

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.6) (2018) 48-50

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Design and Synthesis of Restoring Technique Based Dual Mode

Floating Point Divider for Fast Computing Applications

Shaikh Salman Faraz
1
, Yogesh Suryawanshi

2
, Sandeep Kakde

3
, Ankita Tijare

4
, Rajesh Thakare

5

1Department Of Electronics Engineering, Y C College Of Engineering, Nagpur, India.
2Department Of Electronics Engineering, Y C College Of Engineering, Nagpur, India.

E-Mail:Yogesh_Surya8@Rediffmail.Com
3Department Of Electronics Engineering, Y C College Of Engineering, Nagpur, India.

E-Mail:Sandip.Kakde@Gmail.Com
4Department Of Electronics Engineering, Y C College Of Engineering, Nagpur, India.

E-Mail:Ankita.Tijare@Gmail.Com
5Department Of Electronics Engineering, Y C College Of Engineering, Nagpur, India.

E-Mail:Rdt2909@Gmail.Com

*Corresponding Author E-Mail:Salmanfaraz3@Gmail.Com

Abstract

Floating point division plays a vital role in quick processing applications. A division is one amongst the complicated modules needed in

processors. Area, delay and power consumption are the main factors that play a significant role once planning a floating point dual-

precision divider. Compared to different floating-point arithmetic, the design of division is way a lot of sophisticated and needs longer

time. Floating point division is that the main arithmetic unit that is employed within the design of the many processors in the field of

DSP, math processors and plenty of different applications. This paper relies on the dual-mode practicality of floating point division. The

proposed designed architecture supports the single precision (32-bit) as well as double precision (64-bit) IEEE 754 floating point format.

It uses restoring division technique for the fraction part division. This design consists of varied sub-modules like shifters, exceptional

handlers, Normalizers and many more.

Keywords: Floating point division, shifter, exceptional Handler, normalizer, LUT, FPGA.

1. Introduction

Floating point arithmetic architectures underwent vital

improvement by research work in the recent many decades.

Floating point arithmetic is an elementary module for several

usual scientific and engineering domain applications. The floating

point arithmetic unit is designed using conventional illustration as

prescribed by IEEE 754 format. Floating point computation is

commonly found in systems which demand mathematical

operations on a high range of numbers. A floating point means

that there is variable decimal point position due to the exponent

factor. However, floating point representations are not only less

precise but also have less operational speed than fixed-point

representations. Floating point divider is employed in ALU units

of various processors. It is crucial to implement high-performance

floating-point complex division usage in an application with a

high-speed real-time requirement. A divider is one amongst the

important hardware sub-modules in most of the processes like

DSP application based embedded processors, encoding and

decoding techniques in cryptography and in numerous logical

computations.

This paper is well-arranged as follows. Section I is the short

overview of floating point arithmetic. Section II highlights the

previous work on Floating point division architectures and their

issues. Section III focuses on the mathematical analysis of the

restoring technique and the implementation of the division

algorithm using the specified flowchart. Section IV shows the

results of simulation on the XILINX ISE Design Suite 13.1.

Section V is the conclusion about the specifications of area, power

and latency. Section VI provides references to the proposed work.

2. Previous Work

In paper [1] author planned a design for dual mode floating point

division. This design is intended for dual-mode practicality, which

either work out a double precision division or a pair of single

precision division in parallel depending on the mode of operation.

The series expansion multiplicative technique is employed for

fraction division operation. A Modified Radix-4 Booth Multiplier

having a dual-mode feature is employed for the dual-mode

fraction part division. For the purpose of high-performance

demand of division arithmetic computation, the main purpose of

this research paper is for dual-precision (single or double

precision) dual-mode architecture of floating point division. In

paper [2] author used the Goldschmidt computational division

technique for designing a single precision floating point division.

