

Copyright © 2018 Katta sugamya et. al. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.3) (2018) 174-180

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A dynamic web based color image encryption using Latin

square image cipher

Katta sugamya 1 *, Suresh pabboju 1, A. Vinay Babu 2

1 Dept. of IT, CBIT, Gandipet, Hyderabad

2 Retd. Professor, Jntuceh, Hyderabad

*Corresponding author E-mail: sugamya.cbit@gmail.com

Abstract

A new Latin square image encryption provide a new way of integrating probabilistic encryption in image by embedding random noise in

the least significant image bit-plane . LSIC may achieve many desired properties of a secure cipher including a large key space, high key

sensitivities, uniformly distributed cipher text, semantically secure, and robustness against channel noise.

Keywords: Advanced Encryption Standard (AES); Digital Encryption Standard on (DES); Latin Square Image Cipher (LSIC); Substitution Permutation

Network (SPN).

1. Introduction

With the rapid development of the computers and networks, the se-

curity of digital data becomes an important issue. Data encryption

[1] is one of the most common ways to fulfill the needs of secure

requirement for digital data. A method of encrypting images com-

prises the steps of creation of an encrypted image by alteration of

the original image. Hence, the images are encrypted before trans-

mitting.

This paper focuses on development of an image encryption tech-

nique where it generates a tough cipher image in a comparatively

short span of time. In an encryption scheme, the message or infor-

mation (referred to as plaintext) is encrypted using an encryption

algorithm, and turns it into an unreadable form. This is usually done

with the use of an encryption key, which stipulates about how the

message is to be encoded. An encryption scheme usually needs a

key-generation algorithm which is randomly produce keys. There

are two types of encryptions: Symmetric-key and public-key en-

cryption. According to symmetric-key schemes, the encryption and

decryption keys are the same and the communicating parties must

agree on a secret key before they wish to communicate [3]. In pub-

lic-key schemes, the encryption key is published for anyone to use

and encrypt messages. But, only the receiving party has access to

the decryption key and is capable of reading the encrypted mes-

sages. Public-key encryption is a quite recent invention: generally,

all encryption schemes have been Symmetric-key (also called pri-

vate-key) schemes. For every encryption process, there is a “key”,

which is normally a binary sequence with a length from 40 to 256

bits. Generally speaking, the greater the number of bits in the key,

the more ciphers text possible key combinations are possible and

the longer it would take to break the key.

1.1. Disadvantages of existing system

The main disadvantage of the existing system is that the user cannot

choose their required image as input because they needs to edit the

source code i.e. change the path to the input image whenever he

needs to choose a different input image[7] for encryption. Hence it

is static MATLAB application. It takes only gray scale images as

input which is disadvantageous because user usually provides col-

ored images as input.

1.2. Proposed system

A dynamic web based application is developed in such a way that

the user gets an option to select any image from system. This appli-

cation is not just limited to gray scale images but also can encrypt

colored images. A web application is developed which is similar to

online file converters. E.g.: freefileconverter.com which converts

one file format to any other file format. Here, in this web application

the user can select any of his images, give this image as an input

and can download the resultant encrypted image.

The system encrypts the image in short span of time. In this appli-

cation MATLAB will be run as backend process. The downloaded

encrypted image can be communicated over the internet in a se-

cured manner. The proposed system is very user-friendly. The web

application developed can be accessed easily even by layman since

the MATLAB runs in the background and people accessing this

web application don’t need to have any technical knowledge re-

garding MATLAB tool.

To standardize the encryption/decryption processing, the cipher

processing block is set to a 256x256 gray scale block, i.e. its pixel

intensity is denoted as a 8-bit byte.

In the rest of the paper, P was used to denote a 256x256 plaintext

image block, C to denote a corresponding cipher text image block

of P, L denotes a keyed Latin square of order 256, and K denotes a

256-bit encryption key.

The new proposed Latin square image cipher [1] is of a SPN struc-

ture [1] with eight rounds as shown in fig.1. It is composed of the

probabilistic encryption stage noise embedding in LSB and the SPN

stage containing three encryption primitives such as Latin Square

Whitening, Latin Square Substitution and Latin Square Permuta-

tion. It is worthwhile to note that this SPN [1] is of a loom-like

structure designed for image data, which encrypts plaintext image

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 175

along rows and columns iteratively. Rest of the paper, will discuss

the stages and the detail encryption/decryption algorithms for LSIC.

