

Copyright © 2018 V. Vivek et. al. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.4) (2018) 123-130

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research Paper

Resource provisioning methodology for cloud environment with

producer and consumer favorable: an approach

of virtual cloud compiler

V. Vivek
 1

*, R. Srinivasan
 2
, R. Elijah Blessing

 3

1 Research Scholar School of Computer Science and Engineering, Karunya Institute of Technology & Science, Coimbatore, India

2 Research Supervisor School of Computer Science and Engineering, Karunya Institute of Technology & Science, Coimbatore, India
3 Professor School of Computer Science and Engineering, Karunya Institute of Technology & Science, Coimbatore, India

*Corresponding author E-mail:

Abstract

Cloud computing is a model where traditional resources such as CPU cycles, storage, security etc. are delivered through web based. It is

a technology which has ability to change large part of software development cycle, 3D rendering or any other computationally expensive

tasks execution. Much amount of time is wasted on compiling and rendering such computationally expensive tasks due to low power

machines, which directly proportional to efficiency of user who is working on that project. Extreme computational tasks such as weather

forecast, DNA analyses, encryption breaking takes so much time in consumer grade computing devices that they are realistically not

possible to perform. We have proposed a novel approach to perform payload distribution, for the users who wanted to run their computa-

tionally expensive tasks efficiently. We have used virtualization technique on data center resources to perform scheduling. Up to 32%

cost has been reduced in an environment of 30 users when our technology used instead of traditional standalone desktop environment.

This is achieved by replacing 30 standalone computers with a powerful server and thin clients like Raspberry pi as clients. Time wasted

in computational task such as rendering and compiling is greatly reduced. We have not only improved the efficiency, but also make sure

both cloud producer and consumer are favorable. With simulations and outcomes, we validate that our methodology for payload distribu-

tion performs well.

Keywords: Cloud Computing; Heavy Computational Task. Payload Distribution; Virtual Compiler

1. Introduction

In summary cloud computing is a model where, unutilized re-

sources are efficiently utilized to perform high level computing

with a lower cost. In the current era technology is the top most key

factor. Any digital computer including the home based personal

computers to office desktop computers are configured with high-

end resources. Most of the users are not completely utilizing these

available resources. To address this issue, grid, utility and cloud

computing has evolved the other. Cloud basic principle is to lease

computing power and store capacity to your desktop through web

based access. The National Institute of Standards and Technology

(NIST) defines cloud computing as a "pay-per-use model for ena-

bling available, convenient and on-demand network access to a

shared pool of configurable computing resources (e.g., networks,

servers, storage, applications and services) that can be rapidly

provisioned and released with minimal management effort or ser-

vice provider interaction [1] [2]. All computing services are broad-

ly categorized in to three types, they are software as service

(Saas), platform as a service (Pass) and infrastructure as service

(Iaas) [3] [4]. Users can lease these computing services / resources

in four methods such as public, private, community and hybrid. In

cloud, there are mainly two actors one is cloud provider and the

other is user. The general communication between these two are

show in fig 1. User send his request to the cloud provider for a

resource, up-on receiving the request from the user the provider

performs matchmaking [5] operation to search for the resource

which can satisfy the user request and allocates it. There-after the

user runs his application on the assigned resources. Various cloud

deployment models and their characteristics are given in fig 2.

Fig 1: Cloud Environment and Usage Scenario

Rapid fast growing technology drives many organizations to adopt

cloud environment for compiling their projects. Currently most of

124 International Journal of Engineering & Technology

the compilers are standalone which are manually installed in the

user devices. These compilers take text as an input and convert it

to be executable and object code. For every different scripting

language and database, user have to install it separately which

may require more storage and configuration process. Installation

and the performance of the compilers depends on the user device

configuration. Scripting languages like C++, Java, .Net, C#, Visu-

al Basic, Perl, Python, Ruby, CSS, Java script require very high-

end devices to run individually and also consumes lot of power.

When there is a need to run these scripts along with the databases

like SQL or mongoDB it requires even more high-end configured

devices and more power [6]. It is expensive to purchase such high-

end devices for an individual or small scale organization. As a

result, in most scenarios user will end up crashing the compliers

when they run heavy scripts or database quires, which requires

reinstallation or admin control to restore back [7]. As some script-

ing languages like Java and .Net need database connectivity, these

settings have to be configured manually by the user for every pro-

ject which is an additional task. There are applications which are

platform dependent, for example few compliers like Ns3 will run

on Linux environment.

