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Abstract 
 

Qualitative studies of discrete dynamical systems behavior on networks are relevant in many fields such as system biology, transportation, 

information traffic, material sciences and so on. We consider cellular automata on one-dimensional and two-dimensional toroidal support-

ers. At every discrete time moment, each cell of a cellular automaton is in one of two states 0 and 1. We introduce concept of the cellular 

automaton mass at fixed time. The cellular automaton mass is the quantity of cells such that these cells are in the state 1. The mass 

conservation law takes place if the mass of cellular automaton is the same at every time. Concepts of explosion and annihilation have been 

introduced. Explosion takes place if the mass of cellular automaton increases at each iteration until all cells are in the state 1. Annihilation 

takes place if the mass of cellular automaton decreases at each iteration until all cells are in the state 0. We consider classes of cellular 

automata such that the state of cell at the next time depends on the state at current time and states of neighboring cells belonging to fixed 

set. We have found sets of cellular automata such that the mass conservation law, explosion or annihilation takes place for these automata. 
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1. Introduction 

1.1. The cellular automaton concept 

The concept of cellular automaton has been introduced by S. Ulam 

and J. von Neumann, ([1], 1963, [2], 1966, [3], 1974) for the 

modeling of biological systems. Such biological processes as 

reproduction and the evolution of organized forms can be modeled 

by cells that obey simple rules. The cellular automaton is one-

dimensional or multidimensional lattice, each cell of which at any 

time is in one of the states. Machine state in the next step is 

determined by a given rule and depends on from the state of this 

cell and the cells closest to it at the current moment.  

J.H. Conway in 1970 introduced the cellular automaton ”Life”, [4]. 

In this cellular automaton, cells form a two-dimensional structure, 

the next state depends on the current state this cell and eight 

neighboring ones. Currently many examples of the behavior of the 

system are known for given initial states, but little analytical work 

on the general behavior of the given cellular automaton. In [5], with 

reference on the monograph of Z. Manna ([6], 1974), it is noted that 

Conway’s cellular automaton on an infinite cellular field is a 

computing device for the formalization of the work of algorithms. 

1.2. Wolfram’s cellular automata 

S.Wolfram, [5], 1982, has introduced the class of elementary 

cellular automata. Cells of these automata are located on infinite 

one-dimensional lattice and are numerated successively. Every cell 

is in one of two states 0 and 1 at each discrete moment t = 0,1,2, … 

The cell state at time t + 1 is determined fully by the state of this 

cell and neighboring cells at time t. The state is formalized by the 

following map of binary variables  

 

xi(t + 1) = CA(xi−1(t), xi(t), xi+1(t))  

There exist 256 cellular automata. Numbers from 0 to 255 are 

assigned to these automata in accordance with rules described in 

Section 4. A set of cellular automata called legal automata is 

introduced in [5]. The set of legal automata satisfies the following 

conditions. The initial null configuration will be ever null 

configuration. This is fulfilled if and only if CA(0,0,0) = 0 . 

Moreover, the automaton is symmetrical, i. e.,  

 

CA(xi−1(t), xi(t), xi+1(t)) ≡ CA(xi+1(t), xi(t), xi−1(t)). 
 

In [7], (S. Wolfram, 1984), the classification of [5] is generalized 

for cellular automata such that each cell of a automata is in one of 

k ≥ 2  states, 0, … , k − 1, , and the state of i-th cell at time t+1 

depends on the state of this cell at time t, states of r cells with 

indexes i − r, … , i − 1  and states of r cells with indexes i +
1, … , i + r. In accordance with numeration of the work [7], which 

is similar to numeration of [5], all considered automaton have 

numbers from 0 to ( kk2r+1
− 1) , where k and r are given. In 

Wolfram’s papers, it has been described the possible applications 

of cellular automata for formal description of algorithms and formal 

grammars, or for the study of entropy in theoretical mechanics 

models, etc., [5]–[9]. 

We note that in [6], it is assumed that, in initial moment only finite 

quantity of cells on infinite fields are in the state 1. In [6]–[8] it is 

indicated that there exist following forms of cellular automata 

behavior: 

a) From a time moment, all cells are in the state 1. 

b) From a time moment, the quantity of cells, being in state 1, 

does not change. 

c) The quantity being in state 1, increases unboundedly. 

d) Time intervals alternate. They are time intervals of occupied 

cells increasing and occupied cells decreasing. 

http://creativecommons.org/licenses/by/3.0/
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In [9], O. Martin, A.M. Odlyzko, S. Wolfram, 1984, algebraic 

approaches and approaches of the number theory are used for 

analysis and investigation of cellular automata properties. 

