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Abstract 
 

This research deals with a scheduling problem for parallel machines environment to minimize total weighted tardiness with the 

consideration of sequence dependent setup times and release dates. There are two research questions that need to be addressed: 1) How to 

allocate jobs on machines ?  2) How to sequence jobs on each machine? Therefore, this research aims to find an efficient solution method 

that answers the research questions with the goal of minimizing the total weighted tardiness with the presence of sequence dependent 

setup times. Due to the complexity of the problem at hand, the authors have developed genetic algorithm to find a solution to this prob-

lem. Furthermore, various dispatching rules were used to enhance the performance of the genetic algorithm in terms of the total weighted 

tardiness value. 
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1 Introduction 

In industrial manufacturing environment, a typical set of decision 

levels consists of facilities design, assignment of products to 

manufactuing plants where  production scheduling and operations 

scheduling plays an important role.Thus, operations scheduling is 

at the bottom of the hierarchical planning system. Its purpose is to 

make the most detailed scheduling decisions, involving the 

assignment of the operations to specific machines and operators 

during a given time interval.  The parallel machines shop can be 

regarded as an extension of the single machines, in the sense that 

the jobs still consist of only one operation (Graves, 1981). There 

are m machines that work in parallel. In general, a given job can 

be processed on several of the m-machines, possibly on any of 

them; however, different processing times may be required if the 

machines are not identical.  While the single machine is more of 

theoretical interest, the parallel machines scheduling problem 

often arises in many real-life situations such as scheduling of a 

multiple-processors computer system on a set of jobs, and 

scheduling of jobs in a group technology cell with identical 

machines. Some other applications can be seen in the hospital 

scheduling of patients on identical test facilities and in the 

scheduling of deliveries on trucks. Futhermore,  techniques 

studied in parallel machines problems are used in decomposition 

procedures in multistage system. 

In scheduling, the decision making process of allocating limited 

resources over time in done with the purpose of optimizing certain 

objective functions or goals set by the industry (Baker, 1974). It is 

a regular practice in the shop floor of the industry, as a planning 

system assigns a completion date to every job and that the sched-

uler strives very hard to schedule the jobs so that the due dates 

could be met. Therefore, the complexities of this task have moti-

vated the increase in due date scheduling in which it attracts both 

the researchers and industrial practitioners. One of the sought-after 

performance measures in today’s world is the total weighted tardi-

ness (TWT). Tardiness is a measure that depicts the lateness of an 

activity if it is completed after its due dates and takes the value of 

zero if it meets the due date or completed earlier than its due date. 

The weight component which is added to the tardiness shows the 

importance of an activity and the heavy penalty or costs that in-

curs if the due date is not met. The weight can be viewed as an 

economic interpretation such as dollar penalties per day of flow 

for the activity or it can be related to the importance of the cus-

tomer. The costs or penalty include contract penalties, loss of sale, 

customer dissatisfaction and potential loss of reputation. Although 

the due date performance measures such as the TWT poses a theo-

retical challenge to researches, its significance in the industrial 

application is indispensable. Zhu and Wilhelm (2006) concluded 

in their review paper that due date related objectives is a fertile 

opportunities for future research. Allahverdi et al. (2008), a very 

prominent reviewer in the area of scheduling, provided an exten-

sive review of the non-batch and batch scheduling problems. From 

their investigation, they revealed that most of the research papers 

made an assumption that the setup time is either neglected or con-

sidered as a portion of the job processing time. However, they 

concluded that since scheduling with setup times and cost is gain-

ing popularity among schedulers in the industry; nevertheless this 

field of research has great potential for future research. In a recent 

analysis by Conner (2009), half of the 250 industrial projects con-

sist of sequence-dependent setup times. In situations where these 

setups are applied well, 92% of the customers due dates could be 

met.  

The problem statement of this research can be defined as such: 

There are a group of machines in parallel and each of the ma-

chines can process only one job at a time. We shall denote the 

number of jobs by ,n  their processing time by
jp
. Each of job i , 

has a due date id , a processing time ip  , a weight iw  and job 
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ready time 
jr

(or may also be referred to as release date). When a 

job k is processed after job j  then a setup time jks
 is incurred. 

The setup time is solely dependent on the job j and k and is inde-

pendent of the machine on which the jobs are being processed. 

