

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering &Technology, 7 (3.12) (2018) 963 -967

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Software Change Management: a Quantified Perspective

Ankit Dhamija
1
, Sunil Sikka

2

1Research Scholar, 2Associate Professor,

1,2Amity School of Engineering & Technology, Amity University Gurgaon, Haryana

*Corresponding Author Email: 1adhamija@ggn.amity.edu , 2ssikka@ggn.amity.edu

Abstract

A systematic Change Impact Analysis (CIA) is being used for better change management of software. Also, CIA process is evolved

continuously to make it more effective. Software metrics play an important role to evaluate CIA process. Two types of metrics are used

to evaluate CIA. First types of metrics are the standard metrics used to evaluate the performance of CIA techniques for example

Precision, Recall, F-measure etc. These are most commonly used by researchers. Second types of metrics are those which are used to

quantify the change impact which is based on the code/design features. This paper is aimed at identification of these second types of

metrics available in literature.

Keywords: Change Impact Analysis, Software Metrics.

1. Introduction

A very important activity in software development is Change

Impact Analysis. It is a step by step process of analyzing the

probable impact of a change on the whole software. While some

of these changes are suggested by the clients, some are also

unearthed by the developers themselves, some by the maintenance

team. Thus, it becomes very important to treat each change

request one by one and perform a careful change impact analysis

to estimate the software artifacts that are going to be impacted by

this change implementation. Some tough decisions like ―whether

to ignore or consider this change request?‖ or ―how many artifacts

are getting affected?‖ or ―whether the quality of software will be

improved after change implementation?‖ or ―whether the change

implementation will bring in adverse/ripple effects?‖, and so on,

needs to be taken by the maintenance team. However, due to lack

of time and short release cycles, this activity is not given required

attention that it needs. This results in the release of faulty software

with bugs. Therefore, a systematic Change Impact Analysis must

be carried out. Figure 1 presents a systematic CIA process; it starts

with the Change Set which includes the tentative impacted areas

in source code that may be affected due to change introduction.

Thereafter, the set for estimated change impact (EIS), a set for

actual change impact (AIS), a set denoting over-estimation of

Impacts called False Positive Impact Set (FPIS), a set denoting

under-estimation of impacts called False Negative Impact Set

(FNIS) are created and efforts are done to bring the difference

between EIS and AIS to zero.

Fig. 1: Systematic CIA Process [1]

To achieve high level of accuracy, many CIA approaches such as

traceability and dependency analysis are available. Traceability

analysis may be requirements based, structural and knowledge

based and implicit or explicit [2, 3]. Dependency analysis may be

static, dynamic or hybrid [4-8].

Most of the proposed techniques have been evaluated for accuracy

and effectiveness using software metrics. Software metrics are the

measure of software characteristics which are quantifiable or

mailto:adhamija@ggn.amity.edu
mailto:ssikka@ggn.amity.edu

964 International Journal of Engineering & Technology

countable [9]. These are helpful in measuring the performance of

the software, measuring its productivity, planning work items etc.

There are two types of metrics used in CIA related research. First

types of metrics are used to assess how CIA techniques are

performing. This is judged using precision and recall metrics. On

the other hand second types of metrics are used to quantify the

effect of a change. The second types of metrics are not much

focused upon by the researchers. However these metrics can play

a significant role in evaluating a CIA technique and finding out

the possible impact a change will have on the whole system.

Therefore, this motivates the author(s) to discover the second

types of metrics for CIA from the literature.

The remaining paper is structured into three sections. Section II

covers the literature review of various CIA metrics where a

comparative analysis of recent work done in the field is presented.

Section III concludes the paper and Section IV presents the

references.

2. Literature Review

Many authors have proposed various metrics to quantify the CIA.

These metrics are discussed in this section.

Pfleeger and Bohner [10] proposed two metrics named horizontal

traceability metrics (HTM) and vertical traceability metrics

(VTM) to identify the potentially impacted workproducts. Authors

used directed graphs of software lifecycle objects to establish a

relationship between requirements, design, code and test

procedures to determine horizontal and vertical traceability links

and created various impact analysis metrics to address traceability

dependencies. For VTM, they used the characteristics of the

vertical traceability graph like size (including the number of

nodes, the in degree and out degree) and complexity (cyclomatic

complexity) to assess the vertical traceability changes. For HTM,

the workproducts associations and the way they are related to

process was utilized. Various relationship graphs were created

which were measured for size and complexity. Thus, their

approach works by measuring the graph characteristics of the

primary workproducts and the change effect. The metrics

proposed by them are summarized in Table 1.