Fig .2: Cloud Deployment Models & Characteristics.

In our paper, we propose a novel approach where we design a

cloud environment for users to run their scripts and database que-

ries through web browsers. We have used thin client devices for

efficient, fair and starvation free distribution of payloads. The

remaining sections of this paper are, categorized as following,

section 2 related work, section 3 proposed system architecture,

section 4 implementation of proposed architecture, section 5 com-

parisons of existing and proposed model, and final section is con-

clusion.

2. Related Work

There are various approaches existing where payload distribution

is done and executed in different machines. One such approach is

Single System Image (SSI) [8] [9] [10], in this methodology re-

sources from various low powered machines are pulled up for

making single large virtual machine. The environment in which

operating system and other applications run in such a setup is

logically and technically same as running inside a single powerful

server. This allows to break payloads at OS level, which may re-

sult in greater execution efficiency in some scenarios. OpenMosix

[11] [12] and OSCAR [13] [14] are projects which achieves SSI.

There is various downside of this approach, some of them are,

a) Although process migration is supported which allows one

process to shift to another physical CPU or other CPU –

core inside a CPU, in this case other CPU is resides in a dif-

ferent computer. This increases execution time drastically,

as the execution data has to be copied from memory of one

computer to another.

b) There is no reliable way to know exact CPU load in any

computer which is contributing to SSI.

c) Only Linux systems are supported by SSI, hence computers

running another OS cannot contribute to SSI [14].

d) To properly scale this type of architecture, a lot of low level

(kernel level) changes have to be made which can be very

time consuming and only highly skilled IT professionals can

perform it.

e) Many new hardware components like Nvidia, tesla graphic

accelerator and Intel Xeon phi do not support SSI at the

time of writing due to driver related issues [23].

Web based solution was chosen to achieve efficient payload dis-

tribution as this provides complete compatibility between different

OS. The “servers” (contributors) can install compute packages

which are written for various OS like windows and Linux, this

allows accurate CPU load to be reported back to broker. Further

“client” (consumer) can communicate to broker just like visiting

any other website. This solution is highly scalable, reliable, easy

to maintain as different modules i.e. broker, compute-package,

web services (front end to consumer) can run independently and

can be updated without affecting other modules. Through this

approach new “compute-packages” can be made to support new

type of payload execution. By choosing high level languages like

php to make framework and compute packages, reliability and

security is assured as higher level languages gets frequent updates

and is supported by large number of developers. Choosing such

framework further helps in installation of this architecture as

Product based Service (PBS) by organization who want to install

this architecture in their own hardware. Most of the system archi-

tecture including broker, front end and most part of „compute-

packages‟ is written in php for easy maintenance and scalability.

3. System architecture

The system architecture is explained by taking two different types

of requests (request is raised when consumer submits data to bro-

ker for processing) where one can be broken down into various

payloads efficiently like breaking a hash and the one where it

cannot be broken down at all for

International Journal of Engineering & Technology 125

example compiling a java source code. All the other types of re-

quests sit in between these two types of requests in terms of how

efficiently they can be broken into smaller payloads and executed

independently [15]. All the servers have different types of com-

pute packages installed in them which facilitates payload execu-

tion and communication to broker. There are different compute

packages available which work independently. Hence owner of

server can choose which type of payloads are executed in their

hardware which, reduces security vulnerability as only specific

type of payload gets executed in servers. Fig 3 represents the

overall system architecture.

1) Case 1 – (Requests which cannot be broken into smaller

pieces) this may be considered as a worst-case scenario for

this architecture, as request cannot be broken into smaller

payload. Hence multiple resources cannot be used to exe-

cute task (payload) quickly. In this case, broker will auto-

matically select single most powerful server and execute

payload on that. Flow of such type of requests has been

show in Fig 4. This will greatly improve efficiency of the

worst-case scenarios where request cannot be broken into

smaller payloads.

Fig. 4: Requests, Which Cannot Be Broken Into Smaller Pieces.