The completion time of job j is denoted by 
jC

, and the tardiness 

of job j is defined by 
).0,max( ijijij dCT 

 By adopting the 

notations of Lawler et al. (1982), the scheduling problem is being 

research as 
.// ,  jjjjkm TwrsP

 

2 Literature Review 

The study of parallel machine scheduling problem is essential due 

to its widespread application in the real world industry (Lin and 

Lin (2013)). Despite the wide application of the parallel machine 

scheduling in practice, most of the study of these scheduling prob-

lems ignores problems with sequence dependent setup times or 

release dates (Shih Wei Lin et al., 2011).As the parallel machine 

problem TWT problem with release dates is an NP-hard schedul-

ing problem (Lenstra et al., 1977, Pfund et al., 2008), the solution 

methods for industrial size problem focuses on heuristics methods 

in the literature. The common approach in industry is to use dis-

patching rules as it is the easiest way to address the parallel ma-

chine TWT problem and have been described by Pinedo (2002). 

With the advancement of computing systems in recent years, dis-

patching rules continue to be one of the most promising technolo-

gies for practical applications (Chen, et al., 2013). The static dis-

patching rule which requires at most O(n log n) computational 

time, for example, the earliest due date (EDD) rule, the shortest 

processing time (SPT) and the weighted shortest processing time 

(WSPT) are the simplest and most widely used rule. Very often 

the comparisons of dispatching rules are between the WSPT and 

EDD for the TWT problem. These can be seen in the work of 

Vepsalainen and Morton (1987), Morton and Pentico (1993), 

Huegler and Vasko (1997) and Volgenant and Teerhuis (1999) 

and many others. Regardless of producing fast solutions to the 

scheduling problems, the dispatching rules are known to be myop-

ic and the solution quality is naturally much inferior compared to 

the optimal solutions (Pfund et al., 2008).  

Vepsalainen and Morton (1987) applied the principles of the 

COVERT and the MOD rule to develop the ATC, a dynamic and 

consists of composite rule, for the parallel machine TWT problem. 

Pinedo (1995) stated that the EDD and the ATC rule have been 

popular while providing reasonably good results for problems 

related to tardiness.  Lee et al. (1997) built upon the ATC ap-

proach and developed a 3-phase approach which consists of ATC 

with setups (ATCS) and followed by simulated annealing for im-

provement of the solution. Extension of the ATCS method was 

developed by Pfund et al. (2008) by using a grid approach to de-

termine the scaling parameters for the ATCSR. The grid and re-

gression versions of ATCSR gives better performance than grid 

and empirically based formula versions of ATCS, BATCS, and X-

RM which are prominent algorithms in the literature. The alterna-

tive method to enhance the performance of the ATCS is to com-

bine it with other metaheuristic which tends to be a more popular 

approach in the literature. Eom et al (2002) proposed a three-phase 

heuristic for the batch sequence dependent setup times in a parallel 

machine TWT problem. Tabu search was used in the final phase 

of the algorithm. Chang and Hyun (2003) modified the ATCS rule 

of Lee et al. (1997) and called is the MATCS rule where they 

employed a restricted tabu search algorithm with the elimination 

of non-effective job moves, for finding the best neighbourhood 

schedule. This method performed better than the basic tabu search 

and simulated annealing. 

Genetic algorithm (GA) is another prominent metaheuristic in the 

scheduling literature which have been developed by Holland 

(1975). It is a search process simulating the natural evolutionary 

process. Starting with a current population of possible solutions to 

the scheduling problem, the best solutions are allowed to produce 

new children by the process of mutation and crossover in the aim 

of providing better generations that meet the goal or the objective 

of the scheduling. This approach has been found to quickly gener-

ate good solutions for a wide variety of scheduling problems 

(Schaller, 2014). Some successful applications of GA can be 

found in Malve & Uzsoy (2007), Zhou et al. (2009), Behnamian et 

al. (2009) ,Demirel (2011), Lin, Pfund and Fowler (2011) and 

Schaller (2014). In a very recent article, Joo & Kim (2015) devel-

oped a hybrid genetic algorithm with the combination of dispatch-

ing rule for the unrelated parallel machine and production availa-

bility. The objective of this problem is to determine the allocation 

policy of jobs and the scheduling policy of machines to minimize 

the total completion time. To solve the problem, a mathematical 

model for the optimal solution is derived, and hybrid genetic algo-

rithms with three dispatching rules are proposed for large-sized 

problems. 

