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Abstract 
 

A new Latin square image encryption provide a new way of integrating probabilistic encryption in image by embedding random noise in 

the least significant image bit-plane . LSIC may achieve many desired properties of a secure cipher including a large key space, high key 

sensitivities, uniformly distributed cipher text, semantically secure, and robustness against channel noise. 
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1. Introduction 

With the rapid development of the computers and networks, the se-

curity of digital data becomes an important issue. Data encryption 

[1] is one of the most common ways to fulfill the needs of secure 

requirement for digital data. A method of encrypting images com-

prises the steps of creation of an encrypted image by alteration of 

the original image. Hence, the images are encrypted before trans-

mitting.  

This paper focuses on development of an image encryption tech-

nique where it generates a tough cipher image in a comparatively 

short span of time. In an encryption scheme, the message or infor-

mation (referred to as plaintext) is encrypted using an encryption 

algorithm, and turns it into an unreadable form. This is usually done 

with the use of an encryption key, which stipulates about how the 

message is to be encoded. An encryption scheme usually needs a 

key-generation algorithm which is randomly produce keys. There 

are two types of encryptions: Symmetric-key and public-key en-

cryption. According to symmetric-key schemes, the encryption and 

decryption keys are the same and the communicating parties must 

agree on a secret key before they wish to communicate [3]. In pub-

lic-key schemes, the encryption key is published for anyone to use 

and encrypt messages. But, only the receiving party has access to 

the decryption key and is capable of reading the encrypted mes-

sages. Public-key encryption is a quite recent invention: generally, 

all encryption schemes have been Symmetric-key (also called pri-

vate-key) schemes. For every encryption process, there is a “key”, 

which is normally a binary sequence with a length from 40 to 256 

bits. Generally speaking, the greater the number of bits in the key, 

the more ciphers text possible key combinations are possible and 

the longer it would take to break the key.  

1.1. Disadvantages of existing system 

The main disadvantage of the existing system is that the user cannot 

choose their required image as input because they needs to edit the 

source code i.e. change the path to the input image whenever he 

needs to choose a different input image[7] for encryption. Hence it 

is static MATLAB application. It takes only gray scale images as 

input which is disadvantageous because user usually provides col-

ored images as input. 

1.2. Proposed system 

A dynamic web based application is developed in such a way that 

the user gets an option to select any image from system. This appli-

cation is not just limited to gray scale images but also can encrypt 

colored images. A web application is developed which is similar to 

online file converters. E.g.: freefileconverter.com which converts 

one file format to any other file format. Here, in this web application 

the user can select any of his images, give this image as an input 

and can download the resultant encrypted image. 

The system encrypts the image in short span of time. In this appli-

cation MATLAB will be run as backend process. The downloaded 

encrypted image can be communicated over the internet in a se-

cured manner. The proposed system is very user-friendly. The web 

application developed can be accessed easily even by layman since 

the MATLAB runs in the background and people accessing this 

web application don’t need to have any technical knowledge re-

garding MATLAB tool. 

To standardize the encryption/decryption processing, the cipher 

processing block is set to a 256x256 gray scale block, i.e. its pixel 

intensity is denoted as a 8-bit byte.  

In the rest of the paper, P was used to denote a 256x256 plaintext 

image block, C to denote a corresponding cipher text image block 

of P, L denotes a keyed Latin square of order 256, and K denotes a 

256-bit encryption key. 

The new proposed Latin square image cipher [1] is of a SPN struc-

ture [1] with eight rounds as shown in fig.1. It is composed of the 

probabilistic encryption stage noise embedding in LSB and the SPN 

stage containing three encryption primitives such as Latin Square 

Whitening, Latin Square Substitution and Latin Square Permuta-

tion. It is worthwhile to note that this SPN [1] is of a loom-like 

structure designed for image data, which encrypts plaintext image 
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along rows and columns iteratively. Rest of the paper, will discuss 

the stages and the detail encryption/decryption algorithms for LSIC. 

