

Copyright © 2018 Lei Xiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.28) (2018) 332-336

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Test case prioritization and selection technique in continuous

integration development environments: a case study

Lei Xiao 1, 3 *, Huaikou Miao 1, 2, Ying Zhong 3

1 School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China

2 Shanghai Key Laboratory of Computer Software Testing & Evaluating, Shanghai, 201112, China
3 College of Computer and Information Engineering of Xiamen University of Technology, Xiamen, 361024, China

*Corresponding author E-mail: : lxiao@xmut.edu.cn

Abstract

Regression testing is a very important activity in continuous integration development environments. Software engineers frequently inte-

grate new or changed code that involves in a new regression testing. Furthermore, regression testing in continuous integration develop-

ment environments is together with tight time constraints. It is also impossible to re-run all the test cases in regression testing. Test case

prioritization and selection technique are often used to render continuous integration processes more cost-effective. According to multi

objective optimization, we present a test case prioritization and selection technique, TCPSCI, to satisfy time constraints and achieve test-

ing goals in continuous integration development environments. Based on historical failure data, testing coverage code size and testing

execution time, we order and select test cases. The test cases of the maximize code coverage, the shorter execution time and revealing the

latest faults have the higher priority in the same change request. The case study results show that using TCPSCI has a higher cost-

effectiveness comparing to the manually prioritization.

Keywords: Software Process; Software Development Life Cycle; Traditional Models; Agile Models; Evaluation Metrics.

1. Introduction

Nowadays, iterative or incremental software development model

have become very popular, which is considered as an essential

method for improving efficiency and quality, reducing the cost

and shortening the cycle of software development. Under the de-

velopment circumstance, engineers merge code at frequent time

intervals [7], [6]. The integrate work involves many tasks, includ-

ing software configuration management, version control, automat-

ic build and testing [17]. Before a new or changed code is submit-

ted to the code repository, the tester firstly test the code on the

locally machine, then submitting to the code base, and all the

modules affected by the new or change code will be implemented

regression testing in available time. So regression testing become

very important and frequent in continuous integration develop-

ment environment, where tester quickly provide faults reports are

a main goal with a tight testing time constraint. Therefore it is

essential to looking for a cost-effective regression testing tech-

nique to keeping the cost of software testing at a low level, The

most straightforward techniques to improving the effectiveness of

regression testing is test case prioritization and test case selection

technique [19], which is a trade-off approach to maximize the

quantity of test cases and find more faults in available testing time.

Test case prioritization and selection technique has been studied

for a long time [19], [13], [16], [15], [3], [12], [8], [14]. As a “tra-

ditional” test case optimization approach which is mainly applied

to detected faults as early as possible and reduce the test execution

time in regression testing. Without loss of generality, the approach

also can be used in continuous integration development environ-

ment. Nevertheless, the integration process has its particularity,

for example, the faults revealed by the recently, namely current-1,

continuous integration cycle have the highest priority than all the

previous cycles. For rigorous time control in continuous integra-

tion environments, the test cases which spend the shorter execu-

tion time will be firstly executed under the same faults detection

ability. Admittedly, selecting the test cased that execute quickly

will result in increasing the number of executed test cases within a

given time. In addition, most of the existing test case prioritization

and selection technique show that the test case having find faults

in the past are more likely find faults in the future [2], [1], based

on this, it is a good strategy to select faults history information as

one of prioritization criteria.

In this paper, we devote ourselves to seek to an approach used in

continuous integration software development environments to

prioritize test cases and acquire its execution subset that can detect

as many faults as possible in a given time. The approach is called

Test Case Prioritization and Selection Technique in Continuous

Integration Development Environments (TCPSCI). Finally, we

implement a case study using publication data sets from Google to

investigate the technique effectiveness. The study results show

that our approach can improve the regression testing faults detec-

tion rate and execute the more test cases within a limit time.

In general, it is difficult to acquire the code feature corresponding

to test cases in system level testing, so the TCPSCI approach just

consider four inputs: (1) Launch time: the beginning time of each

change (2) Execution time: the execution time of each test case (3)

Change request: the number of each continuous integration cycle

(4) Size: the size of the code corresponding to test case, the values

are SMALL, MEDIUM and LARGE. All above inputs are availa-

ble from the Google publication data sets. We conjecture that the

failure history of test cases are more likely to find faults in new

continuous integration cycle regression testing, however, not all

the failure history test cases have the same priority in continuous

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 333

integration environments, the test case have the highest in recently

continuous integration cycle than the previous. This is because

when the new test cases are created test the new feature of the

software and maybe the other test cases are deleted for the feature

they tested are obsolete. Furthermore in the same continuous inte-

gration cycle the test cases with shorter execution time and larger

size have a higher priority.

