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Abstract 
 

A systematic Change Impact Analysis (CIA) is being used for better change management of software. Also, CIA process is evolved 

continuously to make it more effective. Software metrics play an important role to evaluate CIA process. Two types of metrics are used 

to evaluate CIA. First types of metrics are the standard metrics used to evaluate the performance of CIA techniques for example 

Precision, Recall, F-measure etc. These are most commonly used by researchers. Second types of metrics are those which are used to 

quantify the change impact which is based on the code/design features. This paper is aimed at identification of these second types of 

metrics available in literature. 
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1. Introduction 

A very important activity in software development is Change 

Impact Analysis. It is a step by step process of analyzing the 

probable impact of a change on the whole software. While some 

of these changes are suggested by the clients, some are also 

unearthed by the developers themselves, some by the maintenance 

team. Thus, it becomes very important to treat each change 

request one by one and perform a careful change impact analysis 

to estimate the software artifacts that are going to be impacted by 

this change implementation. Some tough decisions like ―whether 

to ignore or consider this change request?‖ or ―how many artifacts 

are getting affected?‖ or ―whether the quality of software will be 

improved after change implementation?‖ or ―whether the change 

implementation will bring in adverse/ripple effects?‖, and so on, 

needs to be taken by the maintenance team. However, due to lack 

of time and short release cycles, this activity is not given required 

attention that it needs. This results in the release of faulty software 

with bugs. Therefore, a systematic Change Impact Analysis must 

be carried out. Figure 1 presents a systematic CIA process; it starts 

with the Change Set which includes the tentative impacted areas 

in source code that may be affected due to change introduction. 

Thereafter, the set for estimated change impact (EIS), a set for 

actual change impact (AIS), a set denoting over-estimation of 

Impacts called False Positive Impact Set (FPIS), a set denoting 

under-estimation of impacts called False Negative Impact Set 

(FNIS) are created and efforts are done to bring the difference 

between EIS and AIS to zero.  

 

 

 

 

 

 

 

 

 
Fig. 1: Systematic CIA Process [1] 

 

To achieve high level of accuracy, many CIA approaches such as 

traceability and dependency analysis are available. Traceability 

analysis may be requirements based, structural and knowledge 

based and implicit or explicit [2, 3]. Dependency analysis may be 

static, dynamic or hybrid [4-8].  

Most of the proposed techniques have been evaluated for accuracy 

and effectiveness using software metrics. Software metrics are the 

measure of software characteristics which are quantifiable or 
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countable [9]. These are helpful in measuring the performance of 

the software, measuring its productivity, planning work items etc.  

There are two types of metrics used in CIA related research. First 

types of metrics are used to assess how CIA techniques are 

performing. This is judged using precision and recall metrics. On 

the other hand second types of metrics are used to quantify the 

effect of a change. The second types of metrics are not much 

focused upon by the researchers. However these metrics can play 

a significant role in evaluating a CIA technique and finding out 

the possible impact a change will have on the whole system. 

Therefore, this motivates the author(s) to discover the second 

types of metrics for CIA from the literature.  

The remaining paper is structured into three sections. Section II 

covers the literature review of various CIA metrics where a 

comparative analysis of recent work done in the field is presented. 

Section III concludes the paper and Section IV presents the 

references. 

2.  Literature Review 

Many authors have proposed various metrics to quantify the CIA. 

These metrics are discussed in this section.      

Pfleeger and Bohner [10] proposed two metrics named horizontal 

traceability metrics (HTM) and vertical traceability metrics 

(VTM) to identify the potentially impacted workproducts. Authors 

used directed graphs of software lifecycle objects to establish a 

relationship between requirements, design, code and test 

procedures to determine horizontal and vertical traceability links 

and created various impact analysis metrics to address traceability 

dependencies. For VTM, they used the characteristics of the 

vertical traceability graph like size (including the number of 

nodes, the in degree and out degree) and complexity (cyclomatic 

complexity) to assess the vertical traceability changes. For HTM, 

the workproducts associations and the way they are related to 

process was utilized. Various relationship graphs were created 

which were measured for size and complexity. Thus, their 

approach works by measuring the graph characteristics of the 

primary workproducts and the change effect. The metrics 

proposed by them are summarized in Table 1. 

 

Table 1: Horizontal and Vertical Traceability Metrics 

Metrics Category Metrics 

Vertical Traceability Metrics Product Metrics: Size & Complexity 

Complexity within each workproduct: Cyclometic complexity. 