1.3. Image encryption using Latin squares 

Because of high sensitivity for initial values and random-like be-

haviors, chaotic systems are widely used in image encryption 

[5].Conventionally, encryption keys for these image encryption 

systems are limited to manipulate the initial values or parameters of 

the chaotic system [2] [4]. However, effective attacks are found to 

crack encryption systems by using prior information about the sys-

tem chaotic map. 

Conventionally, digital data is encrypted by bit-stream ciphers and 

block ciphers. The two well-known block ciphers are the Digital 

Encryption Standard (DES) and its successor Advanced Encryption 

Standard (AES). A digital image is a specific type of digital data 

and can be encrypted by these conventional ciphers. However, they 

are not ideal ciphers for digital images. Hence development of a 

Latin Square Image Cipher system for image encryption is chosen. 

1.4. Design flow of web application 

The Figure 1 describes the design flow of the web application. Here 

the user selects image from system and uploads it. Then the up-

loaded image will be moved to a particular directory.  

 

 
Fig. 1: Design Flow of Web Application. 

 

The mat lab encryption function will be called on that image in 

backend. Then the cipher image will be generated.  

This will be provided to the user for him to download the cipher 

image which he can communicate over internet securely. 

1.5. Design of SPN network 

In cryptography, an input message and its corresponding output message 

of a crypt system are referred to as plaintext and cipher text, respec-

tively. A substitution-permutation network is a cipher structure com-

posed of a number of substitution and permutation ciphers with multi-

ple iterations. This structure is widely used in many well-known block 

ciphers, e.g. Rijndael i.e. AES [8]. 

A typical M-round SPN for block ciphers has a structure shown in Fig. 

2 Conventionally in a SPN, plaintext, commonly in the form of a bit 

stream and denoted as P, which is the original message to be encrypted; 

Key Whitening denotes an operation to mix the plaintext P with a round 

key; S-Box denotes a substitution-box, which maps one input byte to 

another in a deterministic way; 

 

 
Fig. 2: SPN Network. 

 

P-Box denotes a permutation-box, which shuffles bit positions within 

the input bit stream in a deterministic way; and cipher text denotes the 

output bit stream C, which is an encrypted message by the SPN. The 

decryption process of a SPN cipher is only to reverse the arrow direc-

tions of all processing and to use inverse S-Box and inverse P-Box in-

stead. The classic SPN ciphers are able to obtain good Shannon’s confu-

sion and diffusion properties. For the diffusion property: if one changes 

one bit in plaintext P, the corresponding cipher text C changes in many 

bits. This one-bit change results in a different byte after passing through 

a S-Box, then leads more byte changes after passing through a P-Box, so 

on in each cipher round. Finally, one-bit change leads to substantial 

changes in cipher text C. The confusion property is the similar to the 

diffusion property. One bit change in encryption key K; will spread over 

all bits and result significant changes in cipher text C. 

2. Implementation 

Latin Square Generator 

Although Latin squares can be generated a variety of means, for 

simplicity: Algorithm 1 described below for Latin square genera-

tion. 

Algorithm 1. A Latin Square Generator L=LSG(q1, q2) 

Require: q1 and q2 are two sequences of length-N 

Ensure: L is a Latin square of order N 

Qseed =SortMap (q1) 

Qshift =SortMap (q2) 

For i = 0: 1: N− 1 do 

L (i, :) = RowShift(Qseed,Qshift(i)) 

End for 

In Algorithm 1, both q1 and q2 are length-N sequences from a 

pseudo-random number generator (PRNG), e.g. Linear Congru-

ential Generators (LCG) [3][2]; Sort Map(Q) is a function which 

finds the index mapping between a sequence Q and its sorted ver-

sion Q in the ascending order; and Row Shift t(Q; v) ring shifts the 

sequence Q with v elements towards left. 

