

Copyright © 2018 Gourav Shrivastava et. al. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3) (2018) 1854-1857

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET
doi: 10.14419/ijet.v7i3.14017

Research paper

Load balancing strategies in software defined networks

Gourav Shrivastava 1 *, Praveen Kaushik 1, R. K. Pateriya 1

1 Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India

*Corresponding author E-mail: gashr83@gmail.com

Abstract

In the past few years, network requirements have been changing frequently as the amount of data traffic increasing exponentially so it is

difficult to utilize the full capacity of network resources. Software Defined Networking (SDN) is emerging as a new networking technol-

ogy which decouples the control plane from the data plane in the network devices. Separation of control and data plane allows a network

administrator a better control over network management and also enables new development through network programmability. Presently

Open-Flow is the most popular SDN protocol which provides communication between network devices and controller. In this paper, the

Round Robin algorithm is compared with the Dynamic load balancing algorithm using the OpenFlow protocol in SDN under varying

load conditions of TCP and UDP traffic. Experimental analysis shows that the dynamic load balancing strategy works better than the

Round Robin load balancing.

Keywords: Load Balancing; Open Flow; Software-Defined Networking Semicolon.

1. Introduction

In Conventional network architecture, the network devices are

vertically integrated means the hardware and software is manufac-

turer specific which can’t be customized [1] new software or poli-

cies may not be installed because of incompatible hardware, or the

currently available software couldn’t leverage all the hardware

capabilities. Also, there is no arrangement of finding the global

view of the network. Today’s network devices communicate with

each other and are not able to select a path from a global view.

These issues are some of the challenges that have motivated the

researchers to move forward with some new ideas in networking.

Software Defined Networking is a consequence of such necessities.

SDN is an example of programmable networks. The basic idea

behind SDN is the decoupling of the data plane from the control

plane. Control Plane decides what is to be done and tell the data

plane to implement the decision. Control plane has the ability to

control and forwarding behavior like computing routes, tracking

topology changes, install forwarding rules etc. On the other hand,

data plane only forwards the traffic based on rules as dictated by

control plane logic. The centralized control plane called the con-

troller will control data planes and can be implemented completely

in software. This architecture provides a global view of a network

the controller is able to see the status of all routes and switches for

quickly deciding the best route.

The rest of the paper is organized as follows. Section II gives an

overview of the architecture of SDN and OpenFlow switch. Sec-

tion III presents some related work done in this area. Section IV

describes the load balancing strategies. Section V explains the

evaluation setup and provides the results. Finally, section VI con-

cludes the paper.

2. Architecture of SDN

ONF (Open Networking Foundation) [2] suggested a reference

model for SDN, as illustrated in Fig 1. The SDN reference model

has three layers an infrastructure layer, a control layer, and an

application layer. The infrastructure layer is the lower level layer,

which consists of networking devices (e.g., switches, routers etc.)

in the data plane. These networking devices are responsible for

collecting network status, storing them temporarily and sending

them to controllers by an open API called OpenFlow. The network

status may hold information such as network topology, traffic

statistics, and network usage. These devices are also responsible

for processing packets based on rules provided by a controller.

The control layer works between the application layer and the

infrastructure layer, via its two interfaces. With the infrastructure

layer (i.e., the south-bound interface), it specifies functions for

controllers to access functions provided by switching devices, for

example, reporting of network status and importing packet for-

warding rules [1] and with the application layer (i.e., the north-

bound interface), it provides service access points in various forms,

for example, an Application Programming Interface (API). SDN

applications are able to get network status reported from network

devices through this API, enables the system to take decisions

based on this information, and carry out these decisions by setting

packet-forwarding rules to networking devices using this API [1].

The top-level layer is the application layer, which contains SDN

applications designed to fulfill user requirements. Examples of

SDN application [1] are dynamic access control, seamless mobili-

ty and migration, load balancing, and network virtualization. The

SDN Controller is taking care of maintaining the network flow

rules and gives instructions to the underlying infrastructure on

how traffic should be handled. Software-defined network can be

used to manage large networks like data center. Performance and

efficiency of a network degrade due to the large traffic load on the

links. So, there is a need of an efficient routing algorithm which

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 1855

can handle or manage high volume of traffic by balancing load

among all the links available.

Fig. 1: SDN Reference Model.

2.1. Open flow switch

OpenFlow Switches gives an open, programmable, virtualized

platform to enable deployment of new protocols, while network

administrators can ensures that the device is well supported [1].

An OpenFlow Switch consists of one or more flow tables and a

group table, which perform packet lookups and forwarding, and an

OpenFlow channel to an external controller as shown in Fig 2. The

switch communicates with the controller and this communication

is managed via the OpenFlow protocol.

Fig. 2: Open Flow Switch.

3. Related work

Load Balancing is a technique used to distribute large number of

requests across multiple paths. Load balancing increases network

performance by properly using the available paths and helps in

improving throughput and latency of the network. The SDN gives

facility to design routing algorithms on top of SDN switches and

enables to do load balancing accordingly. N. Handigol, et.al, [3]

proposed a system, called Plug-n-Serve, and minimizes the re-

sponse time by controlling the load on the network and the servers

using customized flow routing but it has scalability limitations.