The main contributions of this paper are following:

1) We proposed an algorithm to re-order the test cases execut-

ing in regression testing in continuous integration software

development environments, which based on the schedule of

continuous integration cycle, the execution time and the

code size coverage by the link test case.

2) We implement a case study to evaluate the algorithm, using

representative open data sets from a famous software com-

pany. The results show that the approach we proposed can

improve the effectiveness of regression testing in continu-

ous integration software development environments.

The rest of this paper is organized as follows. Section 2 introduces

the background and related work about regression testing, test case

prioritization and test case selection, section 3 describes the main

idea of the TCPSCI algorithm, section 4 discuss the result of the

case study. Finally, section 5 concludes this paper and gives the

research directions in the future.

2. Background and related work

2.1. Regression testing

Regression Testing will to be performed when software changes, it

aim to avoid the new components destroy the existing compo-

nents. Therefore, in continuous integration development environ-

ment, regression testing execution become more frequently. The

definition of regression testing process is as following:

1) Select T 0 T and use T 0 to test P0 in order to establish the

correctness of P’ about T 0.

2) Create a set of new functional or structural tests T 00 for P0 if

necessary, and use T 00 to test P0 in order to establish the

correctness of P’ about T 00.

3) Create T 000, a new test suite, and test history for P’ from T ,

T 0 and T 00 respectively. As shown in above process, P0 is a

modified version of P, and P is the current version of the

program. T is a test suite of P. The method of selecting T 0

is important [13].

2.2. Test case prioritization and selection problem

Re-running all the test cases is the most straightforward method

that can ensure that all faults will be detected of the software.

However, re-running all the test cases is very expensive, it is al-

most impossible because of the limitation of time and resources.

So, many researchers present the other techniques to improve the

effectiveness of regression testing, such as test case prioritization

and test case selection .The former is using a certain criteria to

reorder test cases to increase the chance of early fault detection

[16]. The latter is given P0 is the modified version of program P, T

is a test suite of satisfaction P, find a subset of T, T 0, with which

to test P0. The complete definition of test case prioritization and

test case selection are given by Yoo et al [19].

In recent decades, there are a number of approaches on test case

prioritization that have been proposed. For instance, Rothermel et

al. proposed the technique based on the statements and branch

coverage of test cases [16], [15]. Qu Bo et al. proposed technique

based on test suit design information [12]. Yang et al. put forward

test cases prioritization based on the requirement [3]. Korel et al.

presented model-based test prioritization which goal is for early

fault detection in implementations of model changes in the system

[3]. Recently, Henard et al. compared white-box and black-box

test prioritization and found the difference between black-box and

white-box performance [8].

Because test case prioritization technique just consider the order

of test cases, do not omit test cases, in cases omit some test cases

is acceptable. Alternatively, test case selection is used that based

on test case prioritization when time and cost are more limited. To

date, there have some work about test case selection techniques

have been proposed, which based on data-flow analysis, symbolic

execution or code coverage data approaches [19]. For example,

Rothermel et al. designed algorithms which construct control flow

graphs for system under testing and its modified version and use

these graphs to select tests that execute changed code from the

original test

suite [14], [20].

2.3. Regression testing techniques in continuous integra-

tion development environments

There have a few work to consider regression testing in continu-

ous integration development environments [20], [5], [9], [18],

[11]. The most relevant to our research, Elbaum et al [5] divide the

regression process into pre-submit and post-submit phase, consid-

er continual regression test selection in pre-submit phase and re-

gression test prioritization in post-submit. They do the experiment

using the Google shared date set of test suite results. Yoo et al [20]

present an approach using multi-objective regression testing opti-

mization: dependency coverage, fault history, execution time and

failing tester, in Google’s continuous integration of post-submit

test phase .They illustrate that the regression testing time can be

reduced by between 33%-82%, using the technique. Spieker el al

[18] proposed a test prioritization and selection approach based on

reinforcement learning. It is a lightweight technique which mainly

uses reinforcement learning to select and prioritize test cases.

They just consider the duration, failure history and previous last

execution of test cases in continuous integration development

environments, not included the size of code corresponding to test

case. The essay: data visualization-google shared dataset of test

suite results reported by Fishelovich, Busany et al. show that the

probability of finding faults of code size are large, medium and

small from high to low in turn. Our work regard code size link to

test case as one of a prioritize index.