 

For example, if a 4x4 Latin square L is to be generated with 

𝑞1 = [. 1, .6, .9, .7] 𝑎𝑛𝑑 𝑞2 = [.3, .9, .4, .2]  
 

Then function Sort Map (.) first calculates the sorted version of the 

input sequence and obtain 

 

𝑞1
∗ = 𝑆𝑜𝑟𝑡𝑀𝑎𝑝(𝑄1) = [0, 1, 3, 2]  

 

it then compares q1 with𝒒𝟏
∗ and q2 with𝒒𝟐

∗  and obtains the element 

mapping sequences as  

 

𝑄𝑠𝑒𝑒𝑑 = 𝑆𝑜𝑟𝑡𝑀𝑎𝑝(𝑞1) = [0, 1, 3, 2]  
 

And 

 

Generate cipher image 

 

Upload selected image 

 

Download the cipher image 

 

Input image 
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𝑄𝑠ℎ𝑖𝑓𝑡 = 𝑆𝑜𝑟𝑡𝑀𝑎𝑝(𝑞2) = [3, 0, 2, 1]  

 

where the permutation sequencesQseed andQshift indicate for i{0, 1, 

2,3} 

 

𝑞1
∗(𝑄𝑠𝑒𝑒𝑑(𝑖)) = 𝑄𝑖(𝑖) 𝑎𝑛𝑑 𝑞 (𝑄𝑠ℎ𝑖𝑓𝑡(𝑖)) = 𝑞2(𝑖)  

 

Finally, function Row Shift (Q, v) left shiftsQseed with the amount 

v =Qshift(r) indicated by the rth element in Qshift, and assigns this row 

to be the rth row in L. Therefore the 4x4 Latin square L is:  

 

L = [

2 0 1 3
0 1 3 2
3 2 0 1
1 3 2 0

] 

2.1. Latin square 

A Latin square of order N is an NxN array filled with a symbol set 

of N distinctive elements, with each symbol appears exactly once 

in each row and each column. The name Latin Square is motivated 

by the mathematician Leonhard Euler, who used Latin characters as 

symbols. Mathematically, [6] it defines a Latin square L of order N 

via a tri-tuple function fL of (r, c, i) as follows  

 

𝑓𝐿(𝑟, 𝑐, 𝑖) = {
1, 𝐿(𝑟, 𝑐) = 𝑆𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

where r denotes the row index of an element in L with r N ={0, 

1,… , N− 1}; c denote the column index of an element in L with c 

N; i denotes the symbol index of an element in L with I N; and Si 

is the ith symbol in the symbol set S ={S0, S1,… , SN−1}. Therefore, 

if L is a Latin square of order N, then  

 

For arbitrary c, I N, then ∑ 𝑓𝐿(𝑟, 𝑐, 𝑖) = 1𝑁−1
𝑟=0  

 

For arbitrary r, i  N, then ∑ fL(r, c, i) = 1N−1
c=0  

 

It implies that each symbol appears exactly once in each row and 

each column in L. 

2.2. Steps involved in LSIC system 

1) LSB Noise Embedding 

2) Key Translation 

3) Latin square Whitening 

4) Latin Square Row and Column Bijections 

5) Latin Square Substitution 

6) Latin Square Permutation 

2.3. LSB noise embedding 

Probabilistic [6] encryption means to use randomness in a cipher, 

so that this cipher is able to encrypt one plaintext with the exact 

same encryption key to distinctive cipher texts. It is well known that 

such randomness is crucial to achieve semantic security. Here, such 

randomness is introduced by embedding noise in the least signifi-

cant bit-plane of an image.  

More specifically, an EX-OR operation is applied on a randomly 

generated 256 x 256 bit-plane with the least significant bit-plane of 

the plaintext image, where the generation of this random bit-plane 

is completely independent of the encryption key. Once again, this 

introduced noise in LSB does not affect any visual quality of image 

from the human visual perceptibility point of view. However, any 

slight change in plaintext will lead to significant changes in cipher 

text after it is encrypted by the SPN. 

2.4. Key translation 

In conventional block ciphers, keys are used directly without trans-

lation. For example in key whitening process, the proposed LSIC 

uses a 256-bit encryption key K with key translation to eight key-

dependent Latin squares of order 256 before using in LSIC. Specif-

ically, for a given 256-bit encryption key K,  

1) Divide the encryption key K, into eight 32-bit sub keys, using 

function Sub Key Division i.e.K = [k0, k1, k7] 

2) Generate pairs of pseudo-random sequences 

(𝑞1 
0 , 𝑞2

0), (𝑞1
1, 𝑞2

1), … , (𝑞1
8 , 𝑞2

8)  each pair with 2x 256 ele-

ments by using PRNGs by feeding these sub keys as seeds. 

