

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.31) (2018) 69-73

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Compression of text files using genomic code

compression algorithm

G. Murugesan1*, Rosario Gilmary2

1Department of CSE, St. Joseph's College of Engineering, Chennai, India.
2Department of CSE, St. Joseph's College of Engineering, Chennai, India.

*Corresponding author E-mail:murugesang@stjosephs.ac.in

Abstract

Text files utilize substantial amount of memory or disk space. Transmission of these files across a network depends upon a considerable

amount of bandwidth. Compression procedures are explicitly advantageous in telecommunications and information technology because it

facilitate devices to disseminate or reserve the equivalent amount of data in fewer bits. Text compression techniques section, the English

passage by observing the patters and provide alternative symbols for larger patters of text. To diminish the depository of copious

information and data storage expenditure, compression algorithms were used. Compression of significant and massive cluster of

information can head to the improvement in retrieval time. Novel lossless compression algorithms have been introduced for better

compression ratio. In this work, the various existing compression mechanisms that are particular for compressing the text files and

Deoxyribonucleic acid (DNA) sequence files are analyzed. The performance is correlated in terms of compression ratio, time taken to

compress/decompress the sequence and file size. In this proposed work, the input file is converted to DNA format and then DNA

compression procedure is applied.

Keywords: Data compression, text compression, lossy and lossless compression, DNA, bases, bit reduction, hexa decimal format, variable length code,
huffman codes.

1. Introduction

Data compression is a minimization of the bits required to present a

data. By compressing the data, storage can be effectively utilized. It

also supports fast and easy file transfer. Another important

advantage of data compression is inexpensive network bandwidth

and hardware storage. Text file compression is beneficial for

sending the information at better speed and unzipping them has low

overhead. There are variety of file types. Such as .txt, Java Scripts,

CSS etc. Text compression procedures functions by determining

the similarities and substituting them with a transitory bit code.

Text compression can be performed in a elementary way by cutting

out the unwanted character or replacing the repeats by smaller bit

code. It is estimated that data compression can minimize the text

folders to 50%.

Compression procedures boost and develop backup storage

performance. With time, storage of data grows exponentially.

Compression supports data reduction. In virtual perception any

type of input file can be compressed however best practice must be

chosen for better performance.

Deoxyribonucleic acid DNA, which bears the genes and other

nucleotides dwell in 23 pairs of chromosomes, whole of 46. The

two strands are called polynucleotides. These biopolymer strands

coil around each other to form a double helix structure. DNA is a

combination of four bases, bound in pairs. The four bases are

Adenine (A), Thymine (T), Cytosine (C), Guanine (G). The

genome is made of three billion bases in a decisive order. The

bases of two distinct strands are linked by hydrogen bonds. The

bases are linked to each other by covalent bonds. DNA is present in

every living cell apart from RBC.

In this work, the various existing compression mechanisms that are

particular for compressing the text and DNA files are analyzed

followed by introduction of contemporary and persuasive

compression algorithm which provides better compression ratio for

text files. So that the memory size of the storage is reduced and

speed of transmission is improved. In the proposed work, the input

text file is converted to DNA format. In the next phase, the DNA

sequence is reduced to binary format and then it is converted to

hexadecimal format followed by encoding using Huffman codes.

This paper is systematized as follows. Section 2 involves the

survey of existing works which are brought in to compress the text

and DNA files followed by motivation of the present work. Section

3 expresses the proposed work. This is followed by the conclusion.

2. Related work

MLZW [4]- Modified LZW technique is compression algorithm

for Bangla characters. The dictionary contains Unicode (1-90) for

Bangla characters. During the encoding technique , if the

particular character exists in the dictionary then its index value is

used else it is appended to the dictionary with unique index value.

PARSEC [2]- PARts- of- Speech for sEntiment Compression is

compression technique that uses tags of parts of speech for textual

compression. PARSEC uses sentiment analysis algorithms which

adapt with minimal classification accuracy. It shows a better

improvement in compression rate and accuracy.

Prediction by Partial matching technique is a lossless text

compression method (PPM) [1]. By PPM , the symbols/ characters

http://creativecommons.org/licenses/by/3.0/

70 International Journal of Engineering & Technology

that are not present as base alphabets are used in encoding of text.

It supports extending of text in three methods. They are manual,

adaptive and analyzing the passage. It is followed by encoding

using arithmetical compression technique.