Size within each workproduct: counting the number of nodes (requirement components, design components, code 

components etc) 
Node Degree (No. of edges)- In degree and Out degree 

Horizontal Traceability 

Metrics 

Process Metrics: Relationship graphs, size & complexity 

Measuring relationships among workproducts through Relationship Graphs for size & complexity 

Defining a Tracing path for Horizontal Traceability Graph 

Thereafter Zhang et al [11] proposed change metric suite for 

AspectJ programs to measure the change impacts during software 

evolution. They defined a terminology for Aspect oriented (AO) 

system to measure the explicit change impact and global change 

impact that included definition(s) of Aspect oriented system and 

its ancestors, the modules of an aspect and a class, attributes of 

aspects and classes, addressing changes in Aspect Oriented 

software that included adding, deleting and modifying module 

changes and attribute changes. Thereafter, they proposed 28 

Explicit impact metrics and 06 Global impact metrics where the 

explicit impact metrics were used to measure the direct impact of 

adding, deleting or modifying a program element such as the 

addition of an aspect, a piece of advice, an intertype declaration, 

or a method. The Global impact metrics were used to evaluate the 

overall change impact in the system level. A common feature 

among all the metrics was that the larger is the value of a metric, 

the wider is the impact the changes have. Table 2 defines some of 

the metrics for adding changes in Aspect Oriented Software. 

 
Table 2: A catalogue of Adding Change Metrics in AO software 

Metrics Definition 

M1 
Sum of highest path length from aspect a to the aspect 
hierarchy root in the set. 

M2 

Sum of highest path length from class c to the class hierarchy 

root in the set. 

Wong and Gokhale [12] proposed distance metrics for code 

analysis based on features to ascertain the features’ closeness. 

They first defined some acronyms and definitions, presented the 

mathematical equations to compute the distance and examined it 

using the following metric in Equation 1: 

 

DIST= |B| / |B|                                                          (1) 

 

  and  =Features of Program P. 

 B = Set of blocks in either B or B, but not both, i.e., 

B equals      B)  (B      where    and    are the 

complements of B and B in the set of blocks in  , respectively, 

    B contains the blocks in B but not in B and B     

contains the blocks in B but not in B. 

 B =Set of blocks in the union of B and B. 

 DIST = Distance between features  and . 

I song et al [13] proposed a model to find out the risk associated 

with a change request and also further related that risk with fault 

proneness. This is found out using three CK software metrics: 

response for a class (RFC), coupling between objects (CBO) and 

Depth of Inheritance (DIT) in Equation 2: 

 

(1/Class FP) = (- 37.124 + 2.938(CBO) + 0.2(RFC) + 2.214(DIT))

                                                                        (2) 

They stated that a more than 50 % risk will make a class fault 

prone. They developed CCRecommender tool which quantifies 

the associated risks while changes are being made in a class which 

is prone to faults, in the impact set before the actual change 

implementation. Depending up on the risk value produced, the 

tool displays a specific color to emphasize the quantum of risk. 

Salman et al [14] used Formal Concept Analysis (FCA) based on 

lattice theory for Software Product Line (SPL) to propose a 

feature level CIA technique for predicting the affected features for 

change management. They proposed two metrics Impact 

Probability Metric (IDM) and Changeability Assessment Metric 

(CAM) to be precise. While IDM measured the extent to which a 

particular feature may be affected, CAM metric finds out the 

fraction of features which are affected by a given change. Features 

which have high IDM values have a high likelihood of being 

affected. Figure 2 shows the equation to compute IDM where, the 

IDM value of the affected feature F is calculated by taking the 

intersection of I (the classes/intent of a lattice concept) having F as 

an extent and the impact set. 

 

IDM (F) = [| {I}  {IMPACT SET} | / |{I}| ] * 100%                (3) 

 

CAM = (#Affected Features/#All Features) * 100%                 (4) 

 

 

 

The equation for computing CAM is presented in Equation 3 and 

4. The Affected Features signify a set of potentially affected 

features given by a class impact set. All Features correspond to 

total features. The higher CAM values represent the sensitivity of 

features with respect to a proposed change request. Three case 
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studies were used to perform the experimental evaluation of the 

technique of diverse sizes and domains. 

Oliva et al [15]’s work included the evolution of workflow 

repositories where they proposed a CIA approach based on 

metrics and visualization. Two metrics namely change scattering 

and impact were proposed by them to understand the relationships 

between workflows where:  

Scattering(Fi) = Number of possibly affected flows when a change 

 

 is introduced in a particular workflow.                         (5) 

 

Impact(Fi,p) of a flow Fi = Quantity of flows having a high  

probability of getting impacted when a particular flow is changed.  