1.3. Image encryption using Latin squares

Because of high sensitivity for initial values and random-like be-

haviors, chaotic systems are widely used in image encryption

[5].Conventionally, encryption keys for these image encryption

systems are limited to manipulate the initial values or parameters of

the chaotic system [2] [4]. However, effective attacks are found to

crack encryption systems by using prior information about the sys-

tem chaotic map.

Conventionally, digital data is encrypted by bit-stream ciphers and

block ciphers. The two well-known block ciphers are the Digital

Encryption Standard (DES) and its successor Advanced Encryption

Standard (AES). A digital image is a specific type of digital data

and can be encrypted by these conventional ciphers. However, they

are not ideal ciphers for digital images. Hence development of a

Latin Square Image Cipher system for image encryption is chosen.

1.4. Design flow of web application

The Figure 1 describes the design flow of the web application. Here

the user selects image from system and uploads it. Then the up-

loaded image will be moved to a particular directory.

Fig. 1: Design Flow of Web Application.

The mat lab encryption function will be called on that image in

backend. Then the cipher image will be generated.

This will be provided to the user for him to download the cipher

image which he can communicate over internet securely.

1.5. Design of SPN network

In cryptography, an input message and its corresponding output message

of a crypt system are referred to as plaintext and cipher text, respec-

tively. A substitution-permutation network is a cipher structure com-

posed of a number of substitution and permutation ciphers with multi-

ple iterations. This structure is widely used in many well-known block

ciphers, e.g. Rijndael i.e. AES [8].

A typical M-round SPN for block ciphers has a structure shown in Fig.

2 Conventionally in a SPN, plaintext, commonly in the form of a bit

stream and denoted as P, which is the original message to be encrypted;

Key Whitening denotes an operation to mix the plaintext P with a round

key; S-Box denotes a substitution-box, which maps one input byte to

another in a deterministic way;

Fig. 2: SPN Network.

P-Box denotes a permutation-box, which shuffles bit positions within

the input bit stream in a deterministic way; and cipher text denotes the

output bit stream C, which is an encrypted message by the SPN. The

decryption process of a SPN cipher is only to reverse the arrow direc-

tions of all processing and to use inverse S-Box and inverse P-Box in-

stead. The classic SPN ciphers are able to obtain good Shannon’s confu-

sion and diffusion properties. For the diffusion property: if one changes

one bit in plaintext P, the corresponding cipher text C changes in many

bits. This one-bit change results in a different byte after passing through

a S-Box, then leads more byte changes after passing through a P-Box, so

on in each cipher round. Finally, one-bit change leads to substantial

changes in cipher text C. The confusion property is the similar to the

diffusion property. One bit change in encryption key K; will spread over

all bits and result significant changes in cipher text C.

2. Implementation

Latin Square Generator

Although Latin squares can be generated a variety of means, for

simplicity: Algorithm 1 described below for Latin square genera-

tion.

Algorithm 1. A Latin Square Generator L=LSG(q1, q2)

Require: q1 and q2 are two sequences of length-N

Ensure: L is a Latin square of order N

Qseed =SortMap (q1)

Qshift =SortMap (q2)

For i = 0: 1: N− 1 do

L (i, :) = RowShift(Qseed,Qshift(i))

End for

In Algorithm 1, both q1 and q2 are length-N sequences from a

pseudo-random number generator (PRNG), e.g. Linear Congru-

ential Generators (LCG) [3][2]; Sort Map(Q) is a function which

finds the index mapping between a sequence Q and its sorted ver-

sion Q in the ascending order; and Row Shift t(Q; v) ring shifts the

sequence Q with v elements towards left.