GLZA [3] is a open source grammar based compression that

supports low entropy grammar. It uses hill climbing algorithm

considering the encoded string length estimations. Further

compression is done by Markov modeling and selective recency

modeling.

Universal Text Preprocessing technique [18] is method which does

not use any information from the external repositories like

dictionaries etc. It explains that compression ratio can be

significantly improved by preprocessing the files followed by

compression. It is a reversible technique that is applied before

encoding.

Symbol Mapping Transformation Method for Text Compression

(ETAO) [9] is a procedure for transforming the textual passage

based on mapping procedures. Here, each letters of canonical

alphabetical order is mapped into single letters rearranged in

accordance with their relative frequencies. The procedure uses

complementary algorithm. ETAO uses Arithmetic or Huffman

encoding as backend and Average Code Length (ACL) can be

reduced to 5%.

DNA sequences are capable to incorporate repeated substrings

between them. The immeasurable genomic data are stored in

nucleotide databases. In order to maintain such databases, number

of compression algorithms has been designed. Nevertheless,

nearly all the existing algorithms are ill-suited. Data compression

algorithms can be classified as loss algorithms and lossless

algorithms. In loss compression algorithms, the original input is

not recovered fully during decompression. A part of data is lost

for all time. Whereas, in the lossless compression algorithm, the

actual data is retrieved without loss when the file is being

decompressed. Most of the DNA compression algorithms are

lossless compression algorithms because losing a single base will

misdirect the entire sequence.

DNA sequences can be compressed by two modes, namely

horizontal and vertical mode. Vertical modes include compression

using file formats. Biological sequences can be compressed by

considering only the substrings of the entire genome. This

procedure falls under horizontal mode wherein the substrings are

made as reference.

GenCompress[21] is a substitution based lossless compression

technique by searching the approximate repeats from the DNA

sequence. This procedure was introduced specially for genomic

sequences. GenCompress seeks the average repeats present in the

sequence. Here, an ideal prefix is determined followed by

encoding. It also explains the amplitude of similarity or relevance

between two DNA sequences.

Biocompress-2[24] is a combination of statistical and substitutional

procedure. It was specially designed to compress biological

sequences without any loss in original data. Here, the regularities

present in the sequence is discovered. One of the regularity

considered is existence of palindromes. It determines the repeats

and non repeats present in the DNA sequences and encodes them.

DNA Compress program[20] is persuasive, faster and has better

running time when compared with the previous compression

algorithms. It applies a software called Pattern Hunter [19] to

determine the typical average repeats followed by encoding.

Statistical compression algorithm[15] is designed specifically to

compress the genomic sequences. It considers the repeats present in

the sequence as well as the statistical properties of the sequence.

The algorithm anticipates the next symbol to be encoded.

Arithmetic coding is used to encode the symbols.

CDNA algorithm[23] is a DNA compression technique which is

pure statistical and considers the entropy estimates. Each of the

symbol to occur is anticipated by considering the average partial

matches. Each match is done between subsequences of the genome

that have low hamming distance.

NML[16] is called Normalized Maximum Likelihood. It was

introduced to compress the DNA sequences by selecting the

models. NML uses the Minimum Description Length (MDL)

principle. In this procedure, the input data is recognized as codes.

These codes are then compressed by the model selected. The model

that provides data with least description length is chosen from other

candidate models.

Biological sequence compression algorithm[22] uses the distinctive

structure of the genomic sequences. The two major features

considered here are the average repeats and palindromes and it is

done by dynamic and hash programming. This approach provides

higher compression ratio when compared with canonical

compression procedures.

DNAPack[17] is a compression algorithm for DNA sequences that

uses dynamic programming rather than greedy approach. The

procedure is less expensive and yields better compression ratio.

First, the repeats, complementary palindromes and non repeats of

the substrings of the genome is determined. The repeats and

complementary palindromes uses hamming distance where as the

non repeat parts uses arithmetic 2 compression or Context Tree

Weighting.

GenBit Compress[13] is a compression Tool for compressing the

genomic sequences. A new principle applied here is allocating

binary bits for parts of DNA sequences. This approach differs from

other approach by considering only the exact repeats and encoding

them rather than considering the approximate repeats.