 

Thus, Impact(Fi,p) ≤ Scattering(Fi).                                        (6)

                                           

They also defined some color code where Red denotes High 

Scattering & High Impact; Green denotes Low Scattering and 

Low Impact and so on. Their results showed that repositories vary 

substantially in size, number and percentage of flows and their 

approach improves the flexibility & reliability of workflow 

repositories. 

Maazoun et al [16] proposed a novel method for change 

management in Software Product Lines by analyzing the evolution 

of feature model and then tracing its impact on the design of SPL. 

They proposed 18 new metrics based on CK metrics suite to find 

out the effort required for managing the change impact. They 

proposed 18 Change Impact metrics related to a feature, adding a 

feature and for removing a feature. These are listed in Table 3. 

Their results depict the high quality of feature models generated 

after evolution. 

Table 3: CI Metrics related to features 
CI metrics related to a feature 

Metrics Definition 

NF Counts the number features in a feature model 

FNOP Counts the number of packages in a feature 

FNOC Counts the number of classes in a feature 

FNOM Counts the number of methods in a feature 

FNOA Counts the number of attributes in a feature 

FNOAs Counts the number of associations in a feature 

CI metrics to add a feature 

NF_added  Counts the number of added features 

FNOP_added Counts the number of packages added in a feature 

FNOC_added  Counts the number of classes added in a feature 

FNOM_added Counts the number of methods added in a feature 

FNOA_added  Counts the number of attributes added in a feature 

FNOAs_added Counts the number of associations added in a feature 

CI metrics to remove a feature 

NF_removed  Counts the number of removed features 

FNOP_removed  Counts the number of packages removed in a feature 

FNOC_removed Counts the number of classes removed in a feature 

FNOM_removed  Counts the number of methods removed in a feature 

FNOA_removed  Counts the number of attributes removed in a feature 

FNOAs_removed  Counts the number of associations removed in a feature 

Zhifei et al[17] proposed the use of metric based detection 

approaches for detecting Python code smells and their relation 

with changes and faults. They used 05 generic code smells and 05 

additional never studied code smells and associated various code 

smell metrics with them. Eight new metrics are defined by the 

authors. Table 4 presents the smells and associated metrics.  

Thereafter they applied threshold based filters; statistics based 

filters and turing machine filters, and obtained the threshold 

values. In the empirical study done by them, their results indicated 

that the code smell detection method based on metrics performs 

well in detecting bad smells in Python. 

 

 
Table 4: Code Smells and Metrics 

Smell Metrics 

LPL PAR- NO. OF PARAMETRES 

LM MLOC- METHOD/FUNCTIONLINES OF CODE 

LSC DOC-DEPTH OF CLOSURE 

LC CLOC-CLASS LINE OF CODE 

LMC LMC-LENGTH OF MESSAGE CHAIN 

LBCL NBC- NO OF BASE CLASSES 

LLF NOC- NO OF CHARACTERS 

LTCE NOL- NO OF LINES 

CCC NOO- NO OF OPERATORS AND OPERANDS 

MNC LEC- LENGTH OF ELEMENT CHAIN 

Choudhary et al [18] investigated the effect of change metrics on 

software fault prediction by using 16 existing change metrics and 

defining 20 new change metrics.  

Using these metrics and machine learning algorithms, they build 

fault prediction models. Table 5 presents some of the new change 

metrics that were proposed by them: 

 
Table 5: New Change Metrics 

Metrics Definition 

LOC-WORKED-ON 

Lines of code added plus lines of code 

deleted 

MAX_COMMITS 

Maximum no of commits made by 

developer 

MAX_LOC_DELETED 

Maximum lines of code deleted by 

developer 

MAX_CODECHURN 

Maximum CODECHURN by a 

developer over all developers 

Then, they collected experimental data from GIT repositories and 

performed experiments on WEKA platform using K-Nearest 

Neighbor (KNN), Decision Tree (J48), and Random Forest (RF) 

classifiers. Precision, Recall and F-Measure metrics were used for 

performance evaluation. Their outcome stated that new change 

metrics enhances the model’s performance & ensure development 

of fault predictors with high-performance. Also, with new metrics, 

10% increase in recall is witnessed when compared with static 

code based metrics and about 23% above already existing metrics. 

Kumar et al [19] used 62 source code metrics that included 

metrics related to size(7), cohesion(18), coupling(20) and 

inheritance(17) for building a change-proneness prediction model. 
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Then they used various machine learning algorithms and ensemble 

techniques to measure the effectiveness of metrics. Their results 

show much better results when the model is created using some 

selected set of source code metrics by taking any feature selection 

technique as input rather than taking all source code metrics. 