For example, if a 4x4 Latin square L is to be generated with

𝑞1 = [. 1, .6, .9, .7] 𝑎𝑛𝑑 𝑞2 = [.3, .9, .4, .2]

Then function Sort Map (.) first calculates the sorted version of the

input sequence and obtain

𝑞1
∗ = 𝑆𝑜𝑟𝑡𝑀𝑎𝑝(𝑄1) = [0, 1, 3, 2]

it then compares q1 with𝒒𝟏
∗ and q2 with𝒒𝟐

∗ and obtains the element

mapping sequences as

𝑄𝑠𝑒𝑒𝑑 = 𝑆𝑜𝑟𝑡𝑀𝑎𝑝(𝑞1) = [0, 1, 3, 2]

And

Generate cipher image

Upload selected image

Download the cipher image

Input image

176 International Journal of Engineering & Technology

𝑄𝑠ℎ𝑖𝑓𝑡 = 𝑆𝑜𝑟𝑡𝑀𝑎𝑝(𝑞2) = [3, 0, 2, 1]

where the permutation sequencesQseed andQshift indicate for i{0, 1,

2,3}

𝑞1
∗(𝑄𝑠𝑒𝑒𝑑(𝑖)) = 𝑄𝑖(𝑖) 𝑎𝑛𝑑 𝑞 (𝑄𝑠ℎ𝑖𝑓𝑡(𝑖)) = 𝑞2(𝑖)

Finally, function Row Shift (Q, v) left shiftsQseed with the amount

v =Qshift(r) indicated by the rth element in Qshift, and assigns this row

to be the rth row in L. Therefore the 4x4 Latin square L is:

L = [

2 0 1 3
0 1 3 2
3 2 0 1
1 3 2 0

]

2.1. Latin square

A Latin square of order N is an NxN array filled with a symbol set

of N distinctive elements, with each symbol appears exactly once

in each row and each column. The name Latin Square is motivated

by the mathematician Leonhard Euler, who used Latin characters as

symbols. Mathematically, [6] it defines a Latin square L of order N

via a tri-tuple function fL of (r, c, i) as follows

𝑓𝐿(𝑟, 𝑐, 𝑖) = {
1, 𝐿(𝑟, 𝑐) = 𝑆𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where r denotes the row index of an element in L with r N ={0,

1,… , N− 1}; c denote the column index of an element in L with c

N; i denotes the symbol index of an element in L with I N; and Si

is the ith symbol in the symbol set S ={S0, S1,… , SN−1}. Therefore,

if L is a Latin square of order N, then

For arbitrary c, I N, then ∑ 𝑓𝐿(𝑟, 𝑐, 𝑖) = 1𝑁−1
𝑟=0

For arbitrary r, i N, then ∑ fL(r, c, i) = 1N−1
c=0

It implies that each symbol appears exactly once in each row and

each column in L.

2.2. Steps involved in LSIC system

1) LSB Noise Embedding

2) Key Translation

3) Latin square Whitening

4) Latin Square Row and Column Bijections

5) Latin Square Substitution

6) Latin Square Permutation

2.3. LSB noise embedding

Probabilistic [6] encryption means to use randomness in a cipher,

so that this cipher is able to encrypt one plaintext with the exact

same encryption key to distinctive cipher texts. It is well known that

such randomness is crucial to achieve semantic security. Here, such

randomness is introduced by embedding noise in the least signifi-

cant bit-plane of an image.

More specifically, an EX-OR operation is applied on a randomly

generated 256 x 256 bit-plane with the least significant bit-plane of

the plaintext image, where the generation of this random bit-plane

is completely independent of the encryption key. Once again, this

introduced noise in LSB does not affect any visual quality of image

from the human visual perceptibility point of view. However, any

slight change in plaintext will lead to significant changes in cipher

text after it is encrypted by the SPN.

2.4. Key translation

In conventional block ciphers, keys are used directly without trans-

lation. For example in key whitening process, the proposed LSIC

uses a 256-bit encryption key K with key translation to eight key-

dependent Latin squares of order 256 before using in LSIC. Specif-

ically, for a given 256-bit encryption key K,

1) Divide the encryption key K, into eight 32-bit sub keys, using

function Sub Key Division i.e.K = [k0, k1, k7]

2) Generate pairs of pseudo-random sequences

(𝑞1
0 , 𝑞2

0), (𝑞1
1, 𝑞2

1), … , (𝑞1
8 , 𝑞2

8) each pair with 2x 256 ele-

ments by using PRNGs by feeding these sub keys as seeds.