Table 1: Horizontal and Vertical Traceability Metrics

Metrics Category Metrics

Vertical Traceability Metrics Product Metrics: Size & Complexity

Complexity within each workproduct: Cyclometic complexity.

Size within each workproduct: counting the number of nodes (requirement components, design components, code

components etc)
Node Degree (No. of edges)- In degree and Out degree

Horizontal Traceability

Metrics

Process Metrics: Relationship graphs, size & complexity

Measuring relationships among workproducts through Relationship Graphs for size & complexity

Defining a Tracing path for Horizontal Traceability Graph

Thereafter Zhang et al [11] proposed change metric suite for

AspectJ programs to measure the change impacts during software

evolution. They defined a terminology for Aspect oriented (AO)

system to measure the explicit change impact and global change

impact that included definition(s) of Aspect oriented system and

its ancestors, the modules of an aspect and a class, attributes of

aspects and classes, addressing changes in Aspect Oriented

software that included adding, deleting and modifying module

changes and attribute changes. Thereafter, they proposed 28

Explicit impact metrics and 06 Global impact metrics where the

explicit impact metrics were used to measure the direct impact of

adding, deleting or modifying a program element such as the

addition of an aspect, a piece of advice, an intertype declaration,

or a method. The Global impact metrics were used to evaluate the

overall change impact in the system level. A common feature

among all the metrics was that the larger is the value of a metric,

the wider is the impact the changes have. Table 2 defines some of

the metrics for adding changes in Aspect Oriented Software.

Table 2: A catalogue of Adding Change Metrics in AO software

Metrics Definition

M1
Sum of highest path length from aspect a to the aspect
hierarchy root in the set.

M2

Sum of highest path length from class c to the class hierarchy

root in the set.

Wong and Gokhale [12] proposed distance metrics for code

analysis based on features to ascertain the features’ closeness.

They first defined some acronyms and definitions, presented the

mathematical equations to compute the distance and examined it

using the following metric in Equation 1:

DIST= |B| / |B| (1)

 and =Features of Program P.

 B = Set of blocks in either B or B, but not both, i.e.,

B equals B) (B where and are the

complements of B and B in the set of blocks in , respectively,

 B contains the blocks in B but not in B and B

contains the blocks in B but not in B.

 B =Set of blocks in the union of B and B.

 DIST = Distance between features and .

I song et al [13] proposed a model to find out the risk associated

with a change request and also further related that risk with fault

proneness. This is found out using three CK software metrics:

response for a class (RFC), coupling between objects (CBO) and

Depth of Inheritance (DIT) in Equation 2:

(1/Class FP) = (- 37.124 + 2.938(CBO) + 0.2(RFC) + 2.214(DIT))

 (2)

They stated that a more than 50 % risk will make a class fault

prone. They developed CCRecommender tool which quantifies

the associated risks while changes are being made in a class which

is prone to faults, in the impact set before the actual change

implementation. Depending up on the risk value produced, the

tool displays a specific color to emphasize the quantum of risk.

Salman et al [14] used Formal Concept Analysis (FCA) based on

lattice theory for Software Product Line (SPL) to propose a

feature level CIA technique for predicting the affected features for

change management. They proposed two metrics Impact

Probability Metric (IDM) and Changeability Assessment Metric

(CAM) to be precise. While IDM measured the extent to which a

particular feature may be affected, CAM metric finds out the

fraction of features which are affected by a given change. Features

which have high IDM values have a high likelihood of being

affected. Figure 2 shows the equation to compute IDM where, the

IDM value of the affected feature F is calculated by taking the

intersection of I (the classes/intent of a lattice concept) having F as

an extent and the impact set.

IDM (F) = [| {I} {IMPACT SET} | / |{I}|] * 100% (3)

CAM = (#Affected Features/#All Features) * 100% (4)

The equation for computing CAM is presented in Equation 3 and

4. The Affected Features signify a set of potentially affected

features given by a class impact set. All Features correspond to

total features. The higher CAM values represent the sensitivity of

features with respect to a proposed change request. Three case

International Journal of Engineering & Technology 965

studies were used to perform the experimental evaluation of the

technique of diverse sizes and domains.