3) Generate key-dependent Latin squares i.e., L0, L1, L8 with the 

order of 256. Namely, ∀n ∈ {0, 1, 8}, then Ln = LSG (𝑞1
𝑛, 𝑞2

𝑛) 

2.5. Latin square whitening 

In conventional SPN for block ciphers, the whitening stage nor-

mally combines a plaintext message P with a round key, (e.g. XOR 

operation) such that 

• The statistics of the plain text message P is redistributed after 

combining. 

• The relationship between cipher text and encryption key is 

very complicated and involved. 

In image encryption, a plaintext message is an image block, P, com-

posed of a number of pixels. Each pixel is represented by several 

binary bits (a byte). Therefore, XOR whitening scheme become 

inefficient for image data, in the sense that it requires to extend an 

encryption key to be an equal size to a plaintext image, and to im-

pose bitwise XOR to byte pixels. And this type of image encryption 

is called a naive algorithm. Since the objective of key whitening is 

to mix plaintext data with encryption keys, therefore whitening is 

defined as a transposition cipher over the finite field GF(28) for im-

age data, as shown in equation  

 

y = [x+l] 28                                                                                   (1) 

 

where x is a byte in plaintext, l is a corresponding byte in the keyed 

Latin square, y is the whitening result and [.]2
8denotes the compu-

tations over GF (28). The above whitening process can be easily 

reversed by applying  

 

x = [y+l] 28                                                                                    (2) 

 

In image encryption, plaintext byte x is a pixel, say it is located at 

the intersection of rth row and cth column i.e. x = P(r, c) Now let l = 

L(r, c) be an element located at the corresponding position in the 

keyed Latin square L, and y be the cipher text byte with y = C(r, c), 

then the pixel-level equation 

 

{
𝐶(𝑟, 𝑐) = [𝑆𝑅 (𝑃(𝑟, 𝑐), [𝐷]3) + 𝐿(𝑟, 𝑐)]28

𝑃(𝑟, 𝑐) = 𝑆𝑅([𝐶(𝑟, 𝑐) + 𝐿(𝑟, 𝑐)]28  , [𝐷]3)
                                 (3) 

 

where symbol n denotes current round number (n ∈ [0, 7]), D = L(0, 

0) is the rotating parameter, and SR denotes the spatial rotating 

function (X; d) rotates an image X according to different values of 

the direction d as defined in Equation below 

 

Y = SR(X, d)                                                                                (4) 

 

Notice that if Y =SR(X, d), then the following identity always holds 

 

X = SR(Y, d)                                                                                (5) 

 

Apply key whitening for all pixels using the pixel-level Eq. (3), the 

Latin Square Whitening (LSW) in the image level then can be de-

noted as 

 

𝐿𝑆𝑊 ∶  {
𝐶 =  𝐸𝑐𝑟𝑤(𝐿, 𝑃, 𝐷)
𝑃 =  𝐷𝑐𝑟𝑤(𝐿, 𝐶, 𝐷)

                                                         (6) 

 

Therefore, plaintext image block P can be restored from the cipher 

text image block C. Figure5 shows an example of Latin Square 



International Journal of Engineering & Technology 177 

 
Whitening, where the first row shows images and the second row 

shows corresponding histograms of these images. From this exam-

ple, it is easy to verify that the cipher text image after the Latin 

Square Whitening is unrecognizable and its pixels are redistributed 

uniformly. 

2.6. Latin square row and column bijections 

Since Eqs. (1) and (3) hold, each row and each column in a Latin 

square L of order N is a permutation of the integer number sequence 

[0, 1, …, N - 1], define bijections (one-to-one and onto mapping) 

by mapping this integer number sequence to either a row or a col-

umn in a Latin square, which is a permutated sequence of the inte-

ger number sequence. In other words, to construct forward and in-

verse row mapping functions (FRM and IRM) with respect to the 

rth row in L as shown in Eq. (7), and also forward and inverse col-

umn mapping functions (FCM and ICM) with respect to the cth col-

umn in L as shown in Eq. (8), where x and y denote the input and 

output of the mapping functions, respectively.  