3) Generate key-dependent Latin squares i.e., L0, L1, L8 with the

order of 256. Namely, ∀n ∈ {0, 1, 8}, then Ln = LSG (𝑞1
𝑛, 𝑞2

𝑛)

2.5. Latin square whitening

In conventional SPN for block ciphers, the whitening stage nor-

mally combines a plaintext message P with a round key, (e.g. XOR

operation) such that

• The statistics of the plain text message P is redistributed after

combining.

• The relationship between cipher text and encryption key is

very complicated and involved.

In image encryption, a plaintext message is an image block, P, com-

posed of a number of pixels. Each pixel is represented by several

binary bits (a byte). Therefore, XOR whitening scheme become

inefficient for image data, in the sense that it requires to extend an

encryption key to be an equal size to a plaintext image, and to im-

pose bitwise XOR to byte pixels. And this type of image encryption

is called a naive algorithm. Since the objective of key whitening is

to mix plaintext data with encryption keys, therefore whitening is

defined as a transposition cipher over the finite field GF(28) for im-

age data, as shown in equation

y = [x+l] 28 (1)

where x is a byte in plaintext, l is a corresponding byte in the keyed

Latin square, y is the whitening result and [.]2
8denotes the compu-

tations over GF (28). The above whitening process can be easily

reversed by applying

x = [y+l] 28 (2)

In image encryption, plaintext byte x is a pixel, say it is located at

the intersection of rth row and cth column i.e. x = P(r, c) Now let l =

L(r, c) be an element located at the corresponding position in the

keyed Latin square L, and y be the cipher text byte with y = C(r, c),

then the pixel-level equation

{
𝐶(𝑟, 𝑐) = [𝑆𝑅 (𝑃(𝑟, 𝑐), [𝐷]3) + 𝐿(𝑟, 𝑐)]28

𝑃(𝑟, 𝑐) = 𝑆𝑅([𝐶(𝑟, 𝑐) + 𝐿(𝑟, 𝑐)]28 , [𝐷]3)
 (3)

where symbol n denotes current round number (n ∈ [0, 7]), D = L(0,

0) is the rotating parameter, and SR denotes the spatial rotating

function (X; d) rotates an image X according to different values of

the direction d as defined in Equation below

Y = SR(X, d) (4)

Notice that if Y =SR(X, d), then the following identity always holds

X = SR(Y, d) (5)

Apply key whitening for all pixels using the pixel-level Eq. (3), the

Latin Square Whitening (LSW) in the image level then can be de-

noted as

𝐿𝑆𝑊 ∶ {
𝐶 = 𝐸𝑐𝑟𝑤(𝐿, 𝑃, 𝐷)
𝑃 = 𝐷𝑐𝑟𝑤(𝐿, 𝐶, 𝐷)

 (6)

Therefore, plaintext image block P can be restored from the cipher

text image block C. Figure5 shows an example of Latin Square

International Journal of Engineering & Technology 177

Whitening, where the first row shows images and the second row

shows corresponding histograms of these images. From this exam-

ple, it is easy to verify that the cipher text image after the Latin

Square Whitening is unrecognizable and its pixels are redistributed

uniformly.

2.6. Latin square row and column bijections

Since Eqs. (1) and (3) hold, each row and each column in a Latin

square L of order N is a permutation of the integer number sequence

[0, 1, …, N - 1], define bijections (one-to-one and onto mapping)

by mapping this integer number sequence to either a row or a col-

umn in a Latin square, which is a permutated sequence of the inte-

ger number sequence. In other words, to construct forward and in-

verse row mapping functions (FRM and IRM) with respect to the

rth row in L as shown in Eq. (7), and also forward and inverse col-

umn mapping functions (FCM and ICM) with respect to the cth col-

umn in L as shown in Eq. (8), where x and y denote the input and

output of the mapping functions, respectively.