Furthermore, the model based on change-proneness reflected 

superior results as compared with other dimension metrics. 

A review of the above mentioned work is presented in Table 6.   

 
Table 6: Review of the Existing Work 

Title Target Focus Contribution Evaluation Tool Reference 

A Framework for 
Software Maintenance 

Metrics 

Software 
Maintenance 

Process Models 

Software Change 

Management 

A new Software 
Maintenance 

Process Model. 

Vertical and 
Horizontal 

Traceability Metrics 

Example No 
(Pfleeger and 

Bohner, 1996) 

Metrics for Measuring 
Change Impacts in 

AspectJ Software 

Maintenance and 
Reuse 

Aspect Oriented 
Systems 

A change metrics 

suite for AO 

software. 

28 Global Impact 

Metrics and 06 
Explicit Impact 

Metrics 

Experimental. 

Empirical study on 
seven AspectJ 

benchmarks. 

Cemeta 
(Zhang et 
al.,2008) 

Static and dynamic 
distance metrics for 

feature-based code 
analysis 

Feature Based 

Code Analysis 

Numerical 

Example for 

computing the 
distance between 

features. 

Distance Metrics Experimental 
Case Study on 

SHARPE 

(Wong and 

Gokhale,2005) 

Supplementing Object 
Oriented Software 

Change Impact 

Analysis with Fault 
proneness Prediction 

Impact Analysis 

with Fault-
proneness 

Prediction 

A model for 

predicting Fault 

Proneness 

Utilized CK metric 
suite 

Descriptive 

Statistics and 
Binary Logistic 

Regression 

CCRecommender 
(Isong et al., 
2016) 

Feature-Level Change 

Impact Analysis Using 

Formal Concept 
Analysis 

Software 
Product Line 

Engineering 

Formal Concept 

Analysis 

Impact Probability 

Metric (IDM) and 
Changeability 

Assessment Metric 

(CAM) 

Experimental using 

Case Studies 
 

(Salman et al., 

2015) 

A Static Change 
Impact Analysis 

Approach based on 

Metrics and 
Visualizations to 

Support the Evolution 

of Workflow 
Repositories 

Workflow 

Management 

Systems 

Workflow 
repositories 

CIA metrics- 

Change scattering 

and Impact 

Experimental and 
Exploratory 

Approach 

implemented as a 

Java 2 SE library 

(Oliva et 
al.,2016) 

 

Change impact 

analysis for software 

product lines 

Software 

Product Line 

Analyzing feature 

model evolution 

and tracing their 
impact on the SPL 

design 

18 CIA metrics 

corresponding to 

feature addition and 

deletion. 

Experimental Evo-SPL Tool 

 

(Maazoun et 

al., 2016) 

 

 
 

 

Understanding metric-
based detectable smells 

in Python software: A 

comparative study 
 

 

Python software 

 
Metric-based 

detection method 

for code smells 

 

Define 08 metrics to 
quantify best the 

symptoms of 

additional code 
smells 

 

Experimental 
Empirical 

 

Pysmell 

 

(Zhifei et 
al.,2018) 

 

Empirical Analysis on 

Effectiveness of 
Source Code Metrics 

for Predicting Change-

Proneness 

Source Code 

Metrics, Feature 
Selection 

Techniques 

Change-proneness 
prediction 

Usage of 08  

learning algorithms 
to develop a change 

proneness model 

Experimental and 
Empirical 

No 
(Kumar et al., 
2017) 

 

 Empirical analysis of 

change metrics for 
software fault 

prediction 

 
                                                                                

Eclipse Projects, 

GIT repositories 

Using change 

metrics and code 

metrics  
 to improve the 

performance of 

fault prediction 
models. 

20 new Change 

Metrics 

Experimental and 

Empirical 
No 

(Choudhary et 

al., 2018) 

 

3. Conclusion 

Quantifying change impact is an important area in the field of 

software metrics. Recently researchers have proposed metrics for 

quantifying change impact based on Aspect Oriented Systems, 

Software Product Line Engineering, and Workflow Management 

Systems etc. 

This paper reviews various metrics proposed by many researchers 

and observed that only few of the metrics are available to evaluate 

the change impact. Moreover, the metrics proposed are not 

validated. So there is a need of standard set of metrics to quantify 

the CIA. Also it is required to validate the existing standard 

metrics in context to CIA. 

Some of the researchers have also proposed tools like CEMETA, 

Pysmell, Evo-SPL, CCRecommender etc. which are specific to 

their work. Also, the tools work only on certain types of inputs 
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which don’t fit in every context. Further research can be done for 

detailed study of various Change Impact Tools. 
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