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Abstract 
 

The bearing measurement in addition to the heading measurements increases the accuracy of the state estimate in bearing only tracking 

(BOT). Earlier, in [1] heading measurements are derived using set of three bearing measurements, mathematically known as centered 

difference method. In this paper we present the new approach using Lagrange three point difference method for deriving the heading 

measurements from set of bearing measurements. The performance analyses of the proposed approach is compared with the existing 

centered difference method using Root mean square error (RMSE), Root sum square error (RSSE) and maximum absolute error (MAE). 

The simulation results indicate that the Lagrange three point difference method performs comparatively better. 
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1. Introduction 

Target tracking using bearing only measurements is known as 

bearing only tracking (BOT) [4]. It is the widely used technique in 

many important applications like airborne radar, underwater sonar, 

military applications and air traffic control [12-15]. Generally 

used nonlinear filter for BOT is Extended Kalman filter (EKF), 

but this leads to poor estimates with improper initialization [10]. 

To improve the accuracy of target state estimate, many researchers 

tried to include target heading measurements through BOT [1, 2]. 

Lei et al in [6] have discussed the heading angle parameterized 

using Markov process to model the acceleration of 2D maneuver-

ing target at each discrete time steps. Similarly in [7] Mallick et al. 

have explained heading parameterized multiple models to estimate 

the heading angle of the target. In both [6, 7], authors have con-

sidered range, range rate and azimuth angle as measurements. Xie 

et al. in [5] have discussed the multiple observers to estimate the 

heading angle of ship as a target in a slow varying sea state. In [5], 

the bank of nonlinear sub-observers used different band of fre-

quencies to estimate the heading angle using position and angle 

measurements. All these techniques use the multiple models to 

obtain the accurate state estimate leads to time consuming process.  

To overcome this, Yang et al [2] proposed the methodology which 

is mathematically known as centered difference (CD) method to 

estimate the heading measurements from bearing measurements. It 

is the second order accurate difference method[16]. Initially, three 

bearing measurements were chosen to obtain the target heading 

with respect to the particular position. Using these bearing and 

heading measurements target states are estimated in Sonar. Simi-

larly, Panakkal et.al [1] used the same methodology as in [2] and 

estimated the target state in radar application. Since heading 

measurements obtained by CD at a time uses only two bearings 

the overall error will be more [14,16]. Our work focuses on ob-

taining the heading measurements using Lagrange three point 

difference method from the set of consecutive three bearing meas-

urements. It is also a second order difference formula, but it uses 

all the three bearing measurement at a time to obtain the target 

heading. Hence the heading information obtained will have a 

comparatively less error. Using measured bearing and estimated 

heading, target state is estimated through EKF and the results are 

compared for with and without heading measurements.  

The outline of the paper is as follows. Section II describes deriva-

tion of heading calculation using Lagrange three point difference 

method. Section III describes the EKF with and without heading 

measurements using BOT. In section IV the comparative analysis 

of proposed technique with existing techniques [1-2] are given 

through results and discussion. Finally, section V describes the 

conclusion and future work. 

2. Heading angle derivation using bearing 

measurements 

The heading of the target was derived mathematically from set of 

three bearing measurements (bk−2, bk−1, bk) as shown in Fig. 1. It 

is assumed that, target moves with constant velocity and heading 

remain constant. It is also assumed that bearing measurements are 

observed at equal intervals (i.e) the duration bk−2 to bk−1  and 

bk−1 to bk are assumed to be c [1-2].  
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Fig. 1: Graphical Representation of Target Heading and Bearing Meas-

urements. 

 

Fig.1 shows target heading angle hk and three bearing measure-

ments. In all three bearing measurements it is assumed that the 

heading angle remains constant. In [2], CD formula is used to 

derive the heading angle using consecutive three bearing meas-

urements. Authors in this paper attempt to use Lagrange three 

point difference method to derive the target heading angle. 

In general for BOT, the state vector  [x0 y0 ẋ0 ẏ0]′ are de-

rived using only bearing measurements [10-12]. Since bearing is 

the noisy measurement, it leads to error in target state. Hence 

along with bearing, derived heading measurement from bearing 

measurement are used to find the optimized target state as shown 

in Eq.(1).  

 
x0 =  r0sinb0; y0 =  r0cosb0; ẋ0 =  s0 sin h0 ;  ẏ0 =  s0 cos h0              (1) 

 

where b0 and h0 are the initial bearing and heading measurement. 

Here, an attempt is made to develop a mathematical model to find 

hk using Lagrange difference method. 

2.1. Target heading angle derivation using lagrange dif-

ference method 

Let f(x0), f(x1), f(x2) are Lagrange Interpolating polynomial equa-

tions for the given three points (x0, x1 , x2) which are considered 

with an equal interval. The accuracy of f(x0) can be improved by 

considering the derivative of its polynomial function. Usually 

differentiation can be realized as a difference form numerically. 

Thus Lagrange three point difference method to improve the accu-

racy of Lagrange three point polynomial equation f(x0) is given by 

[14].  