 

{
𝑦 = 𝐹𝑅𝑀(𝐿, 𝑟, 𝑥) = 𝐿(𝑟, 𝑥)

𝑥 = 𝐼𝑅𝑀(𝐿, 𝑟, 𝑦) = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑓𝐿(𝑟, 𝑧, 𝑦))
                                 (7) 

 

{
𝑦 = 𝐹𝐶𝑀(𝐿, 𝑥, 𝑐) = 𝐿(𝑥, 𝑐)

𝑥 = 𝐼𝐶𝑀(𝐿, 𝑦, 𝑐) = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑓𝐿(𝑧, 𝑐, 𝑦))
                                 (8) 

 

Where fL is the tri-tuple function defined in Eq(1). Its maximum is 

equal to [1], i.e. fL(r, x, y) = [1], only for the column number x sat-

isfying the constraint, L(r, x) = y. Further, row mapping identities 

hold for arbitrary x and y within a Latin  

 

Square L:{
𝐼𝑅𝑀(𝐿, 𝑟, 𝐹𝑅𝑀(𝐿, 𝑟, 𝑥)) = 𝑥

𝐹𝑅𝑀(𝐿, 𝑟, 𝐼𝑅𝑀(𝐿, 𝑟, 𝑦)) = 𝑦
                                     (9) 

 

Similarly, it also has column mapping as follows: 

 

{
𝐼𝐶𝑀(𝐿, 𝐹𝐶𝑀(𝐿, 𝑥, 𝑐), 𝑐) = 𝑥
𝐹𝐶𝑀(𝐿, 𝐼𝐶𝑀(𝐿, 𝑦, 𝑐), 𝑐) = 𝑦

                                                    (10) 

2.7. Latin square substitution 

An S-Box in cryptography is a basic component performing byte 

substitution. Each S-Box can be defined as a bijection, also known 

as a one-to-one and onto mapping. In image encryption, an image 

pixel is commonly represented as a byte, i.e. a sequence of bits. For 

example, 8-bit gray scale image has 256 gray intensity scales with 

each intensity scale represented in an 8-bit sequence.  

Because of the existence of FRM/IRM and FCM/ICM bijections in 

a Latin square, which is able to perform byte substitution in an im-

age cipher using bijections from rows and columns in a Latin 

square? The substitution with respect to a row in a Latin square is 

called Latin Square Row S-box  

 

(LSRS): 𝐿𝑆𝑅𝑆 ∶  {
𝐶 = 𝐸𝑐𝑟𝑠

𝑟𝑜𝑤(𝐿, 𝑃)

𝑃 =  𝐷𝑐𝑟𝑠
𝑟𝑜𝑤(𝐿, 𝐶)

                                        (11) 

 

In regard to pixel-level function of LSRS, each cipher text byte is 

determined by the FRM function see Eq (7) using the keyed Latin 

square L with function parameters given by plaintext bytes and ci-

pher text bytes as follows: 

 

𝐸𝑐𝑟𝑠
𝑟𝑜𝑤: 𝐶(𝑟, 𝑐)  =  {

𝐹𝑅𝑀(𝐿, 𝐶(𝑟 − 1, 𝑐), 𝑃(𝑟, 𝑐)), 𝑖𝑓𝑟 ≠ 0

𝐹𝑅𝑀(𝐿, 0, 𝑃(𝑟, 𝑐)), 𝑖𝑓𝑟 = 0
   (12) 

 

Clearly, plaintext bytes then can be perfectly restored from cipher 

text bytes, if IRM is used instead of FRM as follows 

 

𝐷𝑐𝑟𝑠
𝑟𝑜𝑤 ∶ 𝑃(𝑟, 𝑐) =  {

𝐼𝑅𝑀(𝐿, 𝐶(𝑟 −  1, 𝑐), 𝐶(𝑟, 𝑐)), 𝑖𝑓𝑟 ≠ 0

𝐼𝑅𝑀(𝐿, 0, 𝐶(𝑟, 𝑐)), 𝑖𝑓𝑟 = 0
  (13) 

Similarly, bijections from columns in a Latin square are used to per-

form byte substitutions. And this is called Latin Square ColumnS-

box (LSCS) i.e. 