A 32-bit floating point multiplier and subtractor are used for

floating point division using the specified method. The most

feature of this projected work is that the design for performing

fraction part division by 32-bit floating point multiplier and is

implemented by employing a 24-bit Vedic multiplication (Urdhva-

Triyakbhyam-Sutra) technique. This multiplier has the higher

speed of operation which ends up in an increase in the throughput

International Journal of Engineering & Technology 49

results of the floating point divider. The core aim is to create the

planned floating point divider using Verilog HDL on FPGA. In

this division technique, the dividend and divisor are computed

employing a factor by which the divisor will approach one, and

the dividend will be the quotient of the division. This Vedic

multiplication principle is employed for calculating fraction part

division. In paper [3] author designed single precision floating

point divider using Vedic division logic. In this paper, the various

algorithms are compared including Restoring algorithm, Non-

restoring technique, SRT division algorithm, Nikhlam Sutra Vedic

method.

3. Design Methodology

The proposed work uses the bit restoring method for the mantissa

division. The inputs are divided depending on the mode input bit.

The proposed architecture is capable of doing single precision

floating point division as well as the double precision floating

division. So, the bit restoring algorithm use two registers, one

register is used to have a dividend which is input and other

register is zero at the initial stage of the process. At the start, the

count value is kept at zero. Final count value depends on the

length of the mantissa division. Following example is of 4 bits

division having divided 7 (0111) and divisor 3(0011). Let divided

be in the Q register and divisor be in the Y register and register X

kept as zero. As shown in the following flowchart, from the right

side the four bits are X register and from the left side, the four bits

are Q register. So, both X and Q register are of 4 bits length.

Therefore, the mantissa division will be of 4 bits length. C register

will be the counter. The steps of bit restoring division algorithm

are as follows:

1. Store the dividend and divisor in registers Q and Y

respectively.

2. Initialize X register as zero.

3. Shift the MSB of Q register to LSB of X register and set

the LSB of Q register to logic „0‟.

4. Perform X = X - Y and check MSB of X register.

5. If MSB of X register is „1‟ then restore X register means

X = X + Y and repeat step 3.

6. If MSB of X register is „0‟ then set the LSB of Q

register to logic „1‟ and repeat step 3.

7. At the end of n iterations (n = length of dividend or

divisor), the contents of Q register will be quotient.

8. Note that the divisor and dividend must have equal

length.

Register X is a remainder and register Q is quotient.

Fig. 1: Flow chart of an Algorithm

Single Precision (Parallel) Format of inputs and Output:
Sign
(1bit)

Exponent
(8bit)

Mantissa
(23bit)

Sign
(1bit)

Exponent
(8bit)

Mantissa
(23bit)

Double Precision Format of inputs and Output:

Sign(1bit) Exponent(11bit) Mantissa(52bit)

The architecture illustration of floating point divider is shown in

fig. 2. The data extraction unit separates out the sign bit, exponent

bits and mantissa bits from the inputs. The data extraction also

determines the mode of division depending on the input mode bit.

If the mode is logic „0‟ then the single precision division will

perform. If the mode is logic „1‟ then division performed will be

in double precision mode. Exception handling is the process to

check whether input(s) are zero, infinity or invalid. Subnormal

handler is used to concatenate logic 0 or logic 1 to the mantissa of

both the inputs depending on the subnormal condition. The

leading one detector detects the leading one of dividend as well as

the divisor. It also shifts both to the right in order to normalize

divisor and dividend. Then, the normalized dividend and divisor

will be applied to mantissa division unit to perform division. The

normalized result of mantissa division will be mantissa of the final

output. Exponent normalizer is used to adding the bias value to

exponent bits according to the mode. The EX-OR logic gate is

used for sign computation of the final output.

Table I: Truth Table of Exceptional Handling Cases

IN1 (Numerator) IN2 (Denominator) Output

NaN NaN NaN

Infinity Infinity Infinity

Infinity - Infinity

- Zero NaN

Zero - Zero

Fig. 2: Block Diagram of Proposed Work

4. Results and discussion

The architecture implementation of floating point divider is

carried out using Verilog HDL and synthesized using XILINX

ISE Design Suite 13.1.The synthesis tool used is XST and project

is simulator by ISIM simulator tool. The FPGA device utilization

is shown in the Table I. The targeted device for the project is

XILINX Virtex-V family is XC5VLX50 of package FF324. Table

I shows the FPGA device utilization summary.