 

f ′(x0) =  
1

2h
[−3f(x0) + 4f(x1) − f(x2)]                                     (2) 

 

Since heading is the derivative of the bearing we would like to 

bring out the relationship between hk and bk using Eq. (2).  

From Fig.1, let us consider ak−2 = f(bk−2); ak−1 = f(bk−1); ak = 

f(bk); then according to Eq. (2) 

 

f′(bk−2) = tan (90-hk) = cot(hk) =  
1

2c
[−3ak−2 + 4ak−1 − ak] (3) 

 

It is assumed that hk−2 =  hk−1 =  hk 

All ak−2, ak−1, ak are derived geometrically from Fig.1 as follows 

Consider the ∆le OCD 

 

tan(90 − bk) =  cot(bk) =
y2

x2
= 

ak

3c
  

 

Or 

 

ak = 3c × cot(bk)                                                                         (4) 

 

Similarly from ∆le OBE 

tan(90 − bk−1) =  cot(bk−1) =
y1

x1
=

ak−1

2c
  

 

Or 

 

ak−1 =  2c × cot(bk−1)                                                               (5) 

 

From ∆le OAF 

 

tan(90 − bk−2) = cot (bk−2) =
y0

x0
=

ak−2

c
   

 

Or 

 

ak−2 =  c × cot (bk−2)                                                                (6) 

 

Substitute Eq. (4), (5) and (6) in Eq. (3), we obtain  

 

cot(hk) =  
1

2c
[−3c cot(bk−2) + 4(2c) cot(bk−1) − (3c)cot (bk)]          (7) 

 

After algebraic simplification, 

 

cot(hk) = [−
3

2
cot(bk−2) + 4 cot(bk−1) −

3

2
cot(bk)]             (8) 

 

Eq. (8) can be written as, 

 

 hk  =  cot−1[−
3

2
cot(bk−2) + 4 cot(bk−1) −

3

2
cot(bk)]            (9) 

 

represents the target heading  hk  obtained using Lagrange three 

point difference method using three bearing measurements.  

2.2. Target heading angle using centered difference 

method 

The heading  hk obtained using centered difference method from 

Fig.1, is given as 

 

cot(hk) =  
ak−ak−2

2c
                                                                      (10) 

 

cot(hk) =  
(3c) ×cot(bk)−c×cot (bk−2)

2c
                                            (11) 

 

 hk  =  cot−1[
3

2
cot(bk) −

1

2
cot(bk−2)]                                     (12) 

 

While comparing Eq. (9) and Eq. (12), Eq. (9) involves only two 

bearing measurements bk and bk−2. Whereas Eq. (12) includes all 

the three points bk−2, bk−1and bk and hence the information ob-

tained about  hk will be accurate. 

3. Target state estimation using computed 

heading 

This section explains the estimation of target position using EKF 

with and without heading measurements along with the bearing 

measurements. The nonlinear filter EKF is used to track the posi-

tion and velocity of the target [11]. The target state is initialized 

using Eq. (1) through computed heading for the known initial 

target range [1]. The computed heading obtained by CD and La-

grange difference method using Eq. (9) and Eq. (12) are used sep-

arately in EKF to obtain the better state estimate. 

In general EKF state prediction and its covariance is given as [13], 

[8], 

 

X̂ k|k−1 = FX̂k−1|k−1                                                                   (13) 

 

Pk|k−1 = FPk−1|k−1F′ + Q                                                         (14) 

 

Where Q is the process noise covariance and F is the transition 

matrix and is given as [13], 
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F =  [

1 0
0 1

𝑇 0
0 𝑇

0 0
0 0

1 0
0 1

]                                                                   (15) 

 

The nonlinear predicted measurement is given by [3], 

 

�̂�𝑘|𝑘−1 = ℎ(�̂�𝑘|𝑘−1)           (16) 

The Jacobian (𝐻) of the nonlinear measurement function ℎ with-

out heading is given as [13], 

                                  ℎ(�̂�𝑘|𝑘−1) =  
𝜕

𝜕𝑋
[�̂�𝑘|𝑘−1] =

𝜕

𝜕𝑋
[𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑥𝑘|𝑘−1

�̂�𝑘|𝑘−1
)]                     (17) 

 

with heading is defined as [1], 

 

ℎ(�̂�𝑘|𝑘−1) =  
𝜕

𝜕𝑋
[�̂�𝑘|𝑘−1] =

𝜕

𝜕𝑋
[

𝑎𝑟𝑐𝑡𝑎𝑛 (
�̇�𝑘|𝑘−1

�̂�𝑘|𝑘−1
)

𝑎𝑟𝑐𝑡𝑎𝑛 (
�̇̂�𝑘|𝑘−1

�̇̂̇�𝑘|𝑘−1

)
]  

 

The innovation and its covariance is given as [12], 

 

𝜗𝑘 =  𝑍𝑘 − �̂�𝑘|𝑘−1                                                                      (18) 

 

𝑆𝑘 =  𝐻𝑃𝑘|𝑘−1𝐻′ + 𝑅                                                                 (19) 

 

Where R is the measurement noise covariance and for without 

heading it is given as, 

 

𝑅 =  𝜎𝜃
2  

 

With heading it is defined as, 

 

𝑅 =  [
𝜎𝜃

2 0

0 𝜎ℎ
2

]  

 

Where 𝜎𝜃
2 and 𝜎ℎ

2 are the variances for bearing and heading meas-

urement. 