As soon as consumer uploads data, java source code in this exam-

ple, the source code along with all the details will get stored in

central ddatabase along with unique job ID. Broker will analyze

request and once concludes that it cannot be broken down into

smaller pieces / payloads, it will search for most powerful server

with low CPU load and pass the unique job ID to this server. Once

server receives the job ID, it will fetch necessary files like source

code and execute payload, which will compile that source code

and upload the executable file back to broker.

2) Case 2 – (Requests can be efficiently broken into smaller

payloads) This may be considered as a best case scenario ,

as the request raised by user can be broken into various

small payloads effectively. In this case, broker will break

the requests into various small parts and assign them to

comparatively lower powered server or the servers which

have high CPU load. This utilizes low powered machine ef-

ficiently, without increasing execution time. Flow of such

type of requests has been show in Fig 5.

Fig 5: Requests Can Be Efficiently Broken Into Smaller Payloads.

As soon as user enters hash and other-necessary details, the broker

will raise a request and enter all details into the central database

along with a unique job ID. Broker will then analyze request and

conclude that it can be broken into various payloads. After this

126 International Journal of Engineering & Technology

broker, will divide the single payload into multiple payloads and

store them with multiple unique job IDs, each payload will contain

only partial number of total words / patterns which has to be brute

forced. Broker will then assign these job IDs to various severs

which will get hash and wordlist according to the job ID given to

them. Once they finish execution of their payload, they will report

result back to the broker.

4. Implementation

For such architecture implementation, three thin clients (Raspber-

ry pi) , three standard desktop computers as servers and one stand-

ard desktop computer as broker were used. All the machines are

running on open source Linux operating system. It should be not-

ed that severs can also run on different operating systems, as com-

pute packages can be ported to windows operating system. Com-

pute packages are dependent on other software‟s to execute their

payloads efficiently. These packages are built to complete separate

execution environment of payloads and user activities in servers.

All the other software‟s used in compute package are free and

open-source in most cases, the complete scenario is shown in Fig

6 below.

Fig 6: Implementation Architecture.

Entire frame work of this architecture is coded in php, with mini-

mum plugins to keep it secure and efficient. Broker provides a

light-weight form through which consumers can upload their data

and raise request. Broker also maintains a Central Database (given

in Fig 7) which is coded in MySQL to store different requests as

Job IDs, and a server database (given in Fig 8) which stores cur-

rent server status, sessions, etc.

Fig. 7: Central Database Architecture.

Fig 8: Server Database Architecture.

CPU rank is given based on which CPU is used in server, when

server is registered in broker, it sends its CPU name and ram to the

broker then broker will calculate its rank by fetching various

benchmark values available online and update server table. Higher

CPU rank means more powerful CPU. Another column „availabil-

ity‟ is used to maintain state of various servers. Here, list of these

codes is given below

1) future use

2) not available

3) Job already running

4) CPU load is 86% to 100%

5) CPU load is 76% to 85%

6) CPU load is 61% to 75%

7) CPU load is 46% to 60%

8) CPU load is 31% to 45%

9) CPU load is 16% to 30%

10) CPU load is 0% to 15%

Server owners can select the maximum level they want to share

their resources. For example, if server owner wants to share his

resources till CPU usage reaches 75%, the compute package will

keep updating broker with various values from 9 to 5 depending

on current usage, but once CPU load goes beyond 75% compute

package will update sever availability as 1 and no more payloads

will be given to this server. There are various algorithms used

while selecting servers for different types of payloads. For the

worst-case scenarios where request cannot be broken into different

payload loads, most powerful server is used to complete the task.

It should be noted that algorithm is preconfigured to select only

those servers which full fill requirements of request raised by user.

This can be done by reading data in „services‟ column of server

database.

Algorithm 1– This algorithm is optimized specially for worst-case

scenarios i.e. for payloads like java, c/c++ , pearl , R , etc.