This research addresses the gap in the literature review by address-

ing the sequence dependent setup times together with the TWT 

objective criteria and release dates that is often ignored by re-

searchers in the scheduling environment. Furthermore, the direc-

tion of future research moves towards devising intrinsic design of 

heuristic algorithm that is able to provide efficient solution for the 

scheduling problem. 

3 Methodology 

The research methodology is as follows: 

1) Allocations of jobs to machines by using dispatching heuris-

tics. 

2) Sequence the jobs in machines by dispatch heuristics and ge-

netic algorithm. 

3.1 Dispatch Heuristics  

Six different dispatching heuristics algorithms are developed to 

perform the task of allocation of jobs to machines. These heuris-

tics are EDD, WEDD, SPT, ATCSR, BATCS and BATCSmod. 

a) EDD (Earliest due date) 

Whenever a machine becomes free, unassigned jobs which are 

sorted in ascending order of the due date are assigned to the ma-

chine starting from job with the smallest due date. 

b) WEDD (Weighted earliest due date) 

Whenever a machine becomes free, unassigned jobs which are 

sorted in ascending order of jj wd /  are assigned to the machine 

starting from job with the smallest value of jj wd / . 

c) SPT (Shortest processing time) 

Whenever a machine becomes free, unassigned jobs which are 

sorted in ascending order of the process time are assigned to the 

machine starting from job with the smallest processing time. 

d) ATCSR (Apparent tardiness cost with setups and 

ready times index) 

The ATCSR index for job j at current time t is calculated by: 

 

 
 

The urgency of scheduling a job is calculated by using the ATSR 

index. In this index, 21 ,kk
and 3k

 are look-ahead parameters, 

ljs
 is the setup time from job l to job j, s  is the average setup 

time and 
p

is the average processing time of the remaining un-

scheduled jobs. Whenever a machine becomes free, unassigned 

jobs which are sorted in descending order of ),( ltI ATCSR  are 
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assigned to the machine starting from job with the largest value 

of ),( ltI ATCSR  . 

e)  BATCS (Batch apparent tardiness cost with setups) 

The BATCS index for job j at current time t is calculated by: 

 

 
                  

 Here, the index is calculated taking into consideration batch size 

of 1. In this index, 1k and 2k  are look-ahead parameters, ljs  is 

the setup time from job l to job j, s  is the average setup time and 

p is the average processing time of the remaining unscheduled 

jobs. Whenever a machine becomes free, unassigned jobs which 

are sorted in descending order of ),( ltI BATCS  are assigned to the 

machine starting from job with the largest value of ),( ltI BATCS  . 

f) BATCSmod (Batch apparent tardiness cost with set-

ups and modified) 

The BATCSmod index for job j at current time t is calculated by: 

 

 

In this index, 1k and 2k  are look-ahead parameters, ljs  is the 

setup time from job l to job j, s  is the average setup time and p  

is the average processing time of the remaining unscheduled jobs. 

Whenever a machine becomes free, unassigned jobs which are 

sorted in descending order of ),(mod ltI BATCS  are assigned to the 

machine starting from job with the largest value 

of ),(mod ltI BATCS  . 

Once the dispatching heuristics assign jobs to each machine, the 

total weighted tardiness  jjTw is evaluated by aggregating the 

total weighted tardiness values of the single machine sequences 

(obtained on each machine by the dispatching heuristics). 

3.2 Genetic Algorithm 

Genetic algorithm conducts robust search that was developed 

based on concepts and techniques from genetic and evolutionary 

theories. The genetic algorithm contains a current population of 

possible solutions to the scheduling problem at hand. At each 

generation, the intrinsic design of the genetic algorithm allows the 

improvement of the solution pool of the population similar to evo-

lutionary theories whereby genes are refined to be more adaptive 

and stronger to withstand changes at every generation. In this 

scheduling problem, the individual fitness is evaluated by its value 

of total weighted tardiness which is called the fitness function. 

Therefore, in every generation, the fittest individuals which are the 

best solution are chosen to produce new solutions (children) by 

mixing the features of the parent (crossover) or by changing some 

elements of the selected parent (mutation). The worst child will 

die off or becomes extinct to pave way for a stronger population to 

be established. This process of creation of new population which 

replaces the old ones at every generation is repeated until a specif-

ic termination criterion is satisfied.  