Differential compression algorithm[14] is done by considering the

likeliness of the genetic sequence repository. Every sequence is not

stored separately but a storage is created only for particular data.

The data encloses cited sequences, differences and their locations.

DNABIT compress[12] involves removal of redundancy from the

genomic sequences so that storage is made competent. Here, both

the repetitive and non repetitive regions are compressed by

allocating binary bits for smaller fragments.

GenCodex[10] was introduced to compress the genomic sequences

present in multi cores and GPUs. The prime target of this approach

is produce prominent throughput. GenCodex yields a speed up of

11 , 23 on multi cores and GPUs , respectively. It is better than

GenBit and DNABit. It produce a compression ratio of 0.017bpb

and 2.25 bpb for best and worst case, respectively.

DNACRAMP tool[11] is a technique proposed for compressing

DNA sequences with or without duplicates. Here, the DNA

sequences are encoded in bits. The sequence is partitioned into n/4

sections. The quadrupled sections are partitioned into sub partitions

followed by assignment of header and trailer. The terminals are

grouped to form a cluster. DNACRAMP does not use dynamic

programming and encodes each base by 1.19 bits.

Biocompress[25] is a lossless compression algorithms for

biological sequences. It is based on regularities which determines

and analyze the duplicates of substring that occur in the prior . It is

followed by encoding with repeat length and position of prior

occurrence.

Seed based compression technique[5] was designed to compress

DNA sequences that utilize the substitution procedure. Initially, the

repeat structure present in the DNA sequences are determined by

forming a offline dictionary. The dictionary posses the knowledge

of duplicates and mismatches present in the sequence. This

technique considers only the promising mismatches.

High throughput compression[6] classifies and provides an idea of

existing compression mechanisms designed particularly for

biological sequences. This paper will also provide the

achievements of those techniques.

Referential compression algorithm[7] introduces an innovative

procedure to compress the genomic sequences by references

considered. Here, set of input sequences are chosen for which

reference is determined. A reference is combination of value and

key.

DNA sequence compression algorithm[8] uses Extended -ASCII

depiction. Here, the DNA sequences considered are represented by

extended ASCII codes . The processed sequences are encoded

using Run length procedure.

International Journal of Engineering & Technology 71

3. Proposed work

Proposed work represents the Genomic Code based compression

for the given text file. Here, the text file is reconstructed into a

DNA sequence format. Later, the sequence of data is compressed.

The whole process of the system can be defined in two major

phases as shown in FIGURE I. In phase I, the text file converted to

ASCII file and then to binary representation. The binary file is then

represented in DNA sequence format. In phase II, the DNA

sequence is bit reduced and expressed in binary format. The binary

form of representation is converted to hexadecimal format. It is

followed by encoding using Huffman codes.

Figure I: Block Diagram of text compression

Algorithm

ALGORITHM TEXT Compression (TEXT)

//ALGORITHM to ASCII (TEXT)

// ALGORITHM to Simplify ASCII (ASCII file)

// ALGORITHM to Bin Rep (cASCII file)

// ALGORITHM to DNA (Bin file)

// ALGORITHM Bit reduction (DNA file)

// ALGORITHM Hex code (BR file)

// ALGORITHM Huff code (Hex file)
ALGORITHM to ASCII (TEXT)

Precondition :Text file only with upper/ lower case alphabets and
punctuation marks

Input :A simple text file

Output :A text file with ASCII values

While not end of TEXT file do

Read every character from TEXT file and assign to ' ch'

ch = ASCII of ch

Write ' ch' to ASCII file

[End of While]

ALGORITHM to Simplify ASCII (ASCII file)

Input :An input ASCII file

Output :A modified ASCII file as cASCII file

While not end of file do

Read every character from ASCII file and assign to 'ch'

If ch=13 then

Write '0' to cASCII file

else if (31 < ch < 127)

x = ch-31

Write 'x' to cASCII file

else

Write '96' to cASCII file

[End of If]

[End of While]

ALGORITHM to Bin Rep (cASCII file)

Input :Input cASCII file

Output :A binary Binfile

While not end of file do

Read every value from cASCII file and assign to 'ch'

Convert 'ch' into Binary value of 7 bit

Write 'ch' to Binfile

[End of While]

ALGORITHM to DNA (Binfile)

Input :An input Binfile

Output :A DNAfile

Assign

 A = '00'

 T = '01'

 G = '10'

 C = '11'

If ch = '00' then

Write 'A' to the DNA file

else if ch='01' then

Write 'T' to DNA file

else if ch='10' then

Write 'G' to DNA file

else

Write 'C' to DNA file

[End of If]

[End of While]

ALGORITHM Bit reduction (DNAfile)

Input :A DNA file with A, T, G, C as bases.