Server = fetch_servers(50000 , 9);

// fetch servers with rank 50,000 and above AND with status code

9

Rank = 50000, avail = 9 , flag = 1; lable:

For (;(server.isEmpty());rank = rank – 1000) {

If (10000 <rank < = 30000) {

ranktemp = 50000 , availtemp = 3 ;

For (;(server.isEmpty()) && ranktemp > = 30000;ranktemp =

ranktemp – 1000){

Server = fetch_server(ranktemp, availtemp);

}

}

If (5000 < rank < = 10000) {

ranktemp = 30000 , availtemp = 3 ;

For (;(server.isEmpty()) && ranktemp > = 10000;ranktemp =

ranktemp – 1000){

Server = fetch_server(ranktemp, availtemp);

}

}

If (rank < = 10000 && flag == 1) {

Break ();

International Journal of Engineering & Technology 127

askuser();

}

Avail = 9;

For (;(server.isEmpty()) && avail > = 4; avail--){

Server = fetch_server(rank , avail)

}

}

if (server.isEmpty()) {

print “All server are busy , please try again later”

}

Else {

assign_job(server);

}

askuser() {

Print “Only low end servers are available , this might take more

time than expected to execute payload”

Print “Enter yes to continue , no to wait for 10 minutes and retry ,

quit to remove request”

Choice = input ();

Switch (choice) {

Case „yes‟: flag = 0;

goto lable;

Case „no‟: sleep (10);

goto lable;

Case „quit‟: delete request ();

}

In this algorithm, the broker will first search high end servers with

0 to 15% CPU load, if it doesn‟t find any such servers then it will

search for high end server with 16% to 30% load, and so on till it

gets to 85% load, as executing such payloads on high end servers

with some load is more efficient than executing it in low end serv-

ers with very low CPU loads. Once the algorithm reaches 30,000

rank and still didn‟t found any suitable server, it will go back to

the high-end servers with more than 85% load, which are ready to

share their resources. If no server is found, it will continue the

same process with server with ranking 30,000 to 10,000. When no

sever if found even at 10,000 rank with less than 85% load, the

algorithm will again search servers from rank 30,000 to 10,000

with more than 85% load. After multiple attempts, user will be

prompted if he wants to continue searching as, executing payloads

on very low servers can be very time consuming and in-efficient.

If user agrees to execute it will search for even lower ranked serv-

ers. Finally, if there is no server found than it will pass the mes-

sage that no suitable sever is found.

Another type of algorithm is used when request can easily be di-

vided into multiple payloads, this algorithm is optimized for

cracking / brute forcing Hashes. Here, algorithm will divide large

wordlist submitted by user to smaller wordlists according to serv-

er‟s type and number of servers available.

Algorithm 2-

totalfilesize = getFileSize();

baseval = 20

For (rank = 1; rank < 90000; rank = rank + 5000) {

Server [] = search_servers(rank); // returns server array based on

availability.

For (availability = 9; availability < = 3; availability ++) {

Server list [] = server [availability]; // get linear list of all severs.

For-each serverNumber in serverlist[] {

Server = serverlist[serverNumber] ;

currentVal = baseval * availability ;

createjob (Server , currentVal);

totalfilesize = totalfilesize = currentVal;

}

}

baseval = baseval + 50;

}

This algorithm will divide large wordlist into smaller wordlists

and make multiple jobs based on that. Algorithm starts with lower

powered devices, as this type of payload can be divided into very

small payloads. The original request it divided into smaller pay-

load according to availability and rank of server, smaller rank

(about 5000) server with 50% load will receive payload of 120

units, while higher end devices with rank (30,000) with 50% sys-

tem load will receive 1620 units of payload. There were various

compute packages installed on server. Some of the compute pack-

ages are given below -

Java Compiler - java compute package enables processing of java

payloads, .i.e compilation of java source code to java executable

file. This compute package is dependent on following software‟s –

Unzip, javac , jar. Here is the portion of code used in making java

compute package –

1) $sql = "select code,filename from cloud where id

='".$ID."';";

2) $result = $conn->query($sql);

3) $row = $result->fetch_array(MYSQLI_ASSOC); //

fetch the row

4) result->free(); //free mem

5) $name = $row["filename"];

6) $path = $row["code"];

7) $conn->close();

8) Echo exec ("unzip ". $path." -d upload/". $ID);

9) Echo exec ("cd upload/". $ID."/ && javac ".$name.”. Ja-

va");

10) Echo exec ("cd upload/". $ID."/ && jar cf ".$name.”. Jar ".