In [10], a class of cellular automata, called additive,is mainly 

considered. These cellular automata satisfy superposition principle. 

This principle allows represent configurations by characteristic 

polynomials. Evolution of configurations is represented be iterative 

multiplication of characteristic polynomials by a fixed polynomial. 

General properties of cellular automata are determined by algebraic 

properties of these polynomials. 

It is assumed in [10] that cellular automaton contains N cells located 

on a circle. States (values) of cells at time t are denoted by 

a0
(t)

, … , aN−1
(t)

. In general case, numbers of cells are elements of a 

commutative ring. The number of these elements equals k. In the 

simplest case, cells can be in two states 0 and 1. The configuration 

of the cellular automaton is determined by states of N cells and can 

be represented by characteristic polynomial (generating function) 

A(t)(x) = ∑N−1
i=0 ai

(t)
xi , where the value of the cell i is the 

coefficient of x  i . Configuration is identified with characteristic 

polynomial. In [10], a special class of additive cellular automata is 

considered. These automata function in accordance with a simple 

linear combination of the following rules (addition and subtraction 

modulo N in indexes)  

 

ai
(t)

= α−1ai−1
(t−1)

+ α0ai
(t−1)

+ α+1ai+1
(t−1)

.  
 

Time evolution is represented by multiplication of the characteristic 

polynomial by the fixed dipolyninomial  

 

T(x) = α−1x + α0 + α+1x−1:  
 

A(t) ≡ T(x)At−1(x) mod(xN − 1).  
 

The cellular automaton submits to additive principle of 

superposition. In accordance with this principle, the configuration 

A(t)(x) + B(t)(x) is the result of automaton functioning for initial 

configuration A(0)(x) + B(0)(x)  if A(t)(x), B(t)(x)  are results of 

configurations A(0)(x)  and B(0)(x)  evolutions. Therefore any 

initial configuration can be represented as a sum of basis 

configurations A(x) ≡ xj  containing a single cell with non-zero 

state, and the additive principle determines the evolution of 

configurations in terms of evolution of (x) . Classical facts of 

number theory are used in proving a theorem which gives the period 

with which states of additive cellular automaton are returned. 

In [10], N.H. Packard, S. Wolfram, 1985, cellular automata were 

considered on two-dimensional lattice. As important particular 

cases, automata are considered such that, in these automata, the next 

state of cell is determined by state of this cell at current moment and 

states of 4 neighboring cells (neighborhood of von Neumann) or 

determined by state of this cell at current moment and states of 8 

neighboring cells (it neighborhood of Moore). Conway cellular 

automaton is a particular case of the automaton with neighborhood 

of Moore. Results and analysis of simulation are given for fixed 

initial states. The concept of entropy of is used for study of automata 

behavior. 

1.3. Cellular automata are traffic models 

In 1992, a two-dimensional traffic model has been introduced, [11], 

Biham O., Middleton D., Levin D. In these model, cells form a two-

dimensional toroidal structure. At every moment, each cell in one 

of two states 0 or 1. We assume that a cell is occupied by a particle 

if this cell is in the state 1, and the cell is vacant if it is in the state 

0. There are particles of two types. They are red particles and blue 

particles. Red particles move only to the right, and blue particles 

move only upwards. Moments such that only red particles move and 

moments such that only blue particles move alternate. In each 

direction, particles move in accordance with rule CA 184. 

Simulation shows that increase of flow density results in jump from 

it self-organization (from any initial state, after a finite time, the 

system comes to the state such that all particles move without 

delays) to it collapse (motion ceases). 