3. Our methodology

3.1. Regression testing in continuous integration devel-

opment environments

The integration of each time will invoke a regression testing in the

software life cycle. Especially in continuous integration develop-

ment environments, frequent building process will results in more

regression testing. The main character of continuous integration

development process is quick feedback. At each cycle, the new

source code is submitted to the code-base, all regression testing

will be completed under the ideal circumstance, but in fact, it is

impossible, because of tight time control mechanism in integration

development environments. Just re-execution part of test cases is

the best choice in order to improve productivity instead of re-

running all the test cases in most of software companies.

3.2. Continuous test cases prioritization and selection

The goal of test cases prioritization is to find an appropriate re-

gression testing execution order for revealing the faults early. Test

cases selection aim to find a subset of test cases in order to reveal

more faults when just executing part of test case in regression

testing. In continuous integration development environments, test

cases grow quickly, regression testing is frequently and develop-

ment time is constraint. So trying to maximize the execution quan-

tity of the test cases and find more faults at the given testing time

domain is a good strategy.

In our work, given the set of test cases T = fT1; T2; ; Tng, all the

test cases belong to different change request, before regression

334 International Journal of Engineering & Technology

testing, all the test cases have been executed at least one time.

Every test cases have the following attributes after executing sys-

tem testing in continuous integration development environments:

change request, launch-time, execution-time, size of code corre-

sponding to the test case and execution status: PASSED or

FAILED. Generally, we consider that a test case with high cover-

age rate have the higher priority. What’s more, based on history

execution information test case prioritization technique [11] shows

the hypothesis is right, in most situation, if a test case find faults in

the past, it more likely find faults in the future, as a result, the test

case which has failed status precede over the other which have

passed status. The test cases of the maximize code coverage, the

shorter execution time and revealing the latest faults have the

higher priority in the same change request. In the context, the

continuous test cases prioritization and selection strategy is de-

scribed as following, the test cases prioritization objective func-

tion f is defined in Eq. (1):

f = (maximize (p); minimize(ET)) (1)

Where p is the priority values of each test case and ET is the exe-

cution time respectively. The problem of test cases prioritization is

to find the test cases execution order:

8Ti (i = 1; ; n) f (Ti) f (Ti+1)

Due to “quick feedback and fix” in continuous integration devel-

opment environments, we hope the test case which can find faults

and have shorter execution time can execute early. To address this

problem, we need to hunt for suitable prioritization criterion and

execution time of each test case, once the test case has been exe-

cuted; it is easy to acquire the execution time. The key to the prob-

lem is to solve the maximize p traditionally; we believe that the

test cases have the higher priorities which have detected faults in

the previous test process. In changing development environments,

constantly create new test cases and delete obsolete test cases.

Therefore we consider that the test cases of find faults in the most

recent test execution are superior to the others which find faults at

earlier than before. So the details of our approach are described as

following:

Step1 acquire the test cases in the same change request Step2 re-

order the change request according to the launch time of each

change request, the higher priority is, the later the launch time is.

Step3 the test cases belong to the same continuous integration

cycle, namely, have the same change request number, the test case

prioritization criterion is firstly schedule the failure history test

cases, get From the value of status, if the test cases have same

status, we consider the size and the execution time, the large size

and the shorter execution time have the higher priority.

For example, suppose we have ten test cases which belong to three

test change request(integration cycle)respectively, shown in Table

1. Among them, change request 1 include test case 1, 2, 3, change

request 2 include test case 4, 5 and change request 3 include test

case 6, 7, 8, 9, 10. Launch time is the start time of test execution,

and execution time is the time of executing each test case. The

size represents the code size corresponding to test case, and the

status is the result of test execution, failed or passed.

According to our priority technique, in the recent regression test-

ing, the execution order of the ten test cases is illustrated by the

Fig. 1.

Fig. 1: The Execution Order Using the Test Case Prioritization.

From the Table 1, Change Request 3 the new continuous integra-

tion cycle, it has the highest priority than Change Request 2 and

Change Request 1,and T7 and T8 are the last execution test cases

of finding faults, they have the same size, but the execution time

of TT7 is shorter than T8, in the light of our rule, T7 is superior to

T8. Because T6-T10 are in a same test suites, T6, T9 and T10 are

superior to the other test case. The size of T9 is larger than T6 and

T10, so T9 have the best priority comparing to T10 and T6.In addi-

tion to, the execution of T10 is shorter than T6, T10 is in front of T6.

Generally, the rest of the test case in Change Request 1 and

Change Request 2 have the same rule.

3.3. The measures of our technique

We need a performance indication to evaluate our technique per-

formance, in this paper, we adopt the same evaluation metric as

literature [17]. It is Normalized APFD, different from the tradi-

tional APFD index [10], the Normalized APFD consider the prob-

ability of test case selection and its definition in Eq. (2).