$name." *.class");

The line 1 to 3 are used to connect to central database and fetch

files & necessary details based on job ID provided by broker. line

4 and 7 are used to free memory and connections so that less

memory is used by server and central database. line 5 and 6 re-

trieves details of java source code like filename, name of main

class , etc. in line 8,9,10, - unzip will decompress the data received

from central database then javac is used to compile this code and

finally jar is used to form a executable from this compiled code

and sent back to central DB and broker. Any errors occurred dur-

ing these process is logged into Central database according to job

ID. This helps in debugging payloads and compute packages.

MySQL DB - This compute package is an auxiliary package , i.e.

It is generally installed with other compute packages such as java

compute package or c compute package to provide database con-

nectivity to payloads which need database connectivity in order to

run. Here is the portion of code used in making of MySQL pack-

age

1) $conn = new mysqli($servername, $username, $password,

$dbname);

2) $sql = "select db from cloud where id ='".$ID."';";

3) $result = $conn->query($sql);

4) $row = $result->fetch_array(MYSQLI_ASSOC); //

fetch the row

5) $Result->free();//free mem

6) $db = $row["db"];

7) $Command = "mysql -u root -pyash -D cloud < ".$db;

8) Echo shell_exec($command);

Line 1 to 4 is used to connect to central Database and fetch source

file, on the basis of job ID given by broker. line 7 and 8 are used

to login to separate account in mysql instance and import database

by importing source file fetched from central DB. If Mysql is al-

ready installed in server then separate user is created in Mysql DB

during installation of this package with limited permissions to

secure payload execution and separate user and payload Data-

bases.

MD5 hash – This type of packages is very efficient as the requests

of such type of compute resource can be broken down into many

smaller payloads without affecting integrity of the problem. Due

to such efficient payload distribution, low powered devices like

Raspberry pi, mobile phone and old laptops can also act as a serv-

er and receive small payloads. This compute package is depended

on the open source software called „hash-cat‟

1) $Conn = new mysqli($servername, $username, $password,

$dbname);

128 International Journal of Engineering & Technology

2) $sql = $sql = "select code, db from cloud where id ='".

$ID."';";

3) $Result = $conn->query($sql);

4) $row = $result->fetch_array(MYSQLI_ASSOC); //

fetch the row

5) $result->free(); //free mem

6) $wordlist = $row["db"];

7) hash = $row["code"];

8) $echo shell_exec(“hashcat -m 0 -a 0 ”. $hash.” “.$wordlist);

Fig 9: Non-Distributive Payloads - Java Payload Performance and Net-

work Efficiency.

Fig 10: Non-Distributive Payloads - C Payload Performance and Network

Efficiency.

Line 1 to 7 are used to connect to central database and retrieve

hash and wordlist based on job ID. Then in line number 8 an open

source program called Hashcat is used to brute force hash, alt-

hough this software supports many hashes like SHA1, md4 , etc ,

in compute package only MD5 is supported. Hashcat is designed

to efficiently work on OpenCL supported devices, which means

graphic accelerators embedded in lower power devices like ARM

based CPUs can also be used to brute force. Performance metrics

different types of payloads are given below. Java and C payloads

were considered for non-distributed payload and MySQL is con-

sidered for distributed payload.

Java Payload Metrics with reference to Fig 9,

Handshake time (when a server makes a connection to broker and

both get in sync) is about 1 second and Latency of connection of

all test scenarios were from 1 ms to 70 ms, In these metric evalua-

tion, there types of payloads were used –

a) “Payload 1 “- Execution time 2 seconds, source code size 10

MB.

b) “Payload 2 “- Execution time - 5 seconds, source code size -

5 MB.

c) “Payload 3” – Execution time – 3 seconds, source code size

– 2 MB.

d) “SAS p1” – Stand Alone system executing payload 1 – 6

seconds.

e) “SAS p2” – Stand Alone system executing payload 2 – 9.5

seconds.

f) “SAS p3” - Stand Alone system executing payload 3 – 8.8

seconds.

C Payload Metrics with reference to Fig 10.

a) “payload 1” - execution time – 3.5 sec, code size 5MB

b) “payload 2” – execution time – 1 sec. code size 3MB

c) “payload 3” – execution time – 4.4 sec, code size 4.2MB

d) SAS – payload 1, execution time – 5 sec

e) SAS - payload 2, execution time – 2.5 sec

f) SAS – payload 3, execution time – 7sec

MySQL and PostGre Payloads Metrics regarding Fig 11.