In 2005, [17], R.M. D’Souza, it is found that, for some densities of 

traffic in BML model, there exists an intermediate phase. This 

phase is characterized by periodic configurations such that jams and 

free flow alternate. O. Angel, A.E. Holroyd, J.B. Martin, [18], have 

proved that jam ever is formed in BML model if the flow density is 

close to 1. In 2006, T. Austin and I. Benjamini, [19], have proved 

that self-organization takes place if the number of particles is less 

than 
N

2
. Besides other systems, in monograph [20], Kozlov 

V.V.,Buslaev A.P., Tatashev A.G.,2013, the system with a 

supporter, dual to BML, was considered. The difference is also that 

there is only one type of particles and moments such that all 

particles move to the right and moments such that all particles move 

upwards alternate. Moreover it is assumed that, if movement of a 

particle is allowed, then the particle moves with a fixed probability, 

and, in general case, this probability depends on direction of 

movement. A formula has been obtained for the velocity in the fixed 

direction provided that the probability of movement at each 

moment is small regarding at least one of coordinates. In [15], 

Kozlov, Buslaev, Tatashev, 2015, and [21], Buslaev, Tatashev, 

2018, class of dynamical systems was considered such that, in these 

system, supporters are systems of contours, and particles move on 

cells of these contours. Each particle moves on its contour. Particles 

interact with each other in common points called nodes. On 

contours, particles move in accordance with rules CA 184 or 240. 

In the case of rule 240, particles of each cluster move synchronously. 

In [22], Kozlov, Buslaev, Tatashev, 2015, and [23], 2016, Buslaev, 

Tatashev, dynamical systems are introduced such that, in these 

systems, movement of particles on cells is determined by plans. 

Plans are sequences of symbols. These sequences can be 

represented on a moving tape. We call this tape Turing tape. In 

particular case, when there are two cells and two particles 

(bipendulum) there is a sequence of zeros and ones on the tape. This 

sequence is the binary representation of the fractional part of a 

rational number belonging to the segment moving [0, 1]. 

We assume that, at every moment, each particle reads the first 

symbol on its tape. At next moment, the tape shifts to one position 

to the left. The symbol read by the particle is erased, and other 

symbols shift one position to the left. Delay in the implementation 

of the particles plans are due to particles interacting. If we consider 

the binary representation on the tape as a cellular automaton, then 

this representation change in accordance with cellular automaton 

170, which corresponds to movement similar to movement 

described by CA 240 but particles move in the opposite direction. 

In cellular automaton 240, the next state of each cell depends only 

on the state of this cell at the current moment and the state of the 

neighboring cell on the left. Similarly, in cellular automaton 170, 

the next state of each cell depends only on the state of this cell at 

the current moment and the state of the neighboring cell on the right. 

Therefore there are no difficulties in descriptions of movement 

related to that the tape is bounded on the left. An equivalent 

approach to describe the tape movement is to apply the map called 

the Bernoulli shift. If the Bernoulli shift is applied to a number 

belonging to the segment [0,1], then this number is multiplied by 2 

and the integer part of the number is excluded. Unary algebras on 

the set of common fractions with the operation of Bernoulli shift 

were considered in [22], [24], (Buslaev, Tatashev, 2016). 

Generalizations of the bipendulum (transport and logistics problem) 

and Bernoulli algebras were considered in [23], [25]. These 

generalizations correspond to generalization of CA170 to the case 

of more than 2 possible states of each cell (cells of the cellular 

automaton correspond to binary digits on the tape). 

1.4. Formulation of problem 

1.4.1. Architecture of CA 

Let us describe classes of cellular automata considered in this paper. 

In general case, we consider multi-dimensional structures. These 

structures can be open, infinite in one direction, infinite in two 
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directions, or toroidal. In one-dimensional case, we consider a ring 

or periodic sequences of cells, and these sequences are infinite on 

one or two directions. The next state of each cell is determined by 

the current state of this cell and states of a fixed quantity r or l of 

cells on the right and on the left correspondingly. 

1.4.2. Cellular automata on a circle 

We consider the following class of one-dimensional cellular 

automaton. Integer nonnegative numbers r, l are given. The state of 

each cell can be equal to 0 or 1, and the state of the cell i at time t+1 

is determined by the state at time t of this cell and cells i − s, … , i −
1, i, i + 1, … , i + r. 

In these terms, we have r = l = 1  for the class of Wolfram 

elementary automata. 

1.4.3. Cellular automata on a torus 

We consider also the following classes of two-dimensional cellular 

automata. 

N) Integer nonnegative numbers r1, l1, r2, l2 are given. The state of 

any cell takes two possible values 0, 1, and the state of cell (i1, i2) 

at moment t + 1 is determined by the state of this cell at time t and 

cells (j1, j2) such that  

 

ik − lk ≤ jk ≤ ik + rk, k = 1,2.                                                    (1) 

 

W) A integer nonnegative number r is given. The state of the cell 

(i1, i2) at moment t + 1 is determined by the state of this cell at 

moment t and states of cells (j1, j2) such that  

 

max|jk − ik| ≤ r.                                                                          (2) 

 

In these terms, we have r = 1  for the class of one-dimensional 

elementary automata of Wolfram and for the class of two-

dimensional automata of Conway. 