 

𝐿𝑆𝐶𝑆 ∶  {
𝐶 =  𝐸𝑐𝑟𝑠

𝑐𝑜𝑙(𝐿, 𝑃)

𝑃 =  𝐷𝑐𝑟𝑠
𝑐𝑜𝑙(𝐿, 𝐶)

                                                       (14) 

 

In addition, the corresponding LSCS encryption and decryption 

process then can be defined as: 

 

𝐸𝑐𝑟𝑠
𝑐𝑜𝑙 ∶ 𝐶(𝑟, 𝑐) =  {

𝐹𝐶𝑀(𝐿, 𝑃(𝑟, 𝑐), 𝐶(𝑟, 𝑐 − 1)), 𝑖𝑓𝑐 ≠ 0

𝐹𝐶𝑀(𝐿, 𝑃(𝑟, 𝑐), 0), 𝑖𝑓 𝑐 = 0
     (15) 

 

𝐷𝑐𝑟𝑠
𝑐𝑜𝑙 ∶  𝑃(𝑟, 𝑐) =  {

𝐼𝐶𝑀(𝐿, 𝐶(𝑟, 𝑐), 𝐶(𝑟, 𝑐 − 1)), 𝑖𝑓𝑐 ≠ 0

𝐼𝐶𝑀(𝐿, 𝐶(𝑟, 𝑐), 0), 𝑖𝑓𝑐 = 0
     (16) 

 

Figure6 Shows encryption results of Latin Square Row S-box and 

Latin Square Column S-box. As can be seen, the plaintext image 

block P becomes unrecognizable after applying either LSRS or 

LSCS. Histogram analysis also shows that the statistics of the pixel 

intensity changes dramatically after substitution.Latin square 

row/column substitution defined above has excellent diffusion 

properties. 

One pixel change in the plaintext P will diffuse to a column/row of 

pixels after a round of LSRS or LSCS. This diffusion quickly 

spreads to the entire cipher text image in several cipher rounds. 

2.7. Latin square permutation 

Unlike a S-Box performing byte substitution, a P-Box performs 

byte shuffling or scrambling. Each P-Box can also be defined as a 

bijection. 

If both input x and output y are considered in FRM and IRM as 

indices (see Eq. (7), then FRM defines a mapping { 0, 1, … , 255 }  

{ 0, 1, … , 255 } and IRM defines the corresponding inverse map-

ping. Therefore, the Latin square row p-box (LSRP) is defined with 

respect to rows in a Latin square L as follows, 

 

𝐿𝑆𝑅𝑃 ∶  {
𝐶(𝑟, 𝑐𝑦 = 𝑃(𝑟, 𝐹𝑅𝑀(𝐿, 𝑟, 𝑐𝑥))

𝑃(𝑟, 𝑐𝑥) = 𝐶(𝑟, 𝐼𝑅𝑀(𝐿, 𝑟, 𝑐𝑦))
                                  (17) 

 

Where cx and CY denotes the column indices before and after map-

ping. Consequently, for any pixel in P and its corresponding pixel 

in C are in the same row r after LSRP; and only column indices 

change before and after mapping with relationship cy = FRM(L, r, 

cx) holds.  