Table II: FPGA Summary

Floating Point Division Architecture
FPGA Family: Xilinx Virtex-V

Device: XC5VLX50

Parameters Used Available Utilization

No. of Slice Registers 1852 28800 6%

No. of LUTs 21930 28800 76%

FFs Pairs 1574 22208 7%

Bonded IOs 197 220 89%

BUFG/BUFGCTRLs 1 32 3%

Latency Time and Power Simulations

Delay 246.313 ns

Power 0.563W

In1[64:0]
 In1[64:0]

In2[64:0]

Data Extraction

Exceptional Handler Subnormal Handler

Mode Bit

Exponent Normalizer Leading one Detector

EX-OR Logic

Gate

Mantissa Division

Mantissa Normalizer

Final Output

50 International Journal of Engineering & Technology

RTL Schematics of 64-Bit Floating Point Division is as shown in

figure 3.

Fig. 3: RTL View of 64-bit Floating point Division Block

1] Single Precision Mode:

Fig. 4: Simulation Waveform of Single Precision Mode (two parallel
divisions)

2] Double Precision Mode:

Fig.5: Simulation Waveform of Double Precision Mode (only one
division)

For the single precision division, the mode is 0. The applied inputs

DIVIDEND and DIVISOR are

64'b01000001001000000000000000000000010000011010000000

00000000000000 (left side 32 bits are 10 in decimal and right side

32 bits are 20 in decimal) and

64'b01000000000000000000000000000000010000010010000000

00000000000000 (left side 32 bits are 2 in decimal and right side

32 bits are 10 in decimal) respectively. After the simulation, the

OUTPUT generated is 64‟b010000000001

0100

(left side 32 bits are 5 in decimal and right side 32 bits are 2 in

decimal). Similarly, if the mode is 1 then double precision will

perform. DIVIDEND and DIVISOR are

64'b01000000010101101101011000000000000000000000000000

00000000000000 (91.34375 in decimal) and

64'b00111111110000101000000000000000000000000000000000

00000000000000 (0.14453125 in decimal) respectively. Simulated

result OUTPUT is

64'b01000000100000111100000000000000000000000000000000

00000000000000 (632 in decimal).

5. Conclusion

Any processor or electronic system or ALU, which requires

fraction computational capability, implements floating point

representation. The division is one of the most vital functions of the

arithmetic unit. The architecture is planned in such that it enhances

the operation of the Arithmetic Logic Unit by parallel operation.

The proposed design uses bit restoring technique for mantissa

division. The project work supports single as well as double

precision which increases arithmetic functionality. The maximum

time required for the output after getting the clock signal is 246.313

ns. The power consumed by the proposed floating point divider is

0.563 W.

References

[1] Jaiswal MK & Hayden K, “Area-Efficient Architecture for Dual-

Mode Double Precision Floating Point Division”, IEEE transaction

on Circuits and Systems–i: Regular Papers, (2017).
[2] Singh N, Sasamal TN & Anacan RM, “Design and Synthesis of

Goldschmidt Algorithm based Floating Point Divider on FPGA,”

IEEE International Conference on Communication and Signal
Processing, (2016).

[3] Ghatte N, Patil S & Bhoir D, “Single Precision Floating Point

Division”, Fifth IRF international conference, (2014).
[4] Huang S, Yu L, Han FJ & Luo Y, “A Pipelined Architecture for

User-defined Floating Point Complex Division on FPGA”, IEEE

30th Canadian Conference on Electrical and Computer
Engineering (CCECE), (2017).

[5] Oberman SF & Flynn M, “Division algorithms and implementation”,

IEEE Trans. Comput., (1997).
[6] Jeong JC, Park WC, Jeong W, Han TD & Lee MK, “A cost-effective

pipelined divider with a small lookup table,” IEEE Trans. Comput.,

(2004).
[7] Jaiswal MK & Cheung RCC, “High-performance reconfigurable

architecture for double precision floating point division”, Proc. 8th

Int. Symp. Appl. Reconfigurable Comput. (ARC), Hong Kong,
China, (2012), pp. 302–313.