In Section 5 we consider two-dimensional automaton such that for 

this automaton r1 = r2 = 0, l1 = l2 = 1, i.e., for this automaton, 

the state of the cell (i, j) at time t + 1 depends on the state of cells 

(i, j), (i − 1, j) and (i, j − 1), at time t. 

1.4.4. Characteristics and conservation laws 

We shall give the following definitions. The quantity of cells being 

in state 1 at current moment is called the mass of the cellular 

automaton. The property of system to conserve its mass is called 

mass conservation law. We consider the problem to find all cellular 

automata of considered class such that the conservation law is 

fulfilled for these automata. We formulate also the problem to find 

cellular automata such that their mass conserves from a moment. 

For infinite automata with non-periodic structure, we define the 

concept of density of the cellular automaton and formulate the 

problem to find automata such that, for these automata, its density 

conserves at each iteration, or the density conserves after a moment, 

or the density tends to a fixed value. The following problems are 

interesting. They are the problem to find cellular automata of a 

given class such that, in fixed cluster, the quantity of ones satisfy 

conditions for the mass. For example, this quantity increases to 

maximum (explosion) or decreases to zero (annihilation) for finite 

time. 

2. Cellular automata of minimum dimension 

𝐰𝟏 

Assume that r = l = 0, i. e., in the case of any dimension of CA 

structure, the state of the cell depends on only the state of this state 

at the precedent moment. There are 4 cellular automaton which are 

determined by the following maps 0 → 0, 1 → 0  (cellular 

automaton 0), 0 → 0, 1 → 1 (cellular automaton 1), 0 → 1, 1 → 0 

(cellular automaton 2), 0 → 1, 1 → 1 (cellular automaton 3). Only 

automaton 1 conserves mass. The automaton 0 corresponds to 

annihilation, and automaton 1 corresponds the explosion. 

3. Wolfram cellular automata 𝐰𝟐 

 In Section 3 we consider two classes of a simpler automaton such 

that the value of digits depends on state only one neighboring digit 

(on state of the digit ahead). 

 

 
Fig. 1: Cellular Automata Conserving Mass. 

 

Consider automaton defined by Table 3.1. In accordance with this 

table, digit 0 is replaced by 𝑐0 if, in the current state, the next digit 

is also 0, and the digit is replaced by 𝑐1 if the next digit is 1. Digit 

1 is replaced by 𝑐2 if, in the current state, the next digit is 0, and the 

digit is replaced by 𝑐3 if the next digit is 1. 

 
Table 3.1: Cellular Automaton 𝑊2 

00  01   10   11  

𝑐0  𝑐1  𝑐2  𝑐3 

 

The number with binary representation 𝑐3𝑐2𝑐1𝑐0 is assigned to the 

cellular automaton determined by Table 3.1. The considered class 

contains 16 cellular automata.  

Proposition 3.1 (mass conservation criterion). In considered class 

there are just 2 cellular automata 10 and 12 conserving mass. 

Cellular automaton 12 corresponds to total-connected movement in 

direction of increase of coordinate, and cellular automaton 30 

determines the identity map.  

Proof. Since the map conserves periodic chains (0), (1), we have  

 

𝑐0 = 0, 𝑐3 = 1.                                                                              (3) 

 

We consider the change of periodic chain (01). We have the 

equation 

 

𝑐1 + 𝑐2 = 1                                                                                   (4) 

 

Taking into account (4) we have that either 𝑐1 = 0, 𝑐2 = 1 or 𝑐1 =
1, 𝑐2 = 0. In the considered case, there are only two automata 23 +
2 = 10, 23 + 22 = 12 such that these automata satisfy conditions 

(3), (4). It is easy to prove that the automata 10 and 12 conserve the 

mass.  

Proposition 3.2 (criterion of annihilation). A necessary and 

sufficient condition for the mass to decrease at any iteration is that 

the rule 0 be fulfilled (0-map). 

Proof. Considering maps of periodic configurations, considered in 

proof of Proposition 2.1, we get that for mass to decrease is 

necessary to have 𝑐0, 𝑐1 + 𝑐2 < 1, 𝑐3 < 1 . From this we have 

Proposition 3.2.  