{
𝑦 = 𝐹𝑅𝑀(𝐿, 𝑟, 𝑥) = 𝐿(𝑟, 𝑥)

𝑥 = 𝐼𝑅𝑀(𝐿, 𝑟, 𝑦) = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑓𝐿(𝑟, 𝑧, 𝑦))
 (7)

{
𝑦 = 𝐹𝐶𝑀(𝐿, 𝑥, 𝑐) = 𝐿(𝑥, 𝑐)

𝑥 = 𝐼𝐶𝑀(𝐿, 𝑦, 𝑐) = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑓𝐿(𝑧, 𝑐, 𝑦))
 (8)

Where fL is the tri-tuple function defined in Eq(1). Its maximum is

equal to [1], i.e. fL(r, x, y) = [1], only for the column number x sat-

isfying the constraint, L(r, x) = y. Further, row mapping identities

hold for arbitrary x and y within a Latin

Square L:{
𝐼𝑅𝑀(𝐿, 𝑟, 𝐹𝑅𝑀(𝐿, 𝑟, 𝑥)) = 𝑥

𝐹𝑅𝑀(𝐿, 𝑟, 𝐼𝑅𝑀(𝐿, 𝑟, 𝑦)) = 𝑦
 (9)

Similarly, it also has column mapping as follows:

{
𝐼𝐶𝑀(𝐿, 𝐹𝐶𝑀(𝐿, 𝑥, 𝑐), 𝑐) = 𝑥
𝐹𝐶𝑀(𝐿, 𝐼𝐶𝑀(𝐿, 𝑦, 𝑐), 𝑐) = 𝑦

 (10)

2.7. Latin square substitution

An S-Box in cryptography is a basic component performing byte

substitution. Each S-Box can be defined as a bijection, also known

as a one-to-one and onto mapping. In image encryption, an image

pixel is commonly represented as a byte, i.e. a sequence of bits. For

example, 8-bit gray scale image has 256 gray intensity scales with

each intensity scale represented in an 8-bit sequence.

Because of the existence of FRM/IRM and FCM/ICM bijections in

a Latin square, which is able to perform byte substitution in an im-

age cipher using bijections from rows and columns in a Latin

square? The substitution with respect to a row in a Latin square is

called Latin Square Row S-box

(LSRS): 𝐿𝑆𝑅𝑆 ∶ {
𝐶 = 𝐸𝑐𝑟𝑠

𝑟𝑜𝑤(𝐿, 𝑃)

𝑃 = 𝐷𝑐𝑟𝑠
𝑟𝑜𝑤(𝐿, 𝐶)

 (11)

In regard to pixel-level function of LSRS, each cipher text byte is

determined by the FRM function see Eq (7) using the keyed Latin

square L with function parameters given by plaintext bytes and ci-

pher text bytes as follows:

𝐸𝑐𝑟𝑠
𝑟𝑜𝑤: 𝐶(𝑟, 𝑐) = {

𝐹𝑅𝑀(𝐿, 𝐶(𝑟 − 1, 𝑐), 𝑃(𝑟, 𝑐)), 𝑖𝑓𝑟 ≠ 0

𝐹𝑅𝑀(𝐿, 0, 𝑃(𝑟, 𝑐)), 𝑖𝑓𝑟 = 0
 (12)

Clearly, plaintext bytes then can be perfectly restored from cipher

text bytes, if IRM is used instead of FRM as follows

𝐷𝑐𝑟𝑠
𝑟𝑜𝑤 ∶ 𝑃(𝑟, 𝑐) = {

𝐼𝑅𝑀(𝐿, 𝐶(𝑟 − 1, 𝑐), 𝐶(𝑟, 𝑐)), 𝑖𝑓𝑟 ≠ 0

𝐼𝑅𝑀(𝐿, 0, 𝐶(𝑟, 𝑐)), 𝑖𝑓𝑟 = 0
 (13)

Similarly, bijections from columns in a Latin square are used to per-

form byte substitutions. And this is called Latin Square ColumnS-

box (LSCS) i.e.