The filter gain is defined as [3], 

 

𝑊𝑘 =  𝑃𝑘|𝑘−1𝐻′𝑆𝑘
−1                                                                    (20) 

 

The updated state and its covariance is given as [13], 

 

�̂�𝑘|𝑘 =  �̂�𝑘|𝑘−1 + 𝑊𝑘𝜗𝑘                                                              (21) 

 

𝑃𝑘|𝑘 =  𝑃𝑘|𝑘−1 − 𝑊𝑘𝑆𝑘𝑊𝑘′                                                        (22) 

4. Results and discussion 

This section validates the performance of the target state estima-

tion with heading measurements. Also analyses the performance 

of the proposed Lagrange three point difference method with CD 

method. The results obtained by calculating the heading measure-

ment using CD and Lagrange difference method are compared to 

find the best estimate of target state. 

The MATLAB simulation is made by using following assumption. 

Let the target moves with the constant velocity of 20 (m/s). The 

coherent integrate time pertaining to a single position measure-

ment is assumed to be T = 1sec. The bearing angle of target was 

assumed to be 275°. The bearing and heading measurement noise 

variance was assumed to be 1° and 0.5°. The initial range was 

assumed to be 5km with the variance of 100m. Considering three 

bearing measurements at a time to calculate the single heading. 

The total number of heading measurements estimated is 200 from 

the set of 203 bearing measurements and the graphs are plotted for 

200 bearing and heading measurements. Simulations are repeated 

for 100 Monte Carlo runs to compare the performance analyses. 

The performances are analyzed using root mean square error 

(RMSE), root sum square error (RSSE), maximum absolute error 

(MAE). 

The RMS error is given by [9], [13], 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ ‖𝑋𝑘

𝑖 − �̂�𝑘|𝑘
𝑖 ‖

2𝑁
𝑖=1                                                (23) 

 

Where 𝑋𝑘
𝑖  and �̂�𝑘|𝑘

𝑖  are the true target state and estimated target 

state at 𝑘𝑡ℎ time instant in 𝑖𝑡ℎ Monte Carlo run. 

 

(A) 

 
(B) 

 
Fig. 2: Root Mean Square Position and Velocity Error. 

 

The RMS position and velocity error for the simulation results 

involving with and without heading measurement is shown in Fig. 

2 (a) and (b). The results shows error got minimized with heading 

measurement. Further error got reduced using our proposed meth-

od both in position and velocity errors.  

The second parameter which is used to analyze the performance is 

RSSE and is defined as [8-9], 

 

𝑅𝑆𝑆𝐸 =  √‖𝑋𝑘
𝑖 − �̂�𝑘|𝑘

𝑖 ‖                                                             (24) 

 

Where 𝑋𝑘
𝑖  and �̂�𝑘|𝑘

𝑖  are the true and estimated states as defined in 

Eq. (23). 

Fig. 3(a) and 3(b) indicates the root sum square position and ve-

locity error. From the plots, estimation process without heading 

shows larger error compared with the estimation process using 

heading measurements. From Fig. 3(a), heading calculation using 
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Lagrange difference method shows less error compared with head-

ing using CD. From Fig. 3(b), the heading measurement using 

Lagrange and CD shows almost similar error with some slight 

difference in error. 

 
(A) 

 
 

(B) 

 
Fig. 3: Root Sum Square Position and Velocity Error. 

 

The other performance measure is the mean absolute error (MAE) 

and is given as [8], 

 

𝑀𝐴𝐸 =  
1

𝑁
∑ ‖𝑋𝑘

𝑖 − �̂�𝑘|𝑘
𝑖 ‖𝑁

𝑖=1                                                       (25) 

 

The mean values of the position and velocity error for MAE are 

given in Table 1. It is observed that, heading using Lagrange three 

point difference method has less error compared with heading 

using CD. The MAE error for without heading measurements are 

higher compared to the other two methods. 

 
Table 1: Maximum Absolute Position and Velocity Error 

Methods 
Position error 
[𝑥 𝑦] 

Velocity error 
[�̇� �̇�] 

Without heading  [2.3799 2.0616]  [0.2188 0.1238] 
Heading using CD  [1.9410 1.8513]  [0.1825 0.1367] 

Heading using Lagrange 

method 
 [0.9608 1.0369]  [0.1191 0.1029] 

5. Conclusion 

This paper once again proved that with heading measurements 

BOT gives better state estimation in comparison with bearing only 

measurements. We also found that our proposed Lagrange three 

point difference method gives better estimate compared to the 

existing centered difference method to estimate the heading meas-

urement. Here we have used only three point difference method. 

This can also be extended to multi point Lagrange difference 

method to find the tradeoff between performance and computa-

tional time. Usually tedious process like Taylor series method is 

used to approximate the nonlinear measurements. In the place of 

Taylor series approximation, simple Lagrange difference method 

can also be used. 
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