Proposition 3.3 (criterion of explosion). A necessary and sufficient 

condition for the mass to increase at any iteration is that the rule 15 

be fulfilled (1-map). 
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The proof of Proposition 3.3 is similar to proof of Proposition 3.1.  

Proposition 3.4. (criterion of mass monotony) a) A necessary and 

sufficient condition for the mass not to increase at any iteration is 

that one of the rules 0, 2, 4, 8, 10, 12 be fulfilled. b) A necessary 

and sufficient condition for the mass not to decrease at any iteration 

is that one of the rules 10, 11, 12, 13, 14, 15 be fulfilled. 

Proof. a) Considering maps of periodic configurations, considered 

in proof of Proposition 3.1, we get that for mass to decrease it is 

necessary to have 𝑐0, 𝑐1 + 𝑐2 ≤ 1 . Automata 0, 2, 4, 8, 10, 12 

satisfy these conditions. Taking into account that, on a period, the 

quantity of pairs 01 is equal to the quantity of pairs 10, we get that 

these automata satisfy the condition that the mass does not increase. 

b) Consider the class of automata determined by a table, similar to 

Table 3.1, but such that, for this automaton, the value of each cell 

at the next moment depends on current state of this digit and the 

neighboring digit on the right. For this class of automata, statements, 

similar to Propositions 3.1- 3.4, but now cellular automaton 12 

corresponds to the identical map and cellular automaton 10 

corresponds to the total-connected movement in the direction of 

coordinate decrease. 

4. Cellular automata 𝐰𝟑 

4.1. Description of state of cellular automaton 𝟑 × 𝟏 

Consider the set of rational numbers 𝑄 ∩ [0, +∞)  in binary 

representation in the follow form 

 

𝑥 = 0. 𝑎1 … 𝑎𝑚(𝑏1 … 𝑏𝑛),                                                             (5) 

 

Where 𝑎𝑖, 𝑏𝑗 ∈ 0, 1. Suppose [𝑎] is the integer part of real number , 

𝑎 − [𝑎] is the fractional part, 𝐵𝑥 = 2𝑥 − [2𝑥] is the Bernoulli map. 

Finite sequence 𝑥1 = 0. (𝑏1 … 𝑏𝑛), 𝑥2 = 0. (𝑏2 … 𝑏𝑛𝑏1), … , 𝑥𝑛 =
0. (𝑏𝑛𝑏1, … , 𝑏𝑛−1) is called orbit of the number (5) and all numbers 

𝑥𝑖  are different. It is obvious that 𝐵(𝑥1) = 𝑥2, 𝐵(𝑥2) =
𝑥3, … , 𝐵(𝑥4) = 𝑥1 and we have a simple cycle of rational numbers. 

To each row (𝑏𝑛, 𝑏1, 𝑏2), (𝑏1, 𝑏2, 𝑏3), … , (𝑏𝑛−1, 𝑏𝑛, 𝑏1)  assign 

numbers 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ {0,1} and 𝑦1 = 0. (𝑐1 … 𝑐𝑛). . . . c 𝑛). 

Numbers 𝑦1, 𝑦2 = 𝐵(𝑦1), 𝑦3 = 𝐵(𝑦2), … , 𝑦1 = 𝐵(𝑦𝑛) form a cycle 

(this cycle can be not simple). 

4.2. Classification of 3×1 automata 

Define the following automaton by Table 4.1. 

 
Table 4.1: Definition of Ca 184 

000   001   010   011   100   101   110   111  

0   0   0   1   1   1   0   1  

 

101110002 = 27 + 25 + 24 + 23 = 128 + 32 + 16 + 8 = 184  
 

We shall give another example. 

 
Table 4.2: Definition of CA 240 

000   001   010   011   100   101   110   111  

 0   0   0   0   1   1   1   1  

 

111100002 = 27 + 26 + 25 + 24 = 128 + 64 + 32 + 16 = 240  

4.3. Turing dial 

Let us define graph of threes of sequent digits processing in 

accordance with given automaton 𝑊3 = 𝑊3×1 Each cyclic sequence 

(𝑏1 … 𝑏𝑛) is processed as movement on a graph. A closed path on a 

graph such that this path enters anyvertex no more than one time is 

called a simple cycle. 