Output :A Bit reduced BR file.

While not end of DNA file do

Read first character from DNA file

Write corresponding assigned Bit code to BR file

if (first character == second character)

Write '0' to BR file

else

Write corresponding Bit code to BR file

[End of If]

[End of While]

ALGORITHM Hex code (BR file)

Input :A Bit Reduced binary BR file

Output :A reduced Hex file

While not end of BR file do

Read 4 bit values and assign to 'ch'

If ch = 0000 then

Write '0' to Hex file

else if ch=0001 then

Write '1' to Hex file

else if ch=0010 then

Write '2' to Hex file

else if ch=0011 then

Write '3' to Hex file

else if ch=0100 then

Write '4' to Hex file

else if ch=0101 then

Write '5' to Hex file

else if ch=0110 then

Write '6' to Hex file

else if ch=0111 then

Write '7' to Hex file

else if ch=1000 then

Write '8' to Hex file

else if ch=1001 then

Write '9' to Hex file

else if ch=1010 then

Write 'A' to Hex file

else if ch=1011 then

Write 'B' to Hex file

else if ch=1100 then

Write 'C' to Hex file

else if ch=1101 then

Write 'D' to Hex file

else if ch=1110 then

Write 'E' to Hex file

else

Write 'F' to Hex file

[End of If]

[End of While]

ALGORITHM Huff code (W, n)

Input : A list 'W' of 'n' positive weights from Hex

 file

72 International Journal of Engineering & Technology

Output :An extended binary tree T with weights

 taken from 'W' that gives minimum

 weighted path length

Create list 'F' from singleton trees formed from element of

 'W'

While 'F' has more than one element do

Find T1, T2 in that have minimum values associated

with their roots

Construct new tree T by creating a new node and setting

T1 and T2 as its children

Let the sum of the values associated with the roots of T1

and T2 be associated with root of T

Add T to F

Huffman code : = Tree stored in F

[End of While]

Modules of the proposed algorithm

The whole process is divided as 2 phases. The modules of the

proposed system are Conversion of text file to DNA sequence and

Compression of DNA sequence by a genomic code compression

procedure.

Conversion of text file to DNA sequence

This module explains the reconstruction of text files into DNA

sequence. The input text file is converted to genomic code in three

steps. Initially, each of the character in text file is replaced with its

corresponding ASCII value. In order to depict the ASCII value

with minimal (7 bit) code, the ASCII values are simplified and then

presented using binary format. Then, each two bit of the binary file

is replaced with its corresponding DNA base.
Example 1

Input text : day

ASCII value : 100 97 121

Simplification of ASCII : 69 66 90

Binary representation :1010101 0111010 10010110

Assign : A=00;T=01;G=10; C=11.

DNA sequence :GGGGCGGGTTG

Compression of genomic data

This module explains the bit reduction of DNA sequence and

representing them in binary format. Binary code uses the digits of 0

and 1 (binary numbers) to represent the DNA bases. Each base or

the symbol gets a bit value assignment. The bit string can

corresponds to the DNA bases.

The four DNA bases are : {A,T,G,C}

Assign: A=00; T=01; G=10; C=11.

Initially, for the first base of the DNA sequence the assigned bit

code is given. Then, the next base is compared with its prior base.

If they are same, it is represented by '0' else it is represented by its

corresponding binary code. Thus, we get a stream of binary output.

• Conversion of Binary Format to Hexadecimal Format

This sector describes the conversion of binary values to

hexadecimal values. It is useful and effective approach for

compressing long binary strings. Here, both bases are powers of 2.

Thus, it is a simple procedure than other general conversions. For

converting long binary strings, partition the entire string of binary

numbers into groups of four bits each. Hexadecimal converts 4 bits

into one hexadecimal unit. So, in order to convert the number, first

divide the entire bit sequence. For each four digit group, convert

the 4 bit binary number to its equivalent hexadecimal value.