Oliva et al [15]’s work included the evolution of workflow

repositories where they proposed a CIA approach based on

metrics and visualization. Two metrics namely change scattering

and impact were proposed by them to understand the relationships

between workflows where:

Scattering(Fi) = Number of possibly affected flows when a change

 is introduced in a particular workflow. (5)

Impact(Fi,p) of a flow Fi = Quantity of flows having a high

probability of getting impacted when a particular flow is changed.

Thus, Impact(Fi,p) ≤ Scattering(Fi). (6)

They also defined some color code where Red denotes High

Scattering & High Impact; Green denotes Low Scattering and

Low Impact and so on. Their results showed that repositories vary

substantially in size, number and percentage of flows and their

approach improves the flexibility & reliability of workflow

repositories.

Maazoun et al [16] proposed a novel method for change

management in Software Product Lines by analyzing the evolution

of feature model and then tracing its impact on the design of SPL.

They proposed 18 new metrics based on CK metrics suite to find

out the effort required for managing the change impact. They

proposed 18 Change Impact metrics related to a feature, adding a

feature and for removing a feature. These are listed in Table 3.

Their results depict the high quality of feature models generated

after evolution.

Table 3: CI Metrics related to features
CI metrics related to a feature

Metrics Definition

NF Counts the number features in a feature model

FNOP Counts the number of packages in a feature

FNOC Counts the number of classes in a feature

FNOM Counts the number of methods in a feature

FNOA Counts the number of attributes in a feature

FNOAs Counts the number of associations in a feature

CI metrics to add a feature

NF_added Counts the number of added features

FNOP_added Counts the number of packages added in a feature

FNOC_added Counts the number of classes added in a feature

FNOM_added Counts the number of methods added in a feature

FNOA_added Counts the number of attributes added in a feature

FNOAs_added Counts the number of associations added in a feature

CI metrics to remove a feature

NF_removed Counts the number of removed features

FNOP_removed Counts the number of packages removed in a feature

FNOC_removed Counts the number of classes removed in a feature

FNOM_removed Counts the number of methods removed in a feature

FNOA_removed Counts the number of attributes removed in a feature

FNOAs_removed Counts the number of associations removed in a feature

Zhifei et al[17] proposed the use of metric based detection

approaches for detecting Python code smells and their relation

with changes and faults. They used 05 generic code smells and 05

additional never studied code smells and associated various code

smell metrics with them. Eight new metrics are defined by the

authors. Table 4 presents the smells and associated metrics.

Thereafter they applied threshold based filters; statistics based

filters and turing machine filters, and obtained the threshold

values. In the empirical study done by them, their results indicated

that the code smell detection method based on metrics performs

well in detecting bad smells in Python.

Table 4: Code Smells and Metrics

Smell Metrics

LPL PAR- NO. OF PARAMETRES

LM MLOC- METHOD/FUNCTIONLINES OF CODE

LSC DOC-DEPTH OF CLOSURE

LC CLOC-CLASS LINE OF CODE

LMC LMC-LENGTH OF MESSAGE CHAIN

LBCL NBC- NO OF BASE CLASSES

LLF NOC- NO OF CHARACTERS

LTCE NOL- NO OF LINES

CCC NOO- NO OF OPERATORS AND OPERANDS

MNC LEC- LENGTH OF ELEMENT CHAIN

Choudhary et al [18] investigated the effect of change metrics on

software fault prediction by using 16 existing change metrics and

defining 20 new change metrics.

Using these metrics and machine learning algorithms, they build

fault prediction models. Table 5 presents some of the new change

metrics that were proposed by them:

Table 5: New Change Metrics

Metrics Definition

LOC-WORKED-ON

Lines of code added plus lines of code

deleted

MAX_COMMITS

Maximum no of commits made by

developer

MAX_LOC_DELETED

Maximum lines of code deleted by

developer

MAX_CODECHURN

Maximum CODECHURN by a

developer over all developers

Then, they collected experimental data from GIT repositories and

performed experiments on WEKA platform using K-Nearest

Neighbor (KNN), Decision Tree (J48), and Random Forest (RF)

classifiers. Precision, Recall and F-Measure metrics were used for

performance evaluation. Their outcome stated that new change

metrics enhances the model’s performance & ensure development

of fault predictors with high-performance. Also, with new metrics,

10% increase in recall is witnessed when compared with static

code based metrics and about 23% above already existing metrics.