Similarly, a Latin Square Column P-box (LSCP) can be constructed 

with respect to columns in a Latin square as 

 

𝐿𝑆𝐶𝑃: {
𝐶(𝑟𝑦, 𝑐) = 𝑃(𝐹𝐶𝑀(𝐿, 𝑟𝑥, 𝑐), 𝑐)

𝑃(𝑟𝑥, 𝑐) = 𝐶(𝐼𝐶𝑀(𝐿, 𝑟𝑦, 𝑐), 𝑐)
                                     (18) 

 

In general, Latin Square Permutation function can be written as  

 

𝐿𝑆𝑃 ∶  {
𝐶 =  𝐸𝑐𝑟𝑝(𝐿, 𝑃)

𝑃 =  𝐷𝑐𝑟𝑝(𝐿, 𝐶)
                                                             (19) 

 

The implementation part will give permutation results of using 

LSRP, LSCP and LSP. It is clear that cascading LSRP and LSCP in 

LSP helps LSP to achieve a better pixel permutation performance 

in the sense that, pixels in its cipher text image become more ran-

dom-like and makes the cipher text image content unintelligible. 
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3. System design 

 
Fig. 3: Design Flow of Mat lab Application. 

 

The Figure 3 describes the system design of matlab application. 

User selects any image and gives an input to matlab encryption 

function. Random Key is generated and a latin square is generated 

which is dependent on the key generated. Whitening, substitution 

and permutation steps are to be performed on the image and finally 

the cipher text image is generated. Decryption can also be per-

formed on the cipher text image and plain text image can be ob-

tained back again 

 
Table 1: Algorithm for Encrypting Plaintext Image 

 
 

Although Latin squares can be generated via a variety of means, for 

the sake of simplicity Algorithm 1 described below is used for Latin 

square generation in the paper.  

 

Table 2: Algorithm Latin Square Generator 

 
 

In Algorithm 1, both q1 and q2 are length-N sequences from a 

pseudo-random number generator (PRNG), e.g. Linear Congru-

ential Generators (LCG) [3][2]; Sort Map (Q) is a function which 

finds the index mapping between a sequence Q and its sorted ver-

sion Q in the ascending order; and Row Shift t(Q; v) ring shifts the 

sequence Q with v elements towards left. 

For example, if a 4x4 Latin square L is to be generated with 

 

𝑞1 = [. 1, .6, .9, .7] 𝑎𝑛𝑑 𝑞2 = [.3, .9, .4, .2]  
 

Then function Sort Map (.) first calculates the sorted version of the 

input sequence and obtain 

 

𝑞1
∗ = 𝑆𝑜𝑟𝑡𝑀𝑎𝑝(𝑞1) = [0, 1, 3, 2]  

 

It then compares q1 with𝒒𝟏
∗ and q2 with 𝒒𝟐

∗  and obtains the element 

mapping sequences as  

 

𝑄𝑠𝑒𝑒𝑑 = 𝑆𝑜𝑟𝑡𝑀𝑎𝑝(𝑞1) = [0, 1, 3, 2]  
 

And 

 

𝑄𝑠ℎ𝑖𝑓𝑡 = 𝑆𝑜𝑟𝑡𝑀𝑎𝑝(𝑞2) = [3, 0, 2, 1]  

 

where the permutation sequencesQseed andQshift indicate fori{0, 1, 

2,3} 

 

𝑞1
∗(𝑄𝑠𝑒𝑒𝑑(𝑖)) = 𝑄𝑖(𝑖) 𝑎𝑛𝑑 𝑞2 

∗ (𝑄𝑠ℎ𝑖𝑓𝑡(𝑖)) = 𝑞2(𝑖)  

 

Finally, function Row Shift (Q, v) left shiftsQseed with the amount 

v =Qshift(r) indicated by the rth element in Qshift, and assign this row 

to be the rth row in L. Therefore the 4x4 Latin square L is:  

 

L = [

2 0 1 3
0 1 3 2
3 2 0 1
1 3 2 0

]   

 
Table 3: Algorithm for Decrypting Plaintext Image 

 

Algorithm Latin square image cipher- encryp-

tion C=E (P, K) 

Require: K is a 256-bit key 

Require: P is a 256x256 8-bit gray scale image 

block 

(q1, q2) = KDSG (K, 8) 

For i = 0: 1: 7 do 

If i ==0 then 

CLSP=LSBNoisEmbedding (P) 4 

End if 

Li = LSG (𝑄1
𝑖  ,𝑄2 ) 

Di= Li (0, 0) 