In binary to hexadecimal Conversion, the binary values for 0 to 9

will take the same values as their hex values. The binary values

from 10 to 15 are represented as characters from A to F.

Example 1:

Conversion of binary number 10110101 to a hexadecimal

number

 Divide into groups of 4digits : 1011 0101

 Convert each group to hex digit : B 5

• Encoding By Huffman Codes

 This module explains the encoding of hexadecimal string by

Huffman codes. It is a lossless data compression algorithm. The

procedure is to allocate variable-length codes to input hexadecimal

characters. The lengths of the assigned codes are based on the

frequencies of the corresponding characters. The character that

appears the most gets the smallest code and the character that

appears the least gets the largest code. In a variable-length code

words may have different length as shown in TABLE I.

Table I: Variable Code Length

HEX-BASES A 1 9 C

FREQUENCY 7 60 85 20

A VARIABLE CODE 111 10 0 110

Given a hexadecimal string and its corresponding variable code as
shown in TABLE I, it is simple to encode the hex string just by
replacing the hex characters by the code words.

Input : 1A99CA1

Output : 10 111 0 0 110 111 10

Applications

• It reduces the storage space required by the text files in the

database.

• Processing costs of text files can be economized.

• Transmission costs of stored data can be diminished.

• Provision of quick access to any record and superior

functionality.

Result analysis of sample text

Here, a sample text "Good day" is considered. The step wise

procedure of proposed compression algorithm is explained

keeping the sample text as base. In phase I, the sample text is

converted to a model DNA fragment with A,T,G and C as bases. It

is done using ASCII conversion and symbolize them in binary

format. In phase II, each of base in DNA sequence is given a

corresponding bit code. TABLE II explains Bit reduction of sample

DNA sequence. It is followed by restructuring the sequence in

hexadecimal format and Huffman encoding.

Example

Sample text :Good day

ASCII conversion : 71 111 111 100 32

 100 97 121

 Simplification of ASCII : 40 80 80 69 1

 69 66 90

 Binary representation : 0000010 1100111 0011010

 0101110 1010111 1111101

 1010101 01110110010110

 The four DNA bases are : { A,T,G,C}

 Assign : A=00 ; T=01 ; G=10 ; C=11

 DNA Sequence : AATTGTCACTAGCGG

 GCCCCTGGGGCGGGT

 TG

 Bit Reduction :

Table II: Bit Reduction Of Bases

A A T T G T C A C T A G ...

00 0 01 0 10 01 11 00 11 01 00 10 ...

Reduced Binary format of text in DNA format:

00001010011100110100101110010110000110

00011100001010

International Journal of Engineering & Technology 73

Bits in partition :

0000 1010 0111 0011 0100 1011 1001 0110 0001 1000 0111 0000

1010

Hex format : 0A734B961870A

Table III: Huffman Code

From TABLE III the corresponding Huffman Codes for the

hexadecimal values were obtained.

Huffman Codes for the sample text:

 000 010 101 0010 1101 0110 1000 1111 0011 101 000 010

Input sample text = 8 Characters

 = 8* 8 Bits

 = 64 Bits

Proposed Work = 42 Bits

8 Characters = 42 Bits

1 Character = 42/8

 = 5.25 bits per character

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

 =
64

42

The above ratio shows that around 35 % of memory is saved by

using our new algorithm technique and which is the considerable

amount of compression compared with the existing approach given

in the literatures.

4. Conclusion

In this paper, the existing work related to the compression of text

files and biological sequences are discussed. It is followed by

designing of a new algorithm to compress the substantial text file

by genomic code compression procedure. The proposed algorithm

yields better results with significant improvement in the

compression ratio.

References

[1] Radescu R & Pasca S, “String Matching in Text Compression”,

ECAI 2017-International Conference, Targoviste, Romania, 9th
edition, (2017).

[2] Dufourq E & Bassett BA, “Text Compression for Sentiment

Analysis via Evolutionary Agorithms”, PRASA-RobMech
International Conference, Bloemfontein, South Africa, (2017).

[3] Conrad KJ & Wilson PR, “Grammatical Ziv-Lempel Compression:

Achieving PPM-Class Text Compression Ratios with LZ-Class
Decompression Speed”, Data Compression Conference (DCC),

(2016).

