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Abstract 
 

We consider the new method of hidden data embedding based on the transform of the container-image using the apparatus of subinterval 

matrices of the cosine transform. The developed method deals with the analysis of the container-image projections onto the eigenvectors 

of subinterval matrices. A decisive rule for the choice of informative and non-informative image projections subsets based on a given 

significance level is proposed. The computational experiments results of projections partitioning into informative and non-informative 

subsets show that it is possible to obtain a different numbers of informative and non-informative projections subsets using different sig-

nificance levels. It allows to implement a hidden embedding of different data amounts. The embedding data are represented by a binary 

sequence. In our method we proposed to implement the data embedding on the basis of a relative change of given projections values. To 

test the workability of the developed method computational experiments were carried out. Their results showed that the developed meth-

od allows to perform data recovery without distortion, and causes a slight distortions of the image containing the embedded data. Also 

we carried out comparative computational experiments to compare the results of the developed method application with the results of Е. 

Koch and J. Zhao method and spread spectrum method. Their results showed that the developed method causes less distortions of the 

container-image than other ones. 
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1. Introduction 

Images and video data are one of the main forms of information 

exchange today. In many cases images are subject of copyright 

protection that assume the possibility of their use monitoring, for 

example, on the base of hidden embedding of control data into an 

image. The problem of hidden data embedding can be solved by 

allocating of image various components and changing them in 

accordance with the hidden data [1-9]. The hidden data embedding 

can also be performed based on the apparatus of subband matrices 

[10-14]. 

The hidden data embedding methods assume change of the image-

container pixel values or the results of their various transforms. It 

is known that the hidden data embedding methods [1, 2] based on 

the various transforms results (such as the discrete Fourier trans-

form etc.) have the most resistance to external destruction of em-

bedded data.  

In this paper, we propose a hidden data embedding method based 

on the image-container transforms that use the apparatus of subin-

terval matrices [15-17] of cosine transform. The developed meth-

od is based on the analysis and modification of individual subsets 

of the container-image projections onto the subinterval matrices 

eigenvectors [16]. The main statements of developed method are 

described below. 

2. Background 

Consider an image as a matrix of real values )( ikf , 

1,...,2,1 Ni  , 2,...,2,1 Nk  , where matrix elements cor-

respond to the brightness of the image pixels. 

The theoretical principles of the developed method are based on 

the following representation of the image ikf , 1,...,2,1 Ni  , 

2,...,2,1 Nk  : 
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1,...,2,1 Ni  , 2,...,2,1 Nk  , 

in the basis of following orthogonal functions:
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vu,  – the normalized spatial frequencies (SF) that are defined 

in the following area:
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Let’s introduce the concept of the energy part )(
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which corresponds to a given spatial frequency interval
21rrV  of 

the following shape: 
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where 1R
 
and 2R  – the amount of intervals along each frequen-

cy axes in D  (5). 

If we transform (6) using (3) and (7), we can obtain that 

)()(
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T
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where tr() – matrix trace operation; the elements of the matrices 
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),( 2
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inr hH  2,...,2,1, Nni  , (we called them as subinter-

val matrices of cosine transform corresponding to a frequency 

interval 
21rrV of the shape (7)) have the following values [15]: 

111 ~r
in

r
in

r
in gag  .        (13) 























,,

,,
)(

))(sin())(sin(

1,2,

1,2,

11

11

1

ni
uu

ni
ni

niuniu

a
rr

rr

r
in





(14) 

)1(

))1(sin())1(sin(~ 1,2, 111






ni

niuniu
g

rrr
in


.    (15) 

222
~r

in

r

in

r

in hah  .         (16) 























,,

,,
)(

))(sin())(sin(

1,2,

1,2,

22

22

2

ni
vv

ni
ni

nivniv

a
rr

rr

r

in




      (17) 

)1(

))1(sin())1(sin(~ 1,2, 222






ni

nivniv
h

rrr

in


.     (18) 

3. Method 

Let suppose that certain container-image is defined as a matrix 

)( ikf , 1,...,2,1 Ni  , 2,...,2,1 Nk  , and a spatial 

frequencies interval 
21rrV  (7) is given. Then we can calculate sub-

interval matrices 
1r

G
 
and 

2r
H  corresponding to interval 

21rrV  

whose dimensions are 11 NN  and 22 NN   appropriately. 