Kumar et al [19] used 62 source code metrics that included

metrics related to size(7), cohesion(18), coupling(20) and

inheritance(17) for building a change-proneness prediction model.

966 International Journal of Engineering & Technology

Then they used various machine learning algorithms and ensemble

techniques to measure the effectiveness of metrics. Their results

show much better results when the model is created using some

selected set of source code metrics by taking any feature selection

technique as input rather than taking all source code metrics.

Furthermore, the model based on change-proneness reflected

superior results as compared with other dimension metrics.

A review of the above mentioned work is presented in Table 6.

Table 6: Review of the Existing Work

Title Target Focus Contribution Evaluation Tool Reference

A Framework for
Software Maintenance

Metrics

Software
Maintenance

Process Models

Software Change

Management

A new Software
Maintenance

Process Model.

Vertical and
Horizontal

Traceability Metrics

Example No
(Pfleeger and

Bohner, 1996)

Metrics for Measuring
Change Impacts in

AspectJ Software

Maintenance and
Reuse

Aspect Oriented
Systems

A change metrics

suite for AO

software.

28 Global Impact

Metrics and 06
Explicit Impact

Metrics

Experimental.

Empirical study on
seven AspectJ

benchmarks.

Cemeta
(Zhang et
al.,2008)

Static and dynamic
distance metrics for

feature-based code
analysis

Feature Based

Code Analysis

Numerical

Example for

computing the
distance between

features.

Distance Metrics Experimental
Case Study on

SHARPE

(Wong and

Gokhale,2005)

Supplementing Object
Oriented Software

Change Impact

Analysis with Fault
proneness Prediction

Impact Analysis

with Fault-
proneness

Prediction

A model for

predicting Fault

Proneness

Utilized CK metric
suite

Descriptive

Statistics and
Binary Logistic

Regression

CCRecommender
(Isong et al.,
2016)

Feature-Level Change

Impact Analysis Using

Formal Concept
Analysis

Software
Product Line

Engineering

Formal Concept

Analysis

Impact Probability

Metric (IDM) and
Changeability

Assessment Metric

(CAM)

Experimental using

Case Studies

(Salman et al.,

2015)

A Static Change
Impact Analysis

Approach based on

Metrics and
Visualizations to

Support the Evolution

of Workflow
Repositories

Workflow

Management

Systems

Workflow
repositories

CIA metrics-

Change scattering

and Impact

Experimental and
Exploratory

Approach

implemented as a

Java 2 SE library

(Oliva et
al.,2016)

Change impact

analysis for software

product lines

Software

Product Line

Analyzing feature

model evolution

and tracing their
impact on the SPL

design

18 CIA metrics

corresponding to

feature addition and

deletion.

Experimental Evo-SPL Tool

(Maazoun et

al., 2016)

Understanding metric-
based detectable smells

in Python software: A

comparative study

Python software

Metric-based

detection method

for code smells

Define 08 metrics to
quantify best the

symptoms of

additional code
smells

Experimental
Empirical

Pysmell

(Zhifei et
al.,2018)

Empirical Analysis on

Effectiveness of
Source Code Metrics

for Predicting Change-

Proneness

Source Code

Metrics, Feature
Selection

Techniques

Change-proneness
prediction

Usage of 08

learning algorithms
to develop a change

proneness model

Experimental and
Empirical

No
(Kumar et al.,
2017)

 Empirical analysis of

change metrics for
software fault

prediction

Eclipse Projects,

GIT repositories

Using change

metrics and code

metrics
 to improve the

performance of

fault prediction
models.

20 new Change

Metrics

Experimental and

Empirical
No

(Choudhary et

al., 2018)

3. Conclusion

Quantifying change impact is an important area in the field of

software metrics. Recently researchers have proposed metrics for

quantifying change impact based on Aspect Oriented Systems,

Software Product Line Engineering, and Workflow Management

Systems etc.

This paper reviews various metrics proposed by many researchers

and observed that only few of the metrics are available to evaluate

the change impact. Moreover, the metrics proposed are not

validated. So there is a need of standard set of metrics to quantify

the CIA. Also it is required to validate the existing standard

metrics in context to CIA.

Some of the researchers have also proposed tools like CEMETA,

Pysmell, Evo-SPL, CCRecommender etc. which are specific to

their work. Also, the tools work only on certain types of inputs

International Journal of Engineering & Technology 967

which don’t fit in every context. Further research can be done for

detailed study of various Change Impact Tools.