𝐿𝑆𝐶𝑆 ∶ {
𝐶 = 𝐸𝑐𝑟𝑠

𝑐𝑜𝑙(𝐿, 𝑃)

𝑃 = 𝐷𝑐𝑟𝑠
𝑐𝑜𝑙(𝐿, 𝐶)

 (14)

In addition, the corresponding LSCS encryption and decryption

process then can be defined as:

𝐸𝑐𝑟𝑠
𝑐𝑜𝑙 ∶ 𝐶(𝑟, 𝑐) = {

𝐹𝐶𝑀(𝐿, 𝑃(𝑟, 𝑐), 𝐶(𝑟, 𝑐 − 1)), 𝑖𝑓𝑐 ≠ 0

𝐹𝐶𝑀(𝐿, 𝑃(𝑟, 𝑐), 0), 𝑖𝑓 𝑐 = 0
 (15)

𝐷𝑐𝑟𝑠
𝑐𝑜𝑙 ∶ 𝑃(𝑟, 𝑐) = {

𝐼𝐶𝑀(𝐿, 𝐶(𝑟, 𝑐), 𝐶(𝑟, 𝑐 − 1)), 𝑖𝑓𝑐 ≠ 0

𝐼𝐶𝑀(𝐿, 𝐶(𝑟, 𝑐), 0), 𝑖𝑓𝑐 = 0
 (16)

Figure6 Shows encryption results of Latin Square Row S-box and

Latin Square Column S-box. As can be seen, the plaintext image

block P becomes unrecognizable after applying either LSRS or

LSCS. Histogram analysis also shows that the statistics of the pixel

intensity changes dramatically after substitution.Latin square

row/column substitution defined above has excellent diffusion

properties.

One pixel change in the plaintext P will diffuse to a column/row of

pixels after a round of LSRS or LSCS. This diffusion quickly

spreads to the entire cipher text image in several cipher rounds.

2.7. Latin square permutation

Unlike a S-Box performing byte substitution, a P-Box performs

byte shuffling or scrambling. Each P-Box can also be defined as a

bijection.

If both input x and output y are considered in FRM and IRM as

indices (see Eq. (7), then FRM defines a mapping { 0, 1, … , 255 }

{ 0, 1, … , 255 } and IRM defines the corresponding inverse map-

ping. Therefore, the Latin square row p-box (LSRP) is defined with

respect to rows in a Latin square L as follows,

𝐿𝑆𝑅𝑃 ∶ {
𝐶(𝑟, 𝑐𝑦 = 𝑃(𝑟, 𝐹𝑅𝑀(𝐿, 𝑟, 𝑐𝑥))

𝑃(𝑟, 𝑐𝑥) = 𝐶(𝑟, 𝐼𝑅𝑀(𝐿, 𝑟, 𝑐𝑦))
 (17)

Where cx and CY denotes the column indices before and after map-

ping. Consequently, for any pixel in P and its corresponding pixel

in C are in the same row r after LSRP; and only column indices

change before and after mapping with relationship cy = FRM(L, r,

cx) holds.

Similarly, a Latin Square Column P-box (LSCP) can be constructed

with respect to columns in a Latin square as

𝐿𝑆𝐶𝑃: {
𝐶(𝑟𝑦, 𝑐) = 𝑃(𝐹𝐶𝑀(𝐿, 𝑟𝑥, 𝑐), 𝑐)

𝑃(𝑟𝑥, 𝑐) = 𝐶(𝐼𝐶𝑀(𝐿, 𝑟𝑦, 𝑐), 𝑐)
 (18)

In general, Latin Square Permutation function can be written as

𝐿𝑆𝑃 ∶ {
𝐶 = 𝐸𝑐𝑟𝑝(𝐿, 𝑃)

𝑃 = 𝐷𝑐𝑟𝑝(𝐿, 𝐶)
 (19)

The implementation part will give permutation results of using

LSRP, LSCP and LSP. It is clear that cascading LSRP and LSCP in

LSP helps LSP to achieve a better pixel permutation performance

in the sense that, pixels in its cipher text image become more ran-

dom-like and makes the cipher text image content unintelligible.

178 International Journal of Engineering & Technology

3. System design

Fig. 3: Design Flow of Mat lab Application.

The Figure 3 describes the system design of matlab application.

User selects any image and gives an input to matlab encryption

function. Random Key is generated and a latin square is generated

which is dependent on the key generated. Whitening, substitution

and permutation steps are to be performed on the image and finally

the cipher text image is generated. Decryption can also be per-

formed on the cipher text image and plain text image can be ob-

tained back again

Table 1: Algorithm for Encrypting Plaintext Image

Although Latin squares can be generated via a variety of means, for

the sake of simplicity Algorithm 1 described below is used for Latin

square generation in the paper.