It is known [15], that subinterval matrices 
1r

G  and 
2r

H are real, 

symmetric matrices. Hence these matrices can be represented as 

the following decompositions: 

T
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where the columns of the matrices  
1r

Q
 
and 

2r
U

 
are the eigen-

vectors of the matrices 
1r

G and 
2r

H , the eigenvalues of the ma-
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trices 
1r
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and 
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are allocated on the main diagonal of the 

matrices 
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can be considered as image Φ projections [2, 18] onto orthogonal 

eigenvectors 1r

iq


, 1,...,2,1 Ni  , and 2r

ku


, 2,...,2,1 Nk  , 

of subinterval matrices 
1r

G
 
and 

2r
H

 
corresponding to the given 

interval 
21rrV . 

Let’s split the matrix 21rr
  into 21 SS   submatrices (projections 

subsets) 
21ss , 11 ,...,2,1 Ss  , 22 ,...,2,1 Ss  , having the 

same dimension )/()/( 2211 SNSN  (where 1S , 2S – some 

constants) as follows: a separate matrix (a projections sub-

set)
21ss contains the projections 21rr

ik , 1,...,2,1 Ni  , 

2,...,2,1 Nk  , which satisfy the following condition (Figure 

1): 
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Figure 1: The projections subset
21ss  

For each subset
21ss  we calculate the quantity 
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equal to 

the sum of the squared projections that belong to a given subset, 
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Basing on the distribution of values 
21ss  (25) by subsets 

21ss , 

11 ,...,2,1 Ss  , 22 ,...,2,1 Ss  , we can formulate a decisive 

rule of finding for the informative and non-informative projections 

subsets as follows. 

Consider the ordered set }{   kwW , 21,...,2,1 SSk  , 

where its elements are the values 
21ss  

(25), 11 ,...,2,1 Ss  , 

22 ,...,2,1 Ss  , in a decreasing order. 

Let’s set some quantity 
m – the significance level of projections 

subsets, 

10  m .     (26) 

Let’s calculate the value of the quantity m
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Let’s create a set )},{( 21 ssZ
m

 of subsets 
21ss indices 

corresponding to the first m
l elements of the ordered set

W . 

Then, subsets 
21ss , whose indices belong to the set m

Z , 


m

Zss ),( 21 ,     (29) 

are called the informative projections subsets at the level
m . 

Subsets 
21ss , whose indices do not belong to the set m

Z , 


m

Zss ),( 21 ,     (30) 

are called non-informative projections subsets at the level 
m . 

Using (29), (30), we can construct a mask matrix 


 mMask

ss

,

21
 of 

the corresponding informative and non-informative image projec-

tions subsets (we’ll use it for the development of hidden data em-

bedding method): 
21rr
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Examples of constructing a mask-matrix (31) of informative and 

non-informative projections subsets for a known image “Lena” for  

the various values
m ={0.9999, 0.9995, 0.998, 0.995}  are 

shown in Figure 2  (here the projections set 21rr
  is dividing onto 

88 subsets ( 821  SS )). 

    

         а           b             c              d 
Figure 2: Mask of projections subsetssplitting into informative and non-

informative subsets, 821  SS :a) 
m =0.9999, b) 

m =0.9995, 

c) 
m =0.998, d) 

m =0.995 

In Figure 2, the digit“1” indicates the informative projections sub-

sets corresponding to given 
m , and the digit “0” – non-

informative projections subsets(they are recommended for data 

embedding). 

The results (Figure 2) of computational experiments of projections 

subsets spliting into informative and non-informative subsets 

show that different values 
m  allow to obtain a different amount 

of informative and. This property allows to execute the hidden 

embedding of the different data amount using non-informative 

projections subsets. 

In the developed method it is proposed to implement the hidden 

data embedding into non-informative subsets of image projections 

onto subinterval matrices eigenvectors basing on a relative chang-

es of given pair projections values (22). The embedding data are 

represented by a zeros and ones sequence. 