The following steps describe how the genetic algorithm is applied 

in this research which consists of initialization, selection, crosso-

ver, mutation, evaluation and termination criterion. A chromo-

some is defined as sequence of jobs in machines which is com-

posed of sub-chromosomes that represents sequence of jobs in 

each machine. Each job in a chromosome is referred to as a gene. 

i)Initialization: Generate initial population by using the dispatch 

heuristics solutions. 

ii)Selection: Two individuals (parents) with the best fitness func-

tion are selected. In other words, two chromosomes which provide 

the lowest total weighted tardiness value are selected from the 

pool of the population. 

iii) Crossover: Once parents are selected, crossover operation is 

performed with a crossover probability of cp to generate two new 

children solutions. A single point crossover method is used where 

a random number between 2 and n-1 is generated ( n is the length 

of the chromosome) to determine the crossover point. The genes 

before the crossover point in the first chromosome represent the 

first part of the first child chromosome. The second part of the 

first child chromosome is generated by adding those genes that are 

not yet in the child chromosome in order of their appearance in the 

second chromosome. On the other hand, the genes before the 

crossover point in the second chromosome represent the first part 

of the second child chromosome. The second part of the second 

child chromosome is generated by adding those genes that are not 

yet in the child chromosome in order of their appearance in the 

first chromosome. Figure 1 below provides an example of how a 

crossover process is performed. The number of jobs in each ma-

chine for the first child is the same as parent 1. Similarly, the 

number of jobs in each machine for the second child is the same as 

the second parent. 
 

 
Fig 1:. Crossover operation 

 

iv) Mutation: A mutation operation is performed with a mutation 

probability of mp to generate a             

new child solution. Two genes (jobs) are randomly selected from 

the parent chromosome and are interchanged. 

v) Evaluation: All the child chromosomes from the crossover and 

mutation processes are evaluated on their fitness function value 

(total weighted tardiness). These chromosomes will be evaluated 

together with other chromosomes in the solution pool. If the num-

ber of chromosomes does not exceed the size of the population, all 

the child chromosomes will be included as part of the population 

pool. Otherwise, the chromosomes that performs the worst will be 

excluded from being part of the solution pool. This method en-

sures that the population size is stable while ensuring a good solu-

tion pool is created at every generation. 

vi) Termination criteria: Process i) - v) is repeated until a termina-

tion criterion (maximum number of generations) is met. The 

chromosome that best contributes to the fitness function value will 

be selected as the solution to the scheduling problem. 

The pseudocode for the Genetic algorithm is presented in Figure 2. 
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Fig 2: Pseudocode for the genetic algorithm 

4. Results and Findings 

Once the solution methodology and the heuristics developments 

are completed there need a systematic testing to investigate the 

performance of the developed heuristics. In this research, all heu-

ristics model was developed and tested by using Matlab software. 

4.1 Data Generation 

 Random instances are generated to investigate the perfor-

mance of the developed models. Here, the random instances is 

established by using similar designs which were considered earlier 

by Lee and Pinedo (1997) and Pfund et al. (2008).  

1. Number of machines is 3, 4 and 5.  

2. Number of jobs is 8 and 10. 

3. Processing time jp is uniformly distributed over the interval 

[50,150]. 

4. Weights jw is uniformly distributed over the interval [1, 10]. 

5. The mean setup time is calculated by .*2 ps   Setup time is 

uniformly distributed over the interval ].2,0[ s  

6. Makespan is estimated by .27*)128003.0(max psC   

7. The mean due date is max*1.0 Cd  . 

8. The due dates are uniformly distributed over the interval 

],75.0[ dd  with probability 0.9 and uniformly distributed over 

the interval ]25.0*)(,[ max dCdd  with probability 0.1. 

9. Ready times are assigned the value 0 if random number gener-

ated is less than 0.2. Otherwise, ready times are uniformly distrib-

uted over the interval  jjj dpd , . If 0 jj pd then the 

ready times are distributed over the interval  jd,0 . 