4.4. Mass conservation law 

The quantity of units (particles) ||𝑏||𝑙1
𝑛 = 𝑏1 + 𝑏2 + ⋯ + 𝑏𝑛  is 

called the mass of the sequence ( 𝑏1 … 𝑏𝑛 = 𝑏.  The principle 

problem is to describe class of 3 × 1 automata {0,1, … ,255} such 

that these automata conserves the mass, i. e., for any cyclic vector 

(𝑏1 … 𝑏𝑛, we have 

 

𝑥 = 0. 𝑎1 … 𝑎𝑚(𝑏1 … 𝑏𝑛),                                                             (6) 

 

Proposition 4.1. Mass conservation law is fulfilled if and only if it 

is fulfilled for any simple cycle.  

The proof is evident. 

 

Theorem 4.2: Mass conservation law for automata 3 × 1  is 

fulfilled only for cellular automata ⇔ 170, 184, 204, 226, 240.  

 

Proof. Let us enumerate all simple cycles. 

Cycles of length 1. 

𝑐0 = 0 ⇔ 𝑥 = 0. (0),                                                                   (7) 

 

𝑐7 = 1 ⇔ 𝑥 = 0. (1).                                                                   (8) 

 

Cycles of length 2. 

 

𝑐2 + 𝑐5 = 1 ⇔ 𝑥 = 0. (01)~0. (10).                                          (9) 

 

Cycles of length 3. 

 

𝑐1 + 𝑐2 + 𝑐4 = 1 ⇔ 𝑥 = 0. (001)~0. (010)~0. (100)            (10) 

 

𝑐3 + 𝑐6 + 𝑐5 = 2 ⇔ 𝑥 = 0. (011)~0. (110)~0. (101)            (11) 

 

Cycles of length 4. 

 

𝑐0 + 𝑐4 + 𝑐2 + 𝑐4 = 1 ⇔ 0. (0001)                                          (12) 

 

𝑐3 + 𝑐7 + 𝑐6 + 𝑐5 = 2 ⇔ 0. (0111)  
 

𝑐1 + 𝑐3 + 𝑐6 + 𝑐4 = 2 ⇔ 0. (0011)                                          (13) 

 

Cycles of length 5. 

 

𝑐0 + 𝑐1 + 𝑐3 + 𝑐6 + 𝑐4 = 2 ⇔ 0. (00011)                                    (14) 

 

Cycles of length 6. 

 

𝑐0 + 𝑐1 + 𝑐3 + 𝑐7 + 𝑐6 = 3 ⇔ 0. (000111)                             (15) 

 

It follows from (11) that for mass conservation law to be fulfilled it 

is necessary to have 

 

𝑐2 = 1, 𝑐5 = 0, 𝑜𝑟                                                                       (16) 

 

𝑐2 = 0, 𝑐5 = 1.                                                                            (17) 

 

From (18), taking into account (12), (13), we get  

 

𝑐1 + 𝑐4 = 0,                                                                                (18) 

 

𝑐3 + 𝑐6 = 2.                                                                                (19) 

 

From (18), (19), we get 

 

𝑐1 = 𝑐4 = 0, 𝑐3 = 𝑐6 = 1.                                                          (20) 

 

From (9), (10), (11), (12), we get that the cellular automaton, for 

that 

 

𝑐0 = 𝑐1 = 0, 𝑐2 = 𝑐3 = 1, 𝑐4 = 𝑐5 = 0, 𝑐6 = 𝑐7 = 1,  
 

i) e., the cellular automaton 
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27 + 26 + 23 + 22 = 204.  
 

If (19) is fulfilled, then taking into account (12), (13) we get  

 

𝑐1 + 𝑐4 = 1,                                                                                (21) 

 

𝑐3 + 𝑐6 = 1.                                                                                (22) 

 

From (21), (22) we get that 

 

𝑐1 = 0, 𝑐4 = 1, 𝑐3 = 0, 𝑐6 = 1, 𝑜𝑟                                              (23) 

 

𝑐1 = 0, 𝑐4 = 1, 𝑐3 = 1, 𝑐6 = 0, 𝑜𝑟                                              (24) 

 

𝑐1 = 1, 𝑐4 = 0, 𝑐3 = 0, 𝑐6 = 1, 𝑜𝑟                                              (25) 

 

𝑐1 = 1, 𝑐4 = 0, 𝑐3 = 1, 𝑐6 = 0.                                                   (26) 

 

From (9), (10), (15), (21), we get  

 

𝑐0 = 𝑐1 = 𝑐2 = 𝑐3 = 0, 𝑐4 = 𝑐5 = 𝑐6 = 𝑐7 = 1,  
 

and therefore cellular automaton 27 + 26 + 25 + 24 = 240 

conserves the mass. 