To execute hidden data embedding it is proposed to make relative 

changes of the two selected projections 
21rr

ik  
and 

21

1,

rr

ki 
 
(22) of 

container-image Ф onto the eigenvectors of the subinterval matri-

ces corresponding to a given interval 
21rrV . Selected projections 

should also belong to the corresponding non-informative projec-

tions subsets (30). So after changing of selected projections, the 

following inequalities should be correct: 

- if embedding “0” the following inequality must be fulfilled: 
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- if embedding “1” the following inequality must be fulfilled: 
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where 
21~ rr

ik  
and 
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1,
~ rr
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are the modified values of the corre-

sponding projections, 21ss
T  – the threshold of the relative differ-

ence between the changed projections. 

It is obvious that the threshold 21ss
T  

influences on the distortion 

of the container-image: the threshold increasing causes the image-

container distortions increasing (the data hiding is reduced). It 

should also be noted that the threshold 21ss
T  influences on the 

stability of embedded data recovery (extraction): when the exter-

nal destructive influence exists, for example, additive noise, 

threshold decreasing leads to the increasingof the extracted data 

distortions. 

In this paper, in order to ensure the embedded data stability 

against the external destructive influences, as well as to ensure the 

secrecy of data embedded into the container-image, it is proposed 

to determine the threshold values 21ss
T adaptively. 

It is proposed to determine threshold 21ss
T  using the mean value 

of the projections belonging to the selected subset 
21ss  in case 

of the data embedding into a projections subset 
21ss . So thresh-

old 21ss
T  should be defined as: 
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where t  – an embedding factor which allows to interactively 

revise the threshold 21ss
T ; 

21ss

ср  – the mean value of the projec-

tions belonging to the selected subset 
21ss , 
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where 
21ss  – the sum of the squared projections (24) belonging 

to the subset 
21ss , 

21 NN   –dimensions of the container-

image Ф, 
2211 // SNSN   – dimensions of the projections 

subset 
21ss . 

As an examplethe mean values (35) of the projections belonging 

to the subset 
21ss , 11 ,...,2,1 Ss  , 22 ,...,2,1 Ss  , are given 

in Table 1. Projections are calculated for the known image “Lena” 

into given frequency intervals 11V
 
and 13V , when 

421  RR , 12821  NN
 
and 421  SS . 

Table 1: Mean values of image “Lena” projection into given frequency 

intervals 11V and 13V  

11V  13V  

1s
 

2s

1 2 3 4 1 2 3 4 
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1 423,5

13 

39,4

54 

18,2

43 

19,6

34 

19,5

09 

121,3

56 

118,9

95 

390,3

47 

2 28,34
9 

7,93
8 

6,97
9 

6,77
4 

5,95
9 

10,68
0 

13,51
6 

25,08
0 

3 11,97
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6,78
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7,65

9 

6,51
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6,38

2 7,102 

10,44

0 9,506 

4 11,39
8 

6,52
9 

7,43
2 

6,56
5 

5,74
0 6,681 

10,24
8 9,396 

The data given in Table 1 show that in different projections sub-

sets the mean values of the projections 
21ss

ср  (35) differ signifi-

cantly. Hence, the corresponding threshold values 21ss
T  (34) will 

also differ significantly when embedding into the various projec-

tions subsets.This indicates the expediency of adaptive threshold 

determination. Adaptive threshold 
21ss

T determination allows to 

execute the data embedding that causes minor distortions of the 

container-image. 

The proposed embedding/extraction method is as follows. 

Let the embedding data are given in a binary form. It is necessary 

to perform hidden data embedding into a given of spatial frequen-

cies interval 
21rrV (7) of container-image Ф using a given level 

m                                                                                           (26). 

Using the decision rule (29)-(30) we can determine the informa-

tive and non-informative projections subsets of the image-

container Ф corresponding to level 
m . Let the indices 

),( 21 ss  of non-informative projections subsets form a set sZ . 

In the set sZ , the non-informative projections subsets are sorted 

in descending order of corresponding quantity (25). We propose to 

implement data embedding into non-informative projections sub-

sets. 