CLSW = Ecrw (Li, CLSP, Dn) 

If mod (i, 2) ≠0 then 

CLSS = 𝐸𝑐𝑟𝑠
𝑐𝑜𝑙(Li, CLSW) 

Else 

CLSS = 𝐸𝑐𝑟𝑠
𝑟𝑜𝑤(Li, CLSW) 

End if 

CLSP = Ecrp (Li, CLSS) 

End for 

L8 = LSG (𝑞1
8,𝑞2

8 ) 

D8= L8 (0, 0) 

C= Ecrw (L8, CLSP, Dn) 

Require: C is a 256x256 8-bit gray scale image 

block 

A Latin Square Generator L=LSG (q1, q2) 

Require: q1 and q2 are two length-N sequences 

Ensure: L is a Latin square of order N 

Qseed =SortMap (q1) 

Qshift =SortMap (q2) 

For i = 0: 1: N− 1 do 

L (i, :) = RowShift (Qseed, Qshift (i)) 

End for 

Algorithm Latin square image cipher- decryption 

P=D(C, K) 

Require: K is a 256-bit key 

Require: C is a 256x256 8-bit grayscale image block 

Require: P is a 256x256 8-bit grayscale image block 

(q1, q2) = KDSG (K, 8) 

For n = 7: -1: 0 do 

If n, ==seven then 

L8 = LSG (𝑞1
8,𝑞2

8) 

D8 = L8 (0, 0) 

PLSW= Dcrw(L8, C, D8) 

End if 

Ln = LSG (𝑞1
𝑛,𝑞2

𝑛) 

Dn= Ln (0, 0) 

PLSP = Decp (Ln, PLSW) 

If mod (n, 2) ≠ 0 then 

PLSS= 𝐷𝑐𝑟𝑠
𝑐𝑜𝑙(Ln,PLSP) 

Else 

PLSS = 𝐷𝑐𝑟𝑠
𝑟𝑜𝑤(Ln, PLSP) 

End if 

PLSW = Dcrw (Ln, PLSS, Dn) 

End for 

P = PLSW 
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4. Results 

Image Encryption results using the proposed Latin Square 

Image cipher are shown below. 

 

 
Fig. 4: Input Image. 

 

 
Fig. 5: Encryption and Decryption. 

 

The figure 5 shows Encryption and decryption of input image with 

histograms. 

 

 
Fig. 6: Probabilistic Encryption and Decryption. 

 

Figure 6 shows the Probabilistic encryption and decryptionof cipher 

text image 

 

 
Fig. 7: Robustness to Noise in Cipher. 

 

A good cipher should tolerate certain amount of noise; figure 7 

shows the robustness to noise of a cipher. 

 

 
Fig. 8: Sensitivity to Key Changes. 

 

A secured cipher will give high key sensitiveness in both encryption 

and decryption. Figure [7] and [8] shows simulation results for en-

cryption and decryption. 

 

 
Fig. 9: Sensitivity to Plaintext Changes. 

 

Figure 9 shows Plain text image of diffusion property of Latin 

square image cipher, the plain text image differs p and p2 and c-c2 

differs in cipher text image. 

 

 
Fig. 10: Result Images. 
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The above Figure 10 shows the results of decryption robustness of 

Latin Square Image cipher for various noise ratio in cipher text im-

ages.  

The above fig.11 shows the performance of the system i.e. here Tic 

and Toc functions are placed before and after the encryption func-

tion call respectively. These indicate the time required for the exe-

cution of encryption function. 

 

 
Fig. 11: Performance Verification. 

5. Conclusion and future scope 

LSIC integrates probabilistic encryption in a pre-processing stage 

and thus it allows encryption of a plain text image into different 

cipher text images when the same encryption key is used. LSIC’s 

decryption stage is robust against a certain level of noise and thus 

is suitable to transmit cipher data over a corrupted channel.  

In the proposed system the uploaded images as well as the resultant 

images are stored in a specific directory but not in a database. So, 

as a future work the proposed system can be integrated with data-

base in order to store them securely and permanently without any 

loss of data as databases are more robust when compared to file 

systems. 
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