Richard Wang et al. [4] propose a more scalable solution with

algorithms that compute simple wildcard rules to reduce the load

on the controller and automatically adjust to changes in load bal-

ancing policies. Hardeep Uppal et al. [5] implemented a load-

balancer architecture based on the OpenFlow technology which

reduces the cost and provides the flexibility. M. Koerner and O.

Kao [6] proposed a load-balancing algorithm for handling multiple

services (called LBMS) by using Software Defined Networking. It

uses the FlowVisor, an SDN device to achieve network virtualiza-

tion, to coordinate multiple controllers, each of which handles

requests destined for different services. H. Long et.al [7] proposed

a load-balancing algorithm, named LABERIO by considering the

path and link utilization as a method to optimize the system

throughput.

4. Load balancing strategies

To increase the throughput and minimize the latency of a network

dynamic management of network resources is required. The load

balancing in the network can be achieved by implementing bal-

ancing algorithms on switches to process packets. Floodlight [9]

controller uses Round-Robin (RR) Algorithm for processing pack-

et requests. There are multiple ports are available in the switches

but in practice, some ports are least used while others are frequent-

ly used. This paper analyzes the round-robin scheduling algorithm

and dynamic load balancing algorithm.

4.1. Round robin (RR) scheduling algorithm

RR Process packets received at switch ports in a rotating manner,

execution i=(i+1) mod n in each time, and choose the packet se-

quence with a unique destination address for a time slice and iter-

ates over them. The algorithm is least concerned about the traffic

on the destined path, It causes the switch load imbalance. If there

exist huge difference between the traffic generated then the algo-

rithm causes waiting time and is not suitable for this type of

scheduling policies, but when each of the packet sequence at ports

generates the same amount of traffic then the algorithm suits best.

4.2. Dynamic load balancing algorithm

In this algorithm we first collect the information of hosts such as

their IP, Switch to which they are connected, MAC Addresses,

Port mapping, etc after collecting the information it obtains path

information using Dijkstra algorithm thereby limiting the search to

shortest paths between the hosts on which load balancing has to be

performed in the fat-tree topology and find total link cost for all

the paths available between any two hosts. Then the flows are

created depending on the minimum transmission cost of the links

at the given time as shown in. By finding the path using the Dijks-

tra algorithm which has minimum cost is selected and new flows

are installed on each switch in the selected path. Information such

as In-Port, Out-Port, Source IP, Destination IP, Source MAC,

Destination MAC is given by the flows.

4.2.1. Algorithm to perform dynamic load balancing

Step 1: getting devices information by controller

While true:

request.put (statistics)

Get response (deviceinfo, "deviceInfo")

loadbalance ()

 getresponse (url,choice)

If (choice=="deviceinfo")

"Device information (data)

Else if (choice=="findswitchlinks")

Find switch links (jdata,switch)

Else if (choice == "linktx")

linktx (jdata,portkey)

1856 International Journal of Engineering & Technology

Step 2: getting MAC addresses

Device information (data)

For i in data;

Device mac()

Step 3: get links of switches & adding links of ports between

switches findswitchlinks (data,s)

Step 4: getting routes between source and destination hosts find

switch routes ();

Routes (src,dst)

Step 5: compute link cost

linkTX (data, key)

Getting cost ()

Step 6: add new flow rules

Create flow rules ()

addflowrules ()

Step 7: perform load balancing

Loadbalance ()

Get response (linkURL, "find switch links")

Find switch route ()

Get link cost ()

Add flow ()

End.

5. Evaluation and results

5.1. Topology used

For the experimental purpose, the fat-tree topology (Figure. 4) is

used which involves multiple paths among hosts so it can provide

higher bandwidth as compared to a single-path tree with the same

number of nodes. A fat-tree topology has an advantage that for

any switch, the number of links going down to its siblings is equal

to the number of links going up to its parent in the upper level.

Network switches are connected to the Floodlight SDN controller.

The communication between the open flow switches and the con-

troller is made by the OpenFlow protocol in the form of Open-

Flow message format. The controller is solely responsible for

adding flow rules to open flow switches and further switches

follow these flow rules for sending traffic between hosts.

The fat tree topology used for experimental analysis is built in a

python script. When the script is executed in Mininet it builts the

fat-tree topology consisting of 8 hosts and 10 open flow switches.

Floodlight controller which is running remotely continuously

sending LLDP packets and whenever it finds any OpenFlow

switches connected it immediately made connections with the

switches. Once the controller is connected to the topology a script

written in python is executed to perform dynamic load balancing,

which calculates the shortest paths using the Dijkstra algorithm.

For experimental purpose a host H4 which has IP address 10.0.0.4

configured as a server and rest as a host. Now a host H1 which has

IP address 10.0.0.1 starts communication with the server H4, Iperf

testing is used to generate traffic it also gives throughput which is

then used for analysis.

Fig. 4: Topology Used.

5.2. Simulation tool

Mininet [8] is a platform that allows rapid prototyping of large

networks on a single computer. The Mininet supports Software

Defined Network elements and gives facility to customize them.