Consider the embedding process of binary da-

ta )( mbB  , BNm ,...,2,1 , into a non-informative projec-

tions subset 
21ss of interval 

21rrV . 
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  – sets of eigenvectors 

of subinterval matrices 
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corresponding to the pro-

jections of the subset 
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satisfying the inequalities (36) 

and(37). 
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If the embedding bit mb is 0, then the projections 21rr

ik  
and 

21

1,

rr

ki 
 
should be changed so that their changed values 21~ rr

ik  
and 

21

1,
~ rr

ki   satisfy the inequality (32). 

If the embedding bit mb
 
is 1, then the projections 21rr

ik  
and 

21

1,

rr

ki 
 
should be changed so that their changed values 21~ rr

ik  
and 

21

1,
~ rr

ki 
 
satisfy the inequality (33). 

The data embedding into the container image Ф can be formulated 

in a matrix form when all possible bits are embedded into a pro-

jections subset 
21ss : 

T

ssss

T

ss

T

ss UQUUQQ
22112211

~~
 .     (40) 

where 
21

~
ss – matrix of modified using (32) and (33) projections 

of subset
21ss ; 

~
– container-image containing embedded data. 

To extract from the container-image 
~

 the value of a single em-

bedded bit using the pairs of eigenvectors 1r

iq


, 2r
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and 1r
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 we should check the rightness of corresponding inequality 

(32) or (33). 

For the simultaneous data embedding using other pairs of eigen-

vectors or when embedding into other non-informative intervals 

the same actions as above are performed. 

The hidden data embedding method into several projections sub-

sets simultaneously can be formulated as follows: 

T

ssss
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While embedding into non-informative projections subsets 

21ss , sZss ),( 21 , there is an exact data recovery, since the 

set of matrices }{
1sQ , as well as the set of matrices }{

2sU , 

sZss ),( 21 , used in (41), are formed by mutually orthogonal 

eigenvectors of subinterval matrices 
1r

G
 
and 

2r
H

 
appropriately. 

4. Computational Experiments 

4.1 The Developed Method Workability Testing 
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Computational experiments were carried out to verify the worka-

bility ofthe developed method. 

The known image “Lena” was selected as the container-image. 

We set 51221  NN  and 421  RR . An image of a 

dimension of 32×16 pixels was chosen for constructing of the 

embedding data (Figure 3a). A binary representation of the em-

bedding data is shown in Figure 3b. The embedding data set con-

tains 4096 bits. Level 
m  was chosen equal to 

m =0.99. In-

terval 11V
 
was chosen for embedding process. Coefficient t (34) 

was chosen equal to t =0.1. A non-informative projections subset 

of indices (3, 1) was used for embedding. 

Figure 3c shows the result of the hidden data embedding into the 

container-image “Lena” (image-container distortions are undistin-

guished). 

After extraction the recovered data have no distortion. 

   

         а                b                 c 

Figure 3: Results of embedding into the container-image “Lena” 

a) the image used for embedding datasetforming b) binary repre-

sentation of the embedding data; c) the image containing the em-

bedded data (distortions are undistinguished) 

The corresponding distortion of the container image has the fol-

lowing values: 

- mean square error [18] is equal to 0.0184; 

- structural similarity index [19] is equal to 0.9966. 

The obtained results demonstrate the high efficiency of the devel-

oped hidden data embedding method. 

4.2 Comparative Computational Experimentsplanning 

Comparative computational experiments were conducted to esti-

mate the data embedding hiding using the developed method. 

Known methods of steganography – the method of relative re-

placement of the DCT coefficients (Koch-Zhao method) [1] and 

the spread spectrum method [9] were used for comparison. 

To compare the data embedding hiding the distortions of contain-

er-images containing the embedded data as compared to the origi-

nal container-images were estimated using the following distortion 

measures: 

- mean square error MSE: 

  2

11

2

11

2121
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N
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N

i

ijij

N
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N

i
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where ijf , ijf
~

, 1,...,2,1 Ni  , 2,...,2,1 Nj  , – 

brightness values of the pixels of the container-image   and 
~

 

before and after the data embedding; 

- structural similarity index SSIM, it was proposed in [19]. 

For the computational experiments images K1, K2 and K3 of a 

dimension 512×512 pixels were selected as the container-images 

(Fig. 4). These images were chosen because they have the differ-

ent distribution of their energy parts (12) over the frequency inter-

vals of the shape (7). 