From (5), (6), (15), (22), we have  

 

𝑐0 = 𝑐1 = 𝑐2 = 0, 𝑐3 = 1, 𝑐4 = 𝑐5 = 1, 𝑐6 = 0, 𝑐7 = 1,  
 

And therefore the cellular automaton 27 + 25 + 24 + 23 = 184 

conserves the mass. 

From (5), (6), (15), (23), we get  

 

𝑐0 = 0, 𝑐1 = 1, 𝑐2 = 0, 𝑐3 = 1,   
 

𝑐4 = 0, 𝑐5 = 1, 𝑐6 = 0, 𝑐7 = 1,  
 

And therefore cellular automaton 27 + 26 + 25 + 2 = 226 

conserves the mass. 

From (5), (6), (15), (24), we get 

 

𝑐0 = 0, 𝑐1 = 1, 𝑐2 = 0, 𝑐3 = 0,   
 

𝑐4 = 0, 𝑐5 = 1, 𝑐6 = 1, 𝑐7 = 1,  
 

And therefore cellular automaton 27 + 26 + 25 + 2 = 170 

conserves the mass. 

Theorem 4.2 has been proved.  

 

Remark 4.1: Mechanical sense of obtained rules is the following. 

 

1) CA 184 is an individual motion of particles on a contour of 

cells in the same direction (clockwise), [12] . 

2) CA 226 is individual motion counterclockwise. 

3) CA 240 is total-connection motion clockwise, [22]. 

4) CA 170 is total-connection motion counterclockwise. 

5) CA 204 is identity map. 

4.5. Annihilation and explosion 

Proposition 4.3 (annihilation criterion). A necessary and sufficient 

condition for the mass to decrease at any iteration of Turing dial it 

that one of the rules 008, 064 or the O-map. 

Proof. For the mass to decrease it is necessary to have  

 

𝑐0 = 0,                                                                                        (27) 

 

𝑐7 < 1 ⇔ 𝑐7 = 0,                                                                       (28) 

 

𝑐2 + 𝑐5 < 1 ⇔ 𝑐2 = 𝑐5 = 0,                                                      (29) 

 

𝑐1 + 𝑐2 + 𝑐4 < 1 ⇔ 𝑐1 = 𝑐4 = 0,                                             (30) 

 

𝑐3 + 𝑐6 + 𝑐5 < 2 ⇔ 𝑐3 + 𝑐6 ≤ 1, ⇒ (𝑐3 = 0, 𝑐6 = 1, ) ∨ (𝑐3 =
1, 𝑐6 = 0),                                                                                   (31) 

 

𝑐1 + 𝑐3 + 𝑐6 + 𝑐4 < 2,                                                               (32) 

 

𝑐1 + 𝑐3 + 𝑐6 + 𝑐4 < 3.                                                               (33) 

 

In accordance with (25)–(31) we have  

 

𝑐0 = 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 𝑐5 = 0, 𝑐6 = 1, 𝑐7 = 0, 𝑜𝑟  
 

𝑐0 = 𝑐1 = 𝑐2 = 0, 𝑐3 = 1, 𝑐4 = 𝑐5 = 𝑐6 = 𝑐7 = 0.  
 

Therefore the annihilation corresponds to rules 0,008 or 064. 

Similarly we obtain the following.  

Proposition 4.4 (explosion criterion).A necessary and sufficient 

condition for the mass to increase at any iteration of Turing dial is 

that one of the rules 247, 253 or the 1-map. 

5. Simplest two-dimensional automata 

Consider a two-dimensional generalization of the simplest cellular 

automaton. Assume that a cellular automaton is defined on the 

toroidal system of cells (𝑖, 𝑗), 𝑖 = 0,1, … , 𝑚, 𝑗 = 0,1, … , 𝑛, (𝑛 ≥ 3, 

𝑚 ≥ 3). Each of these cells is in state 0 or 1 at every moment 𝑇 =
0,1,2, … The automaton is defined by a table, similar to Table 3.1, 

but now, if in 𝑘-th column of the table, row 𝑏1𝑏2𝑏3 is given above 

and the digit 𝑐𝑘 below, then this means the following. If the cell 

(𝑖, 𝑗) is in the state 𝑏2, the cell (𝑖 − 1, 𝑗) (substraction modulo 𝑚) is 

in the state 𝑏1, and the cell (𝑖 − 1, 𝑗) (substraction modulo 𝑛) is in 

the state 𝑏3, then, at the next moment, the cell (𝑖, 𝑗) is in the state 

𝑐𝑘, 𝑘 = 0, … ,7. 

