captured under illumination (tl84 or horizon) are used as 

test data for TC12 dataset. The sample images from Outex data-

base are shown in Figure 7.  

  

 
Figure 7: The sample images of 24 classes from Outex database. 

MIT- VisTex database is taken that contains 40 textures [75]. 

Every texture has a size of 512X512 being categorizes into sixteen 

128X128 non-overlapped sub-images and therefore, designed 640 

(40X16) images database. The sample images are shown in Figure 

8. 

 
Figure 8: The sample textures from MIT-VisTex texture database.  

 

The texture classification results of the proposed CE-TDPM is 

compared with existing methods and listed in Table 1,2 , 3 and 4 

for Brodtaz[72], UIUC[73], Outex[74] and MIT-VisTex [75] da-

tabases respectively. The following are noted down.  

From Table 1 i.e. the classification results on the Brodtaz textures, 

the following findings are noted down. The proposed CE-TDPM 

outperformed the LBP, H-ELBP, V-ELBP and concatenation of 

horizontal and vertical ELBP models. The basic reason for this, 

the CE-TDPM captures the both isotropic and anisotropic struc-

ture information. The LBP with complete isotropic structural 

model attained an average of 3% high classification rate than the 

partial anisotropic models: H-ELBP or V-ELBP. The process of 

concatenating the H-ELBP and V-ELBP increased the dimension-

ality twice when compared to LBP and it attained almost similar 

classification rate of LBP.  The proposed CE-TDPM attained high 

classification rate of over LBP, partial anisotropic structures (H-

ELBP and V-ELBP) and complete anisotropic structure HV-ELBP 

respectively. The ULBP and concatenation of Horizontal and Ver-

tical EULBP (HV-EULBP) attained almost same classification 

rate, however the feature vector size is doubled in the case of HV-

EULBP descriptor.  

The experimental results on various variants of LBP on UIUC 

dataset using various classifiers are placed in Table 2 and the pro-

posed CE-TDPM attained a better classification rate on all three 

classifiers on UIUC dataset, when compared to LBP and ELBP 

descriptors.  

The Table 3 displays the experimental results on the Outex dataset 

and the partial anisotropic models: H-ELBP or V-ELBP exhibited 

a low performance of 1% when compared to LBP. The HV-ELBP 

has shown slightly high classification rate than LBP model. The 

proposed CE-TDPM attained high classification rate when com-

pared to all other descriptors. 

 
Table 1: Classification rate on Brodtaz dataset. 

S.No Name of the 

method 

Liblinear 

 
 

 

Multilayer  

Perceptron 

Average 

 

1 LBP 90.02 91.82 90.92 

2 H-ELBP 89.48 90.01 89.75 

3 V-ELBP 88.28 89.24 88.76 

4 H U V-ELBP 90.24 90.84 90.54 

5 ULBP 86.20 87.25 86.73 

6 H-ULBP 85.44 84.23 84.84 

7 V-ULBP 86.32 85.27 85.80 

8 HUV –ULBP 87.21 87.28 87.25 

9 CE-ULBP 92.48 93.25 92.87 

10 CE-LBP 93.72 94.68 94.20 

11 Proposed CE-

TDPM 

94.02 96.07 95.04 
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Table 2: Classification rate on UIUC dataset. 

S.No Name of the 

method 

Liblinear 

 

Multilayer  

Perceptron 

Average 

 

1 LBP 54.65 56.27 55.46 

2 H-ELBP 52.25 53.89 53.07 

3 V-ELBP 53.08 54.25 53.67 

4 H U V-ELBP 54.08 55.96 55.02 

5 ULBP 52.28 53.18 52.73 

6 H-ULBP 49.97 52.16 51.07 

7 V-ULBP 48.67 50.12 49.40 

8 HUV –ULBP 53.67 55.27 54.47 

9 CE-ULBP 57.21 60.02 58.62 

10 CE-LBP 60.72 62.88 61.80 

11 Proposed CE-
TDPM 

65.78 71.52 68.65 

 
Table 3: Classification rate on Outex dataset. 