[4] Barua L, Dhar PK, Alam L & Echizen I, “Bangla text compression
based on modified Lempel-Ziv-Welch algorithm”, International

Conference on Electrical, Computer and Communication

Engineering (ECCE), (2017), pp.855-859.
[5] Eric PV, Gopalakrishnan G & Karunakaran M, “An Optimal Seed

Based Compression Algorithm for DNA Sequences”, Advances in

Bioinformatics, (2016).
[6] Zhu Z, Zhang Y, Ji Z, He S & Yang X, “High - throughput DNA

sequence data compression”, Briefings in bioinformatics, (2015).

[7] Mehta K & Ghrera SP, “DNA compression using referential
compression algorithm”, Eighth International Conference

Contemporary Computing (IC3), (2015).

[8] Saada B & Zhang J, “DNA Sequences Compression Algorithm
Based on Extended-ASCII Representation”, Proceedings of the

world congress on engineering and computer science, (2015).

[9] Baloul FM, Abdullah MH & Babikir EA, “ETAO: Symbol
Mapping Tranformation Method for Text Compression”,

International Conference on Computer Electrical and Electronics

Engineering (ICCEEE), (2013), pp.384-389.

[10] Satyanvesh D, Balleda K & Padyana A, “GenCodex- A Novel
Algorithm for Compressing DNA seuences on Multi-cores and

GPUs”, Proc. IEEE, 19th International Conf. on High

Performance Computing (HiPC), (2012).
[11] Prasad VH & Kumar PV, “A New Revised DNA Cramp Tool

Based Approach of Chopping DNA Repetitive and Non- Repetitive

Genome Sequences”, International Journal of Computer Science
Issues (IJCSI), Vol.9, No.6,(2012), pp.448-454.

[12] Rajeswari PR & Apparao A, “DNABIT Compress-Genome

compression algorithm”, Bioinformatics, Vol.5, No.8,(2011),
pp.350-360.

[13] Rajeswari PR & Apparao A, “GenBit Compress Tool (GBC): A

Java-Based Tool To Compress DNA Sequences and Compute
Compression Ratio (BITS/BASE) Of Genomes”, International

Journal of Computer Science and Information Technology, Vol.2,

No.3,(2013), pp.181-191.
[14] Afify H, Islam M, Wahed MA & Kadah YM, “Genomic sequences

differential compression model”, International Journal of

Computer Science and Information Technology, Vol.3, (2011),
pp.145-154.

[15] Cao MD, Dix TI, Allison L & Mears C, “A simple statistical
algorithm for biological sequence compression”, Proceedings of

the Data Compression Conference, (2007), pp.43-52.

[16] Myung JI, Navarro DJ & Pitt MA, “Model selection by
normalized maximum likelihood”, Journal of Mathematical

Psychology, Vol.50, No.2, (2006), pp.167-179.

[17] Behzadi B & Le Fessant F, “DNA compression challege revisited:
a dynamic programming approach”, Proceedings of the Annual

Symposium on Combinatorial Pattern Matching, (2005).

[18] Abel J & Teahan W, “Universal Text Preprocessing for Data
Compression”, IEEE Transactions On Computers, Vol.54, No.5,

(2005).

[19] Ma B, Tromp J & Li M, “PatternHunter: fast and more sensitive
homology search”, Bioinformatics, Vol.18, No.3, (2002), pp.440-

445.

[20] Chen X, Li M, Ma B & Tromp J, “DNACompress: fast and
effective DNA sequence compression”, Bioinformatics, Vol.18, no.

12, (2002), pp.1696-1698.

[21] Chen X, Kwong S & Li M, “Compression algorithm for DNA
sequences and its applications in genome comparison”,

Proceedings of the 4th Annual International Conference on

Computation Molecular Biology, (2000).
[22] Matsumoto T, Sadakane K & Imai H, “Biological sequence

compression algorithms”, Genome Informatics, (2000), pp.43-52.

[23] Loewenstern D & Yianilos PN, “Significantly lower entropy
estimates for natural DNA sequences”, Journal of Computational

Biology, Vol.6, No.1, (1999), pp.125-142.

[24] Grumbach S & Tahi F, “A new challenge for compression
algorithms: genetic sequences”, Information Processing &

Management, Vol.30, No.6,(1994), pp.875-886.

[25] Grumbach S & Tahi F, “Compression of DNA sequences”,

Proceedings of the IEEE Symposium on Data Compression,

(1993).