10. Look ahead parameters are 5.0,5 21  kk and 

.005.03 k  

11. Inputs for genetic algorithm: 6.0cP , 

2.0mP ; 50popS , .300max G  

 

4.2 Results 

The solution quality of all the heuristics models are tested with 

respect to their value of the objective function which is the total 

weighted tardiness (TWT) value. Comparison among the heuris-

tics will be conducted to investigate which heuristics shows the 

best performance overall. By taking the heuristics which is the 

winner of the competition among the developed heuristics, the 

author adopts the percentage relative improvement (PRI) proposed 

by Jin et.al. (2009), which is given by the following formula: 

100*(%)
HEU

heubestHEU

TWT

TWTTWT
PRI


  

where HEUTWT  is the TWT for a heuristic for the particular 

case, and heubestTWT  is the TWT for the best heuristic found for 

the particular case. In this way, the authors investigate how much 

of improvement of the best heuristic solution from a particular 

heuristic solution found so far for a particular case. Table 1 shows 

an output of a problem instance of 8 jobs in 3 machines. 

 
Table 1: Solution for a problem instance of 8 jobs in 3 machines 

Heuristic Mach 

1 

Mach 

2 

Mach 

3 

TWT PRI% CPU 

time 

(s) 

EDD 3,5,2 1,7,4 8,6 3491 48.44 6.597 

WEDD 3,7 8,5,4 6,1,2 4331 58.44 6.598 

WSPT 1,6 3,7,2 5,8,4 7591 76.29 6.599 

ATCSR 3,7 8,1 5,2,6,4 5770 68.8 6.600 

BATCS 1,2 3,5,6 8,7,4 3543 49.2 6.601 

BATCSmod 1,6 3,5,2 8,7,4 3843 53.16 6.602 

GA 3,6,2 1,5,7 8,4 1800 0.00 54.997 

 

Column 1 provides the specific heuristic, columns 2 - 4 provide 

the sequences of jobs in each machine, column 5 gives the total 

weighted tardiness value, followed by column 6 which provides 

the percentage of relative improvement of the best heuristic to the 

specific heuristic and the last column provides the computational 

time taken to provide solution for each of the heuristics. From 

table 1, GA provides the best TWT value, which is 1800 with a 

relative improvement in the range of 48.44%-76.29%. Among the 

dispatch heuristics, EDD performs the best whereas WSPT per-

forms the worst. However, the dispatch heuristics consumes less 

time compared to GA in providing the results. This is because the 

GA contains a more complex steps and iterations in providing the 

final output. Table 2 shows an output of a problem instance of 8 

jobs in 4 and 5 machines.  

 

In Table 2, column 1 provides the specific heuristic. Columns 2-4 

provide results for the case of 8 jobs 4 machines for all the heuris-

tics. Column 2 shows the TWT values, column 3 shows the per-

centage of relative improvement of the best heuristic to the specif-

ic heuristic and column 4 provides the computational time taken to 

provide solution for each of the heuristics. Columns 5-7 provide 

results for the case of 8 jobs 5 machines for all the heuristics 

whereby the explanations are similar to columns 2-4. 

In the case of 4 machines problem, both GA and WEDD provide 

the best answer and shows an improvement in the range of 70.81% 

- 83.30%. WSPT rule provide the worst results.  

On the other hand, in the case of 5 machines problem, GA provid-

ed the best results with an improvement of 28%-76.27% compared 

to other heuristics. In terms of the computational time, the dis-

patch heuristics works much faster than GA in providing the solu-

tion to this scheduling problem. 

In general, Tables 1 and 2 indicate that the TWT values decreases 

in most cases when there is an increase in the number of machines 

for the same number of jobs. The reason is as more machines are 

available, the earlier the jobs are processed which enables the 

tardiness value to decrease. However, in some cases, the combina-

tion of job sequences in each machine influences the deterioration 

of TWT value. Furthermore, in this study, it was found that the 

computational time to obtain final solution for each heuristic in-

Step 1:  Set the input for crossover probability cP , mutation probabil-

ity mP , population size popS  and maximum generation maxG . 

Step 2:  Generate an initial population by using the dispatch heuristics 

solutions. 

Step 3:  Perform selection operation by selecting two chromosomes 
from the population which provide the best and next to best values of 

fitness function. 

Step 4: Perform crossover and mutation operations according to their 
probabilities. 

Step 5: Evaluate the children chromosome on their fitness function.  

Step 6: Include the children chromosomes into the population pool 

until the population size is popS .       Otherwise go to step 7. 

Step 7: Choose the child chromosome which performs the best in 
terms of fitness function from Step 5. Compare the fitness function 

with the chromosomes in the population. The chromosomes that per-

forms the worst will be excluded from the population. 