References

[1] Bohner SA. Software change impacts—an evolving perspective.

Proceedings of the International Conference on Software

Maintenance, Montréal, Canada, 2002; 263–272.
[2] De-Lucia A, Fasano F, Oliveto R. Traceability management for

impact analysis. Proceedings of the International Conference on

Software Maintainence, Beijing, China, 2008; 21–30.
[3] M. Kilpinen. The Emergence of Change at the Systems Engineering

and Software Design Interface - An Investigation of Impact
Analysis. PhD thesis, Cambridge University, Engineering

Department, 2008.

[4] Badri L, Badri M, Yves SD. Supporting predictive change impact
analysis: a control call graph based technique. Proceedings of the

Asia-Pacific Software Engineering Conference, Taipei, Taiwan,

China, 2005; 167–175.
[5] Mund GB, Mall R. An efficient interprocedural dynamic slicing

method. Journal of Systems and Software 2006; 79(6):791 806.

[6] Hewitt J, Rilling J. A light-weight proactive software change

impact analysis using use case maps. Proceedings of the

International Workshop on Software Evolvability, Budapest,

Hungary, 2005; 41–46.
[7] Huang LL, Song YT. Precise dynamic impact analysis with

dependency analysis for object-oriented programs. Proceedings of

the International Conference on Advanced Software Engineering
and Its Applications, Hainan Island, China, 2008; 217–220.

[8] Apiwattanapong T, Orso A, Harrold MJ. Efficient and precise

dynamic impact analysis using execute-after sequences.
Proceedings of the International Conference on Software

Engineering, St. Louis, Missouri, USA, 2005; 432–441.

[9] W. Frakes and C. Terry. Software reuse: Metrics and models. ACM
Computing Surveys, 28(2):415–435, 1996.

[10] Pfleeger SL, Bohner SA. A Framework for software maintenance

metrics. Proceedings of the International Conference on Software
Maintenance, Washington, DC, 1990; 320–327.

[11] Zhang, S., Shen, H., and Zhao, J. 2008. Metrics for Measuring

Change Impacts in AspectJ Software Maintenance and Reuse.
Technical Report. Center for Software Engineering, SJTU.

[12] W.E. Wong, S.S. Gokhale, "Static and Dynamic Distance Metrics

for Feature-Based Code Analysis", J. Systems and Software, vol.
74, no. 3, pp. 283-295, 2005.

[13] B. Isong, O. Ifeoma and M. Mbodila, "Supplementing Object-

Oriented software change impact analysis with fault-proneness
prediction", 15th International Conference on Computer and

Information Science (ICIS' 16), IEEE Computer Society, pp. 1--8,

Okayama, Japan, 26-29 June 2016.
[14] Hamzeh Eyal Salman, Abdelhak-Djamel Seriai, and Christophe

Dony, Int. J. Soft. Eng. Knowl. Eng. 25, 69 (2015).

[15] Gustavo Ansaldi Oliva, Marco Aurélio Gerosa, Fabio Kon, Virginia
Smith and Dejan Milojicic, ―A Static Change Impact Analysis

Approach based on Metrics and Visualizations to Support the

Evolution of Workflow Repositories‖, International Journal of Web
Services Research Volume 13 • Issue 2 • April-June 2016, pp 74-

103.

[16] Jihen Maâzoun, Nadia Bouassida, and Hanêne Ben-Abdallah.
Change impact analysis for software product lines. J. King Saud

Univ. Comput. Inf. Sci., 28:364– 380, Oct 2016.

[17] Chen Zhifei, Chen Lin, Ma Wanwangying, Zhou Xiaoyu, Zhou
Yuming, Xu aowen, ―Understanding metric-based detectable

smells in Python software: A comparative study, Information and

Software Technology 94 (2018) pp 14–29

[18] Garvit Rajesh Choudhary, Sandeep Kumar, Kuldeep Kumar, Alok

Mishra, Cagatay Catal, ―Empirical analysis of change metrics for
software fault prediction‖, Computers and Electrical Engineering

67 (2018) pp 15–24.

[19] Lov Kumar, Santanu Kumar rath, Ashish Sureka, ―Empirical
Analysis on Effectiveness of Source Code Metrics for Predicting

Change- roneness‖, ISEC ’17, February 05-07, 2017, Jaipur, India.