These elements include hosts, switches, controllers and links. The

OpenFlow switches created by Mininet provide same functionality

as in a hardware switch. Floodlight [9] is an OpenFlow controller

for enterprise networks based on Java programming language and

distributed under the Apache license. It is offered by Big Switch

Networks that works with the OpenFlow protocol to manage traf-

fic flows in a SDN environment. to better adapt to their changing

needs and have better control over their networks.

5.3. Simulation setup

Load balancing strategies has been implemented using Floodlight-

1.2 controller with Open-Flow protocol-version 1.3 on a system

with Intel(R) Core(TM) i7-3770, 3.40 GHz, 4.00GB RAM and

Ubuntu 14.04 OS. Mininet is used to create fat tree topology con-

sisting of 10 OpenFlow switches and 8 hosts. Number of flows per

second and number of responses given by the controller per sec-

ond can be calculated by Iperf. Initially, test conducted between

two hosts which are connected through different switches. To test

the results first the topology is connected with floodlight using RR

load balancer and then the dynamic load balancing algorithm are

analyzed and performs load balancing between any two host in the

fat-tree topology results shows that after applying the dynamic

load balancing better throughput is achieved.

5.4. Comparison and analysis

Iperf, an open source network performance measuring tool is used

to perform network throughput tests. Iperf can be used to calculate

different metrics like bandwidth, jitter and datagram loss in the

case of UDP packets. UDP is an unreliable protocol, datagrams

are lost in RR is more than dynamic scheduling as the target

bandwidth increases shown in table 1 and table 2 shows that the

dynamic scheduling achieved better bandwidth and transferred

more data than RR for TCP traffic also.

Table 1: Load Balancing Under Different Bandwidths for UDF Traffic

Inter-

val

(sec)

Target

Band-
width

(Mbps)

Data trans-
ferred (MB)

Datagrams lost
(%)

Jitter (ms)

 RR

Dy-

namic
RR

Dy-

namic
RR

Dy-

namic

0-10
1

1.1

9
1.19 0 0

0.01

8
0.009

0-10 10
11.

9
11.9 0 0

0.01

3
0.015

0-10
100

12
0

120 0 0
0.00
2

0

0-10
200

23

9
241 0 0

0.00

3
0.006

0-10
500

60

6
590 0.14 0

0.00

4
0.002

0-10
1000

88
4

938
0.04
8

0.003
0.00
1

0.001

Table 2: Load Balancing Performance for TCP Traffic

Interval

(sec)
Data transferred (MB) Bandwidth(Mbps)

RR Dynamic RR Dynamic

0-120 209 248 14.9 Gbps 17.8 Gbps

6. Conclusion and future scope

In Software Defined Networks control is logically centralized

sometimes the load on some links are very high while on some

links it is very low thus capability of the network decreases. By

dynamically balancing the loads on links by shifting the load on

International Journal of Engineering & Technology 1857

best-calculated path reduces the congestion and information loss.

This paper analyses the round robin algorithm used in floodlight

controller and Dynamic load balancing algorithm. Experimental

analysis shows that Dynamic load balancing gives better result

than the round robin algorithm used in floodlight controller. In the

future work the algorithm can be extended to work with the realis-

tic network traffic.

References

[1] F. Hu, Q. Hao and K. Bao, "A Survey on Software-Defined Net-
work and OpenFlow: From Concept to Implementation," in IEEE

Communications Surveys & Tutorials, vol. 16, no. 4, pp. 2181-2206,

Fourthquarter 2014.
[2] Open Networking Foundation (ONF),SDN Architecture, Issue 1,

ONF TR-502 (2014).

[3] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Jo-
hari, “Plug-n-Serve: Load-balancing web traffic using Open Flow”.

Demo at ACM SIGCOMM (2009).

[4] Wang R, Butnariu D, Rexford J, “OpenFlow-based server load bal-
ancing gone wild”, In: Proceedings of the 11th USENIX conference

on hot topics in management of internet, cloud, and enterprise net-

works and services, pp 1212, (2011).
[5] Uppal H, Brandon D, “OpenFlow based load balancing”, In: Pro-

ceedings of CSE561: networking. Project report. University of
Washington (2010).

[6] M. Koerner and O. Kao. “Multiple Service Load-Balancing with

Open Flow”, IEEE 13th International Conference on High
Performance Switching and Routing (2012).

[7] H. Long, Y. Shen, M. Guo and F. Tang, "LABERIO: Dynamic

load-balanced Routing in OpenFlow-enabled Networks," 2013
IEEE 27th International Conference on Advanced Information

Networking and Applications (AINA), Barcelona, 2013, pp. 290-297.

[8] Bob Lantz, Brandon Heller, and Nick McKeown. "A network in a
laptop: rapid prototyping for software-defined networks" In Pro-

ceedings of the ninth ACM SIGCOMM Workshop on Hot Topics in

Networks (Hotnets-IX). ACM, New York, NY, USA, , Article 19
(2010).

[9] Floodlight Controller URL

http://www.projectfloodlight.org/floodlight

http://www.projectfloodlight.org/floodlight