Step 8: Repeat Step 2 – Step 7 until the maximum generation maxG  

is met. 

Step 9: Select the best chromosome in the population pool in terms of 

its value of fitness function and the sequences of jobs in each ma-
chine. 
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creases when there is an increase in the number of machines for 

the same number of jobs. Table 3 shows an output of a problem 

instance of 10 jobs in 3 machines.  

 
 

Table 2: Solution for a problem instance of 8 jobs in 4 and 5 machines 

Heuristic TWT 

4 machines 

PRI% CPU time (s) TWT  

5 machines 

PRI% CPU time (s) 

EDD 3320 70.81 14.408 2,515 64.21 21.202 

WEDD 969 0.00 14.410 1,563 42.42 21.205 

WSPT 5803 83.30 14.412 1,250 28 21.208 

ATCSR 3679 73.66 14.414 3,793 76.27 21.211 

BATCS 3320 70.81 14.416 1,250 28 21.214 

BATCSmod 3320 70.81 14.418 1,250 28 21.217 

GA 969 0.00 133.042 900 0.00 200.933 

 

Table 3: Solution for a problem instance of 10 jobs in 3 machines 

Heuristic Mach 1 Mach 2 Mach 3 TWT PRI% CPU time (s) 

EDD J3, J8, J2,J4 J9, J10, J6 J1, J5, J7 14, 662 76.78 8.816 

WEDD J3,J6,J1,J2 J9,J7,J4 J10,J8,J5 6,931 50.89 8.817 

WSPT J1,J8,J4 J10,J5,J6 J3,J7,J9,J2 12,022 71.69 8.819 

ATCSR J10,J7,J9 J3,J5,J1,J4 J8,J2,J6 3404 0.00 8.820 

BATCS J10,J8,J6 J1,J7,J4 J3,J5,J9,J2, 5816 41.47 8.821 

BATCSmod J10,J8,J6 J1,J7,J2 J3,J5,J9,J4 5816 41.47 8.823 

GA J10,J7,J9 J3,J5,J1,J4 J8,J2,J6 3404 0.00 77.167 

 
Table 4: Solution for a problem instance of 10 jobs in 4 and 5 machines 

Heuristic TWT 

4 machines 

PRI% CPU time (s) TWT  

5 machines 

PRI% CPU time (s) 

EDD 6839 72.67 16.663 2065 5.38 23.487 

WEDD 6783 72.45 16.665 1954 0.00 23.490 

WSPT 7291 74.37 16.667 2681 27.12 23.493 

ATCSR 5016 62.74 16,669 4095 52.28 23.497 

BATCS 4178 55.27 16.672 3602 45.75 23.500 

BATCSmod 4178 55.27 16.675 3602 45.75 23.504 

GA 1869 0.00 155.570 1954 0.00 223.763 

 
Table 5: Solution for a problem instance of 50 jobs with machine 3, 4 and 5 

Heuristic TWT 

3 machines 

PRI% TWT 

4 machines 

PRI% TWT 

5 machines 

PRI% 

EDD 250284.8 53.04 178,391 52.44 149,449 53.83 

WEDD 183522 35.96 149,712 43.33 115,056 40.03 

WSPT 191367 38.59 150,490 43.62 115,611 40.32 

ATCSR 117522.6 0.00 84,842 0.00 68,997 0.00 

BATCS 131817.1 10.84 94,769 10.48 75,186 8.23 

BATCSmod 132664.5 11.41 98,261 13.66 77,564 11.05 

 

Table 6: Solution for a problem instance of 100 jobs with machine 3, 4 and 5 

Heuristic TWT 

3 machines 

PRI% TWT 

4 machines 

PRI% TWT 

5 machines 

PRI% 

EDD 1,091,107 55.60 794,457 54.38 645,363 54.69 

WEDD 1,311,611 63.07 602,683 39.87 673,497 56.58 

WSPT 690,081 29.80 544,522 33.45 458,939 36.29 

ATCSR 484,410 0.00 362,405 0.00 292,407 0.00 

BATCS 498,346 2.80 372,437 2.69 300,776 2.78 

BATCSmod 507,510 4.55 381,168 4.92 302,132 3.22 

 