This class contains 256 cellular automata. The numeration of these 

automata is analogous to the numeration of cellular automata 

considered in Sections 2 - 4. 

Cellular automata, conserving the mass, are defined such as for one-

dimensional case. 

Theorem 5.1. In considered class, there are just 3 cellular automata 

conserving the mass. They are automata 170, 204, 240. 

Proof. Since the map conserves the matrix, containing only zeros, 

and the matrix, containing only ones, 

 

𝑐0 = 0, 𝑐7 = 1.                                                                            (34) 

 

Suppose we have matrix, got by repeating the matrix  

 

(
0 0
0 1

)  

 

In the direction of both coordinate axes. Considering the map of this 

matrix, we get  

 

𝑐0 + 𝑐1 + 𝑐2 + 𝑐4 = 1.                                                               (35) 

 

From (32), (33), we get 

 

𝑐1 + 𝑐2 + 𝑐4 = 1.                                                                       (36) 

 

Suppose we have matrix having got by repeating the matrix 

 

(
0 0
1 1

)  

 

In the direction of both coordinate axes. Considering the map of the 

matrix, we get  

 

𝑐1 + 𝑐6 = 1.                                                                                (37) 

 

Similarly, considering matrices  
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(
0 1
0 1

),  

 

(
1 0
0 1

),  

 

We get equations 

 

𝑐3 + 𝑐4 = 1,                                                                                (38) 

 

𝑐2 + 𝑐5 = 1.                                                                                (39) 

 

If 𝑐2 = 1 then, from (32), (33)–(37) we get 

 

𝑐0 = 0, 𝑐1 = 0, 𝑐2 = 1, 𝑐3 = 1,   
 

𝑐4 = 0, 𝑐5 = 0, 𝑐6 = 1, 𝑐7 = 1,  
 

i. e., we have cellular automaton 204. 

Similarly, assuming that 𝐶4 = 1 we get 

 

𝑐0 = 0, 𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0,   
 

𝑐4 = 1, 𝑐5 = 1, 𝑐6 = 1, 𝑐7 = 1,  
 

This corresponds to cellular automaton 240. 

Assuming that 𝑐2 = 1 we get  

 

𝑐0 = 0, 𝑐1 = 1, 𝑐2 = 0, 𝑐3 = 1,   
 

 𝑐4 = 0, 𝑐5 = 1, 𝑐6 = 0, 𝑐7 = 1,  
 

i. e., we have cellular automaton 170. Thus,  

 

𝑐0 = 0, 𝑐1 = 0, 𝑐2 = 1, 𝑐3 = 1,  
 

𝑐4 = 0, 𝑐5 = 0, 𝑐6 = 1, 𝑐7 = 1,                                                   (40) 

 

𝑐0 = 0, 𝑐1 = 0, 𝑐2 = 0, c3 = 0,   
 

c4 = 1, c5 = 1, c6 = 1, c7 = 1,                                                   (41) 

 

c0 = 0, c1 = 1, c2 = 0, c3 = 1,   
 

c4 = 0, c5 = 1, c6 = 0, c7 = 1.                                                   (42) 

 

It is easy to prove that cellular automata 170, 204, 240 conserve the 

mass. 

 

Theorem 5.1: Has been proved. 

 

Remark 5.1: Cellular automaton 204 corresponds to the identity 

map. Cellular automaton 240 corresponds to total-connected 

movement in the direction of the first coordinate increase. Cellular 

automaton 170 corresponds to total-connected movement in the 

direction of the second coordinate increase. 

 

Proposition 5.2 (annihilation criterion). A necessary and sufficient 

condition for the mass to decrease at any iteration it that the rule 0 

be fulfilled (0-map). Proof. Considering maps of matrices, 

considered in the prove of Theorem 5.1, we get  

 
c0 = 0, c7 < 1,
c1 + c2 + c4 < 1,
c1 + c6 < 1,
c3 + c4 < 1,
c2 + c5 < 1.

  

 

From this Proposition 5.2 follows.  

Proposition 5.3 (explosion criterion). A necessary and sufficient 

condition for the mass to decrease at any iteration it that the rule 

255 be fulfilled (1-map). The proof of Proposition 5.3 is similar to 

the proof of Proposition 5.2. 
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