We saw a slight increase in performance with increase in number

of total records (queries) in database.

a) Test case 1 (4k records): 100 seconds for cloud compute vs.

120 for local.

b) Test case 2 (10k records): 250 seconds for cloud compute

vs. 300 for local.

c) Test case 3 (20k records): 500 seconds for cloud compute

vs. 600 for local.

We can use multiple machines to provide additional redundancy

and backup for the data.

Hashing Payload Metrics regarding Fig 12.

a) Test case 1 = Stand Alone system: 8 Million Calculation per

sec; Cloud compute = 5 x 5 M c/s (5 low powered ma-

chines)

b) Test case 2 = Stand Alone system: 8 Million Calculation per

sec; Cloud compute = 10 x 5 M c/s (10 low powered ma-

chines)

c) Test case 3 = Stand Alone system: 8 Million Calculation per

sec; Cloud compute = 5 x 8 M c/s (5 medium powered ma-

chines)

d) Test case 4 = Stand Alone system: 8 Million Calculation per

sec ; Cloud compute = 5 x 20 M c/s (5 high end machines)

Fig 11: Distributive Payloads – Mysql and Postgre Payload Performance

and Network Efficiency.

Fig 12: Test Cases –Hashing Payload.

15 mbps 30 mbps 45 mbps 60 mbps 75 mbps

Payload 1 12.66 7.33 5.5 4.6 4.13

Payload 2 10.3 8 7 6.5 6.2

Payload 3 5.13 4 3.7 3.5 3.4

SAS p1 6 6 6 6 6

SAS p2 9.5 9.5 9.5 9.5 9.5

SAS p3 8.8 8.8 8.8 8.8 8.8

02
46
8101214

Ti
m

e
 in

 s
ec

o
n

d
s

speed in mega bits per second

Java payload Network
efficiency

Payload 1 Payload 2 Payload 3 SAS p1 SAS p2 SAS p3

15 Mbps 30 Mbps 45 Mbps 60 Mbps 75 Mbps

Payload 1 8.3 5.6 5.2 4.3 4

Payload 2 3 2 1 1 1

Payload 3 8.8 6.4 5.6 5.3 5

SAS p1 5 5 5 5 5

SAS p2 2.5 2.5 2.5 2.5 2.5

SAS p3 7 7 7 7 7

0246810

Ti
m

e
 in

 s
e

co
n

d
s

Speed in megabits per second

C payload network efficiency

Payload 1 Payload 2 Payload 3 SAS p1 SAS p2 SAS p3

0

200

400

600

800

4k 10k 20k

Se
co

n
d

s

Total record (queries)

MySql and PostGre payloads

Cloud compute Local System

International Journal of Engineering & Technology 129

5. Conclusion

The methodology proposed in this paper for using resources of-

fered by servers who have excess compute power and used by

consumers who needs extra compute power, not only distributes

compute power in efficient way, but also reduces overall carbon

footprint of doing any type of expensive computational tasks,

while overcoming various short-comings of other distributed

computing systems such as SSI (Single system Image). Such as

managing payloads at higher level of OS architecture to monitor

CPU usage and distributing payloads across multiple systems

without adverse effects on throughput of the system. We were able

to efficiently distribute both “Distributable payloads” such as

MySQL, Postgre sql DBs and hashes and “Non-Distributable”

payloads, such as compilation programming languages like java ,

c++ , etc. We made algorithms, which efficiently ranks each serv-

er based on their CPU power and current CPU usage and picks

high end machines for non-distributable payloads and low-end

machines for distributable payloads. This allows vast number of

devices to participate as servers (From high-end workstations to

low powered IoT devices such as Raspberry pi). Algorithm also

ensures that server doesn‟t get overwhelmed by executing pay-

loads of consumers by constantly checking current CPU usage and

diverting payloads if CPU usage goes above desired percentage. In

other environments, such as a traditional lab environment, this

approach has proven to reduce cost up to 35% and power usage

was cut down up to 1/10th of implementing same amount of nodes

, while maintaining compute power of individual nodes in a tradi-

tional lab environment! In future, 92% percentage of workloads

will be handled by cloud data centers; versus only eight percent

being processed by traditional data centers. [18] [19] With the rise

in dependency on cloud computing and rise of IoT devices it is

necessary to use proper tools and algorithms as specified in this

paper to handle data at such a volume, much more efficiently.