   

          K1                 K2                K3 

Figure 4:  Examples of container-images K1, K2 and K3 

The binary representation of embedding data was constructed 

using the brightness values of the image B1 pixels (the dimension 

32×16 pixels) (Fig. 5). 

a

     b 
Figure 5:  Embedding image B1 

a) the image used for the embedding data forming; 

b) binary representation of the embedding data 

The embedding data amount is limited to 4096 bits as the Koch-

Zhao method that was described in [1] does not allow the embed-

ding the larger data amount into the container imagesof the given 

sizes. The frequency area is splitted into 8×8 spatial frequency 

intervals ( 821  RR ). The partitioning by 8×8 subsets 
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(  21 SS 8) of the corresponding container-image projections 

set is carried out. Based on the preliminary calculations results the 

projections subsets 
21ss , 11 ,...,2,1 Ss  , 

22 ,...,2,1 Ss  , corresponding to the interval 11V
 
of shape 

(7) is chosen. 

To determine the non-informative projections subsets the value of 

projections subsets significance level (26) is chosen equal to 

m =0.999. 

The following values of the embedding coefficient t are used 

(they allow to obtain the best embedding results):  

-for image К1 – t ={0.1; 0.2; 0.3}; 

-for image К2 – t ={0.1; 0.15; 0.2}; 

-for image К3 – t ={0.05; 0.1; 0.15}. 

In the Koch-Zhao method, the recommended [1] threshold values 

Р  are used: 

}25;5;5.0{P . 

In the spread spectrum method [9], the basic functions are con-

structed using corresponding blocks of pixels containing 

ss BB 
 
elements ( sB  is equal to 4 and 8). When using larger 

blocks, for example, 16×16 elements, the spread spectrum method 

does not allow to embed all given data into the selected container-

images. 

4.3 Comparative Computational Experiments Results 

The computational experiments results of estimating the embed-

ded data hiding (estimations of image-containers distortions) using 

different the analyzed methods are given in Tables 2-4 and Figures 

6-7. 

Table 2 shows the computational experiments results of the data 

embedding into the container-image K1.Binary data are formed 

using the image B1 pixels (32×16 pixels). 

Table 2: Estimations of the image-container K1 and extracted data distor-

tions 

Method, 
parameters 

Container distortions Extracted data distortions 

MSE SSIM MSE SSIM 

The developed method, t  

0,1 7,199E-03 9,964E-01 4,474E-02 9,992E-01 

0,2 7,798E-03 9,958E-01 0,000E+00 1,000E+00 

0,3 8,422E-03 9,951E-01 0,000E+00 1,000E+00 

Koch-Zhao method, Р  

0,5 2,886E-02 9,803E-01 3,587E-01 5,147E-01 

5 3,136E-02 9,766E-01 0,000E+00 1,000E+00 

25 4,373E-02 9,372E-01 0,000E+00 1,000E+00 

Spread spectrum method, sB  

4 5,924E-02 8,795E-01 0,000E+00 1,000E+00 

8 4,638E-02 8,827E-01 0,000E+00 1,000E+00 

The data of Table 2 show that the developed method provides 

more hidden data embedding (the best MSE and SSIM values of 

the measures were obtained) as compared with the Koch-Zhao 

method and the spread spectrum method. In Table 2 the best con-

tainer-image distortions corresponding to the extracted data distor-

tion absence are highlighted in italics. 

Table 3 shows the computational experiments results of the same 

data embedding into the container-image K2. 

Table 3: Estimations of the image-container K2 and extracted data distor-
tions 

Method, 

parameters 

Container distortions Extracted data distortions 

MSE SSIM MSE SSIM 

The developed method, t  

0,1 1,045E-02 9,965E-01 3,875E-02 1,000E+00 

0,15 1,090E-02 9,962E-01 0,000E+00 1,000E+00 

0,2 1,136E-02 9,958E-01 0,000E+00 1,000E+00 

Koch-Zhao method, Р  

0,5 1,256E-01 9,454E-01 3,641E-01 5,733E-01 

5 1,240E-01 9,435E-01 0,000E+00 1,000E+00 

25 1,217E-01 9,237E-01 0,000E+00 1,000E+00 

Spread spectrum method, sB  

4 9,583E-02 9,176E-01 0,000E+00 1,000E+00 

8 7,021E-02 8,854E-01 0,000E+00 1,000E+00 

The results in Table 3 also demonstrate the advantages of the de-

veloped embedding method. 