Table 7: Solution for a problem instanceez of 200 jobs with machine 3, 4 and 5 

Heuristic TWT 

3 machines 

PRI% TWT 

4 machines 

PRI% TWT 

5 machines 

PRI% 

EDD 4,197,132 56.28 3,065,844 55.04 2,419,332 54.41 

WEDD 3,049,731 39.83 2,282,784 39.62 6,294,840 82.48 

WSPT 5,885,477 68.82 6,590,456 79.08 1,870,720 41.05 

ATCSR 1,835,004 0.00 1,378,420 0.00 1,102,860 0.00 

BATCS 1,852,157 0.93 1,396,805 1.32 1,129,059 2.32 

BATCSmod 1,862,392 1.47 1,393,506 1.08 1,107,295 0.40 

 

Table 8: Solution for a problem instance of 250 jobs with machine 3, 4 and 5 

Heuristic TWT 

3 machines 

PRI% TWT 

4 machines 

PRI% TWT 

5 machines 

PRI% 

EDD 6,366,133 57.35 4,754,897 56.83 3,711,955 56.34 

WEDD 4,564,284 40.51 3,398,062 39.60 9,238,351 82.46 

WSPT 4,141,504 34.44 3,069,509 33.13 9,837,884 83.53 

ATCSR 2,715,271 0.00 2,052,485 0.00 1,620,539 0.00 

BATCS 2,798,703 2.98 2,093,075 1.94 1,678,853 3.47 

BATCSmod 2,781,734 2.39 2,098,458 2.19 1,671,425 3.04 
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Table 3, Column 1 provides the specific heuristic, columns 2 - 4 

provides the sequences of jobs in each machine, column 5 gives 

the total weighted tardiness value, followed by percentage of rela-

tive improvement of the best heuristic to the specific heuristic and 

the last column provides the computational time taken to provide 

solution for each of the heuristics. From table 3, both ATCSR and 

GA provide the best TWT value, which is 3404. EDD performs 

the worst among all heuristics. Both BATCS and BATCSmod 

provide the same value of TWT. Similar to the observations in 

Tables 1 and 2, the dispatch heuristics in this case too consumes 

less time compared to GA in providing the results. Table 4 shows 

an output of a problem instance of 10 jobs in 4 and 5 machines.  

In table 4, in the case of 4 machines problem, GA provides the 

best answer and shows an improvement in the range of 55.27% - 

74.37%. As both BATCS and BATCSmod provide the best solu-

tion among the dispatch heuristics, WSPT rule provide the worst 

results.  

On the other hand, in the case of 5 machines problem, both 

WEDD and GA provide the best results. These two heuristics 

provided an improvement of 5.38%-52.28% compared to other 

heuristics. Furthermore, similar observations was found in terms 

of improvement of total weighted tardiness value and increment of 

computational time when there is an increase in the number of 

machines for the same number of jobs. 

The authors performed further testing to analyse the performance 

of the dispatch heuristics in large size jobs instances as there are 

inconsistencies in their performance towards the TWT values in 

Tables 1-4. Table 5 shows an output of a problem instance of 50 

jobs with machine 3, 4 and 5 

Tables 5-8 clearly indicate that ATCSR outperforms all other 

dispatch heuristics in terms of the total weighted tardiness value 

for a large size problem. The design of the algorithm of ATCSR 

encourages selection of non-ready jobs that contributes to the 

reduction of the total weighted tardiness value. In other words the 

algorithm ensures sequences of jobs with reduced setups or giving 

preference to higher priority jobs arriving in the near future. The 

experiments on the performances of the genetic algorithm for 

large job size problems are still in progress as this algorithm con-

sumes extensive computational time and effort to produce solution. 

5 Conclusion 

This paper addresses the parallel machines scheduling problem 

with the consideration of release dates and sequence dependent 

setup times. The aim of this paper is to provide a good sequence of 

jobs in machines that contribute to the minimization of total 

weighted tardiness value. Due to the complexity of the problem, 

the authors have developed six different types of dispatch heuris-

tics and a genetic algorithm. The developed genetic algorithm 

integrates the solutions of the dispatch heuristics as an initial solu-

tion and further thrives to provide a better solution quality. Based 

on the experiments conducted, the genetic algorithm provides a 

good solution quality to this scheduling problem. Furthermore, the 

ATCSR heuristics performs the best among the dispatch heuristics. 

The authors are further testing the developed algorithm on other 

combinations of jobs and machines. Future work can be in the 

direction of reducing the computational time of the genetic algo-

rithm in providing the solution.  
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