Table 2: Algorithm Latin Square Generator

In Algorithm 1, both q1 and q2 are length-N sequences from a

pseudo-random number generator (PRNG), e.g. Linear Congru-

ential Generators (LCG) [3][2]; Sort Map (Q) is a function which

finds the index mapping between a sequence Q and its sorted ver-

sion Q in the ascending order; and Row Shift t(Q; v) ring shifts the

sequence Q with v elements towards left.

For example, if a 4x4 Latin square L is to be generated with

𝑞1 = [. 1, .6, .9, .7] 𝑎𝑛𝑑 𝑞2 = [.3, .9, .4, .2]

Then function Sort Map (.) first calculates the sorted version of the

input sequence and obtain

𝑞1
∗ = 𝑆𝑜𝑟𝑡𝑀𝑎𝑝(𝑞1) = [0, 1, 3, 2]

It then compares q1 with𝒒𝟏
∗ and q2 with 𝒒𝟐

∗ and obtains the element

mapping sequences as

𝑄𝑠𝑒𝑒𝑑 = 𝑆𝑜𝑟𝑡𝑀𝑎𝑝(𝑞1) = [0, 1, 3, 2]

And

𝑄𝑠ℎ𝑖𝑓𝑡 = 𝑆𝑜𝑟𝑡𝑀𝑎𝑝(𝑞2) = [3, 0, 2, 1]

where the permutation sequencesQseed andQshift indicate fori{0, 1,

2,3}

𝑞1
∗(𝑄𝑠𝑒𝑒𝑑(𝑖)) = 𝑄𝑖(𝑖) 𝑎𝑛𝑑 𝑞2

∗ (𝑄𝑠ℎ𝑖𝑓𝑡(𝑖)) = 𝑞2(𝑖)

Finally, function Row Shift (Q, v) left shiftsQseed with the amount

v =Qshift(r) indicated by the rth element in Qshift, and assign this row

to be the rth row in L. Therefore the 4x4 Latin square L is:

L = [

2 0 1 3
0 1 3 2
3 2 0 1
1 3 2 0

]

Table 3: Algorithm for Decrypting Plaintext Image

Algorithm Latin square image cipher- encryp-

tion C=E (P, K)

Require: K is a 256-bit key

Require: P is a 256x256 8-bit gray scale image

block

(q1, q2) = KDSG (K, 8)

For i = 0: 1: 7 do

If i ==0 then

CLSP=LSBNoisEmbedding (P) 4

End if

Li = LSG (𝑄1
𝑖 ,𝑄2)

Di= Li (0, 0)

CLSW = Ecrw (Li, CLSP, Dn)

If mod (i, 2) ≠0 then

CLSS = 𝐸𝑐𝑟𝑠
𝑐𝑜𝑙(Li, CLSW)

Else

CLSS = 𝐸𝑐𝑟𝑠
𝑟𝑜𝑤(Li, CLSW)

End if

CLSP = Ecrp (Li, CLSS)

End for

L8 = LSG (𝑞1
8,𝑞2

8)

D8= L8 (0, 0)

C= Ecrw (L8, CLSP, Dn)

Require: C is a 256x256 8-bit gray scale image

block

A Latin Square Generator L=LSG (q1, q2)

Require: q1 and q2 are two length-N sequences

Ensure: L is a Latin square of order N

Qseed =SortMap (q1)

Qshift =SortMap (q2)

For i = 0: 1: N− 1 do

L (i, :) = RowShift (Qseed, Qshift (i))

End for

Algorithm Latin square image cipher- decryption

P=D(C, K)

Require: K is a 256-bit key

Require: C is a 256x256 8-bit grayscale image block

Require: P is a 256x256 8-bit grayscale image block

(q1, q2) = KDSG (K, 8)

For n = 7: -1: 0 do

If n, ==seven then

L8 = LSG (𝑞1
8,𝑞2

8)

D8 = L8 (0, 0)

PLSW= Dcrw(L8, C, D8)

End if

Ln = LSG (𝑞1
𝑛,𝑞2

𝑛)

Dn= Ln (0, 0)

PLSP = Decp (Ln, PLSW)

If mod (n, 2) ≠ 0 then

PLSS= 𝐷𝑐𝑟𝑠
𝑐𝑜𝑙(Ln,PLSP)

Else

PLSS = 𝐷𝑐𝑟𝑠
𝑟𝑜𝑤(Ln, PLSP)

End if

PLSW = Dcrw (Ln, PLSS, Dn)

End for

P = PLSW

International Journal of Engineering & Technology 179

4. Results

Image Encryption results using the proposed Latin Square

Image cipher are shown below.