Table 4 shows the computational experiments results of the same 

data embedding into the container-image K3. 

Table 4: Estimations of the image-container K2 and extracted data distor-
tions 

Method, 

parameters 

Container distortions Extracted data distortions 

MSE SSIM MSE SSIM 

The developed method, t  

0,05 1,389E-02 9,956E-01 1,119E-01 9,999E-01 

0,1 1,450E-02 9,952E-01 0,000E+00 1,000E+00 

0,15 1,513E-02 9,948E-01 0,000E+00 1,000E+00 

Koch-Zhao method, Р  

0,5 1,065E-01 9,412E-01 3,510E-01 5,856E-01 

5 1,074E-01 9,391E-01 0,000E+00 1,000E+00 

25 1,140E-01 9,243E-01 0,000E+00 1,000E+00 

Spread spectrum method, sB  

4 8,517E-02 9,551E-01 0,000E+00 1,000E+00 

8 6,565E-02 9,298E-01 0,000E+00 1,000E+00 

The analysis of the results given in Table 4 also allows to 

makeconclusion that the developed embedding methodhas the 

advantages similar to the conclusions based on the analysis of the 

results displayed in the above tables. 

Based on the results given in Tables 2-4, the graphs (Fig. 6) of the 

distortion estimations MSE and SSIM of the container-images K1, 

K2 and K3 are plotted.These graphsare plotted using the small-

estcontainer-imagesdistortion while the extracted data have no 

distortions (the used values are shown in italicsin the tables). 
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Figure 6: Graphics of containers-images K1, K2 and K3 distortions 

(containing the embedding data): a) MSE; b) SSIM 

5. Conclusion 

The results given in Tables 2-4 as well as the graphics shown in 

Figure 1 demonstrate that when applying the Koch-Zhao method 

and the spread spectrum method the distortions of container-

images differ significantly while embedding in different container-

images (we should remember that different container-images have 

different energy distributions over frequency intervals and over 

subsets of their projections onto subinterval matrices eigenvectors). 

Distortions after applying the Koch-Zhao method and the spread 

spectrum method are more significant than container-images dis-

tortions after using the developed method. Also different contain-

er-images distortions after applying the developed method differ 

slightly, it illustrates the adequacy of the developed decision rule 

which allow to take into account the various subinterval properties 

of container-images. 

As an example of a container-images containing the embedded 

data the results of the hidden embedding of 4096 bits (image B1) 

into the container-image K1 are presented in Figure 7. 
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Figure 7: Results of 4096 bits hidden embedding into the container image 
K1: a) the developed method, b) the Koch-Zhao method, c) the spread 

spectrummethod 

The images shown in Figure 7 show that the distortions of con-

tainer-image containing the embedded data is undistinguished for 

all analyzed methods. In these computational experiments the data 

were extracted without distortion. 

The computational experiments results (Tables 2-4, Figures 3-7) 

illustrate that the developed hidden data embedding method has 

advantages in data embedding hiding as compared to Koch-Zhao 

method and spread spectrum method as when applying the devel-

oped method the container-images containing the embedded data-

have smaller MSE distortion estimation and greater SSIM distor-

tion estimation.Also the developed method application allows to 

extract the hidden  embedded data without distortions. 

6. Summary 

Thereby we developed the method of the hidden data embedding 

into non-informative subsets of image projections onto subinterval 

matrices eigenvectors basing on a relative changes of given pair 

projections values in this article. This method allows to execute 

the hidden data embedding into images that causes the minor dis-

tortions of the container-image and the extracted data. 

The performed computational experiments show that the devel-

oped method has advantages over the known Koch-Zhao method 

and the spread spectrum method. Computational experiments also 

show that the developed method allows to extract the embedded 

data without distortions while the data embedding causes the mi-

nor distortions of the container-images. 
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