 (2)

Ordered sequence (T Si T), rank(t) is the execution order of each

test case, rank: T Si ! N, in other word, rank(t) is the position of t

in T Si, and T Si
f ail is the subset of T Si which includes the test

case finding faults in the current regression testing, and T Stotal
i
; f ail

includes all the test cases which can detected faults with T . If the

regression testing execute all test case, T Stotal
i
; f ail equal to T Si

f ail

, p is 1 and NAPFD is the same as APFD, the regression testing

just adopt test case prioritization technique not use test case selec-

tion technique. From the evaluating indicator, we find that the

greater the NAPFD value is, the better the technique performance

is.

4. Empirical study

Our work is aimed to evaluate whether the test case prioritization

and select technique can find more faults in regression testing

when the test execution time is limit in continuous integration

development environments. This section we introduce a case study

to investigate the effectiveness of our approach, we complemented

the experiments is to answer the questions as follows:

1) Can our approach execute as many test cases as possible

when the test time is limit?

2) Can our approach firstly execute the test cases which find

faults?

In order to finish the experiments, we use open data sets from

Google. The dataset is Google Shared Dataset of Test Suite Re-

sults (GSDTSR) [4], that is available for use by the software test-

ing researcher, It contains 3.5 million test suite execution results,

gathered over a period of 30 days, the dataset details is described

in the literature [5], and the dataset include information can satisfy

to our experimental requirements. We conduct our experiment

according to the percentage of test case execution and the percent-

age of testing execution time from 20% to 100%, and choose the

NAPFD values and the number of detected faults as evaluation

indicator. Comparing the manual and TCPSCI technique the re-

sults of the study are given in Table 2. The execution time on the

percentage of the test cases with NAPFD is shown in Table 2(a),

while the number of faults detected is given in Table 2(b).

The results are also depicted in Fig. 2 (a) and 2 (b), respectively.

International Journal of Engineering & Technology 335

(A) NAPFD Difference for Manually-Prioritized and TCPSCI Priori-

tized Test Case

(B) Number of Detected Faults for Manually-Prioritized and TCPSCI

Prioritized Test Case

Fig. 2: Test Case Execution Time and Detected Faults.

The study results indicate that the TCPSCI approach can improve

the rate of fault detection when the execution time

Table 1: An Example of Testing Execution Information

Change Re-
quest

Test
Case

 Launch Time
Execution
Time

 Size Status

1 1 1:00:00:02 13899 LARGE PASSED

1 2 1:00:00:30 23390 LARGE FAILED
1 3 1:00:00:33 35789 LARGE PASSED

2 4 1:00:00:34 15204 LARGE PASSED

2 5 1:00:00:34 22488 LARGE PASSED
3 6 1:00:00:35 19646 SMALL PASSED

3 7 1:00:00:56 582 SMALL FAILED

3 8 1:00:00:56 7125 SMALL FAILED
3 9 1:00:00:58 3454 MEDIUM PASSED

3 10 1:00:00:58 6241 SMALL PASSED

a) NAPFD percentage test case execution time.

Table 2: Test Case Execution Time and Detected Faults

Percentage of test case execution time

 20

%

 40

%

60

%

 80

%

 10

0%

 Man-
ual

 NAP
FD

 0.0
052

 0.0
114

0.1
49

 0.2
01

 0.5
29

 TCP-

SCI

 0.1

070

 0.2

890

0.4

27

 0.4

86

 0.6

52

 20% 40% 60% 80% 100%

Manual 94 122 157 170 253

TCPSCI 115 161 196 211 253

b) Number of detected faults based on the percentage of test

cases executed

Percentage of test case execution time is limit. Especially execu-

tion time is 60%, the NAPFD value is 0.149 versus 0.427 compar-

ing to manual order and the prioritized-order. Furthermore, from

Fig. 2(b), we can see that the test case prioritized by the TCPSCI

technique always detect more faults comparing the manual order,

the percentage of test case execution is 20%, 94 versus 115, 40%,

122 versus 161. The results positively answer the question (2). In

summary, applying the TCPSCI technique to regression testing

will find more faults in a given time We introduce the test case

prioritization and selection approach in continuous integration

development environments and use an open dataset from Google

to conduct our case study. From the results of the study we can see

that the technique can find more faults within a shorter execution

time, so it can improve the cost-effectiveness of regression testing.