  TC-10 TC-12 ‘t‘ TC-12 ‗h‘ 

S.No Name of 

the 

method 

LL MLP LL MLP LL MLP 

1 LBP 84.87 85.52 65.19 66.32 64.03 65.63 

2 H-ELBP 83.45 84.68 64.18 65.36 63.23 64.58 

3 V-ELBP 84.02 85.67 63.76 64.85 63.06 64.85 

4 HV-
ELBP 

85.05 86.36 64.28 65.98 64.48 65.39 

5 ULBP 79.98 81.21 61.90 62.38 60.01 61.35 

6 H-ULBP 80.24 81.86 59.82 60.35 58.84 59.68 

7 V-ULBP 81.03 82.34 58.74 59.68 58.91 59.48 

8 HUV –
ULBP 

81.76 82.65 60.91 61.48 60.25 61.35 

9 CE-

ULBP 

87.84 88.91 70.94 71.63 70.21 72.15 

10 CE-LBP 90.24 91.28 73.89 74.68 72.91 73.68 

11 Proposed 
CE-

TDPM 

93.87 95.09 79.28 81.25 76.56 77.67 

 
Table 4: Classification rate on MIT-VisTex dataset. 

S.No Name of the 
method 

Liblinear 
 

Multilayer  
Perceptron 

Average 
 

1 LBP 56.36 63.68 60.02 

2 H-ELBP 59.65 66.36 63.01 

3 V-ELBP 60.52 59.63 60.08 

4 H U V-ELBP 63.12 65.36 64.24 

5 ULBP 56.69 60.53 58.61 

6 H-ULBP 50.36 53.32 51.84 

7 V-ULBP 53.63 56.63 55.13 

8 HUV –ULBP 56.62 62.32 59.47 

9 CE-ULBP 61.23 68.62 64.93 

10 CE-LBP 69.68 70.32 70.00 

11 Proposed CE-
TDPM 

71.36 75.69 73.53 

 

The multilayer perceptron on all databases by using proposed and 

existing methods have shown high performance than liblinear 

classifier. The graph of Figure 9 and 10 display the average classi-

fication rate of the proposed method and existing methods (Figure 

9 only LBP based methods and Figure  10 only uniform local pat-

tern based methods)using multilayer perceptron. The graph of 

Figure 9 and 10 clearly indicates the proposed CE-TDPM outper-

forms the existing methods on each database. 

 

 
Figure 9: Average classification graph database wise on LBP based meth-

ods. 

 

 
Figure 10: ULBP based average classification graph on different data-

bases. 

 

The following Table 5 gives the dimension of the existing and the 

proposed descriptors, with the type of information they capture. 

From the table it is evident that the proposed CE-TDPM captures 

both isotropic and anisotropic ternary direction patterns with a low 

dimensionality. 

 
Table 5: Description about the dimensions of proposed and existing de-

scriptors. 

S.No  Name of 

the de-

scriptor 

Dimension Type of information 

Isotropic Anisotropic 

1 

E
x

is
ti

n
g

 m
et

h
o
d

s 

 

LBP8,1 256 Yes No 

2 H-

ELBP8,2,1 

256 No Yes (Par-

tial) 

3 V-

ELBP8,1,2 

256 No Yes (Par-

tial) 

4 H-
ELBP8,2,1 U 

V-

ELBP8,1,2 

512 No Yes(total) 

5 LBP(8,1) U 
UH-

ELBP(8,2,1) 

U V-
ELBP(8,1,2) 

768 Yes Yes 

6 CE-

LBP(8,1,2) 

256 Yes (total) Yes (total) 

7 CE- 58 Yes (total) Yes (total) 
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ULBP(8,1,2) 

8 

P
ro

p
o

se
d

 

m
et

h
o
d
 CE-TDPM 80 Yes 

With deriv-

ative direc-
tion infor-

mation 

Yes 

With deriv-

ative direc-
tion infor-

mation 

 

4. Conclusions 

 
The present paper derived a new variant to LBP, elliptical LBP 

and CE-LBP by exploring disadvantages of LBP and LBP-like 

methods and found that they have ignored completely the direc-

tion responses around the central pixel.  The proposed CE-TDPM 

descriptor captures both isotropic and anisotropic structural infor-

mation without increasing any dimension. The CE-TDPM holds 

more powerful information in terms of ternary derivative patterns 

that are derived with an angle with respect to central pixel of CEN. 

The CE-TDPM used first order horizontal and vertical pixels rela-

tionship with central pixel of CEN and derived a ternary direction 

pattern. The performance of the proposed method is compared 

with the LBP, LTP, LBPv, TS and CDTM methods. The range of 

CE-TDPM greatly reduced to 0 to 80 when compared to 0 to 255 

(in case of LBP, CE-LBP, H-ELBP, V-ELBP) and 0 to 3561 (in 

case of LTP). The GLCM on CE-TDPM will have a dimension of 

80 x 80 and it also reduced the dimensionality of GLCM from 255 

x 255 in case of LBP, CE-LBP, H-ELBP, V-ELBP and LTP based 

methods. The extensive experimental results on the referred data 

bases clearly demonstrate the efficacy of the proposed descriptor 

over the existing ones. 
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