Fig. 4: Input Image.

Fig. 5: Encryption and Decryption.

The figure 5 shows Encryption and decryption of input image with

histograms.

Fig. 6: Probabilistic Encryption and Decryption.

Figure 6 shows the Probabilistic encryption and decryptionof cipher

text image

Fig. 7: Robustness to Noise in Cipher.

A good cipher should tolerate certain amount of noise; figure 7

shows the robustness to noise of a cipher.

Fig. 8: Sensitivity to Key Changes.

A secured cipher will give high key sensitiveness in both encryption

and decryption. Figure [7] and [8] shows simulation results for en-

cryption and decryption.

Fig. 9: Sensitivity to Plaintext Changes.

Figure 9 shows Plain text image of diffusion property of Latin

square image cipher, the plain text image differs p and p2 and c-c2

differs in cipher text image.

Fig. 10: Result Images.

180 International Journal of Engineering & Technology

The above Figure 10 shows the results of decryption robustness of

Latin Square Image cipher for various noise ratio in cipher text im-

ages.

The above fig.11 shows the performance of the system i.e. here Tic

and Toc functions are placed before and after the encryption func-

tion call respectively. These indicate the time required for the exe-

cution of encryption function.

Fig. 11: Performance Verification.

5. Conclusion and future scope

LSIC integrates probabilistic encryption in a pre-processing stage

and thus it allows encryption of a plain text image into different

cipher text images when the same encryption key is used. LSIC’s

decryption stage is robust against a certain level of noise and thus

is suitable to transmit cipher data over a corrupted channel.

In the proposed system the uploaded images as well as the resultant

images are stored in a specific directory but not in a database. So,

as a future work the proposed system can be integrated with data-

base in order to store them securely and permanently without any

loss of data as databases are more robust when compared to file

systems.

References

[1] Yue Wu, Yicong Zhou, Joseph P. Noonan, SosAgaian, and C. L.

Philip Chen, “ A Novel Latin Square Image Cipher”, a draft submit-
ted to IEEE transactions on information forensics and security.

[2] V. Patidar, N. K. Pareek, G. Purohit, and K. K. Sud, “A robust and

secure chaotic standard map based pseudorandom permutation-sub-

stitution scheme for image encryption,” Optics Communications, vol.

284, no. 19, pp. 4331–4339, 2011. [Online].Available: www.sco-

pus.com https://doi.org/10.1016/j.optcom.2011.05.028.
[3] G.K.Wallace,“Thejpeg still picture compression standard,” Commu-

nications of the ACM, vol. 34, no. 4, pp.30–

44,Apr.1991.[Online].Availa-
ble:http://doi.acm.org/10.1145/103085.103089

[4] Yue Wu, Joseph P. Noonan, SosAgaian, “A Wheel-Switch Chaotic

System for Image Encryption”, Proceedings of 2011 International
Conference on System Science and Engineering, Macau, China -

June 2011 https://doi.org/10.1109/ICSSE.2011.5961867.

[5] Yue Wu, Joseph P. Noonan, SosAgaian, “Image Encryption using
the Rectangular Sudoku Cipher”, Proceedings of 2011 International

Conference on System Science and Engineering, Macau, China -

June 2011 https://doi.org/10.1109/ICSSE.2011.5961994.
[6] W. Press, Numerical recipes: the art of scientific computing. Cam-

bridge University Press, 2007. [Online]

[7] R.Gonz´alez and R. Woods, Digital image processing (Pear-
son/PrenticeHall2008). [Online].

http://www.scopus.com/
http://www.scopus.com/
https://doi.org/10.1016/j.optcom.2011.05.028
http://doi.acm.org/10.1145/103085.103089
https://doi.org/10.1109/ICSSE.2011.5961867
https://doi.org/10.1109/ICSSE.2011.5961994