Especially in continuous integration development environments,

when test suites grow quick and time is tight limit, it is a suitable

approach to use in regression testing. However, our technique

have some limitation, such as the evaluate indicator is simple and

the case study just using a data set from one company. In addi-

tional, we don’t compare the technique to the criteria provided by

the other literature [9], [18], [11]. Above all are our study direc-

tions in the future.

Acknowledgments

This research work is supported by National Natural Science

Foundation of China (61572306, 61502294) and Fujian Province

Universities and Colleges under Grants (No.JK2015033).

References

[1] M. J. Arafeen and H. Do. Test case prioritization using require-
ments-based clustering. In Proceedings of the 2013 IEEE Sixth In-

ternational Conference on Software Testing, Verification and Vali-

dation, ICST ’13, pages 312–321, Washington, DC, USA, 2013.
IEEE Computer Society.

[2] R. Carlson, H. Do and A. Denton. A clustering approach to improv-

ing test case prioritization: An industrial case study. In Proceedings
of the 2011 27th IEEE International Conference on Software

Maintenance, pages 382–391, Washington, DC, USA, 2011. IEEE

Computer Society.
[3] X. Chen, J.-H. Chen, X.-L. Ju, and Q. Gu. Survey of test case prior-

itization techniques for regression testing. Journal of Software,

24(8):1695–1712, 2014.
[4] S. Elbaum, A. Mclaughlin, and J. Penix. The google dataset of

testing results. https://code.google.com/p/ google-shared-dataset-of-

test-suite-resutls, 2014.
[5] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving

regression testing in continuous integration development environ-

ments. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014,

pages 235–245. ACM, 2014.

[6] M. Fowler. Continuous integration. https:
//www.martinfowler.com/articles/ continuousIntegration.html,

2006.

[7] Glover, P. M. Duvall, and S. Matyas. Continuous Integration: Im-
proving Software Quality and Reducing Risk. Pearson Education,

2007.

[8] Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon. Com-
paring white-box and black-box test prioritization. In Proceedings

of the 38th International Conference on Software Engineering, pag-

es 523–534. ACM, 2016.
[9] P. Kandil, S. Moussa, and N. Badr. Cluster-based test cases prioriti-

zation and selection technique for agile regression testing. Journal

of Software Evolution & Process, 29(6), 2017.
[10] G. Malishevsky, G. Rothermel, and S. Elbaum. Modeling the cost-

benefits tradeoffs for regression testing techniques. In Proceedings

of the International Conference on Software Maintenance, pages 1–
10, 2002.

[11] D. Marijan, A. Gotlieb, and S. Sen. Test case prioritization for con-

tinuous regression testing: An industrial case study. In Proceedings
of the 2013 IEEE International Conference on Software Mainte-

nance, ICSM ’13, pages 540–543. IEEE Computer Society, 2013.
[12] B. Qu, C.-H. Nie, and B.-W. Xu. Case prioritization based on test

suite design information. Chinese Journal of Computers,

31(3):431–439, 2008.
[13] G. Rothermel and M. J. Harrold. Analyzing regression test selection

techniques. IEEE Transactions on Software Engineering,

22(8):529–551, 1996.
[14] G. Rothermel and M. J. Harrold. A safe, efficient regression test

selection technique. ACM Transactions on Software Engineeering

Methodology, 6(2):173–210, 1997.
[15] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test case

prioritization: An empirical study. In Proceedings of the Interna-

tional Conference on Software Maintenance, pages 179–188, 1999.

https://code.google.com/p/google-shared-dataset-of-test-suite-resutls
https://code.google.com/p/google-shared-dataset-of-test-suite-resutls
https://code.google.com/p/google-shared-dataset-of-test-suite-resutls
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html

336 International Journal of Engineering & Technology

[16] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing test cases for

regression testing. IEEE Transactions on Software Engineering,
27(10):929–948, 2001.

[17] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige. Reinforce-

ment learning for automatic test case prioritization and selection in
continuous integration. In Proceedings of the 26th ACM SIGSOFT

International Symposium on Software Testing and Analysis, pages

12–22. ACM, 2017.
[18] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige. Reinforce-

ment learning for automatic test case prioritization and selection in
continuous integration. In Proceedings of the 26th ACM SIGSOFT

International Symposium on Software Testing and Analysis, ISSTA

2017, pages 12–22. ACM, 2017.
[19] S. Yoo and M. Harman. Regression testing minimization, selection

and prioritization: a survey. Software Testing Verification & Relia-

bility, 22:67–120, 2012.
[20] S. Yoo, R. Nilsson, and M. Harman. Faster fault finding at google

using multi objective regression test optimisation. In Proceedings of

ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering, FSE 2011. ACM, 2011.