Modular approach was kept in mind while designing these meth-

odologies which allows addition of various modular component

like simulation, support for machine learning, inclusion of other

compiled languages, etc. IoT is one of the most rapidly growing

field, which uses various types of SoC (System on Chip) devices

to perform its core operation, many of these devices are way more

powerful than what is required to perform these core operations

like maintaining databases, syncing various nodes, etc. This extra

power can be easily used for other tasks such as an independent

node for AI or Machine Learning, or simply contributing to other

modules such as java compiler, c++ compiler, etc.

References

[1] Mell, P., & Grance, T. “The NIST Definition of Cloud Computing”
(Draft) Recommendations of the National Institute of Standards and

Technology. Nist Special, 145(6), [7]. National Institute of Stand-

ards and Technology, Information Technology Laboratory. Re-
trieved from http://csrc.nist.gov/publications/drafts/800145/Draft-

SP 800145_ cloud definition. Pdf (2011).

[2] Saurabh Kumar Garg, Christian Vecchiola, Rajkumar Buyya
“Mandi: a market exchange for trading utility and cloud computing

services” The Journal of Supercomputing June 2013, Volume 64,

Issue 3, pp 1153-1174.
[3] M. N. O. Sadiku, S. M. Musa and O. D. Momoh, "Cloud Compu-

ting: Opportunities and Challenges," in IEEE Potentials, vol. 33,

no. 1, pp. 34-36, Jan.-Feb. 2014.
doi: 10.1109/MPOT.2013.2279684

[4] Sunilkumar S. Manvi,, Gopal Krishna Shyam, "Resource manage-

ment for Infrastructure as a Service (IaaS) in cloud computing: A
survey Review Article "Journal of Network and Computer Applica-

tions, Volume 41, May 2014, Pages 424-440.

[5] Giuseppe Di Modica, Orazio Tomarchio, "Matchmaking semantic
security policies in heterogeneous clouds", Future Generation

Computer Systems, Volume 55, February 2016, Pages 176-185.

[6] Adam Chlipala. 2015. An optimizing compiler for a purely func-
tional web-application language. In Proceedings of the 20th ACM

SIGPLAN International Conference on Functional Programming
(ICFP 2015). ACM, New York, NY, USA, 10-21.

[7] N. A. B. S. Chebolu and R. Wankar, "A novel scheme for Compiler

Optimization Framework," 2015 International Conference on Ad-

vances in Computing, Communications and Informatics (ICACCI),
Kochi, 2015, pp. 2374-2380.

[8] E. Hendriks. “BProc: The Beowulf distributed process space.”

ACM Proceedings of ICS, 2002.
[9] Ke Wang, Xiaobing Zhou, Kan Qiao, Michael Lang, Benjamin

McClelland, and Ioan Raicu. 2015. towards Scalable Distributed

Workload Manager with Monitoring-Based Weakly Consistent Re-
source Stealing. In Proceedings of the 24th International Symposi-

um on High-Performance Parallel and Distributed Computing
(HPDC '15). ACM, New York, NY, USA, 219-222

[10] http://www.cloudbus.org/papers/SSI-CCWhitePaper.pdf

[11] http://www.openmosix.org/
[12] de Robles, Marie Yvette B.; Arnejo, Zenith O.; Pabico, Jaderick P,

"On Web-grid Implementation Using Single System Im-

age",Computer Science - Distributed, Parallel, and Cluster Compu-
ting, arXiv:1507.01067

[13] G. Vallee, S. L. Scott, C. Morin, J. Y. Berthou and H. Prisker, "SSI-

OSCAR: a cluster distribution for high performance computing us-
ing a single system image," 19th International Symposium on High

Performance Computing Systems and Applications (HPCS'05),

2005, pp. 319-325.
[14] Philip Healy, Theo Lynn, Enda Barrett, and John P. Morrison.

2016. Single system image. J. Parallel Distrib. Comput. 90, C

(April 2016), 35-51.
DOI=http://dx.doi.org/10.1016/j.jpdc.2016.01.004

[15] Frederic Magoules, eiJ Pan, aJi Jgni uumo" uolC"eigne FeF-

 geJgliaJ uolC"eign Fg ilnJ "mignui unFClFg C eFmmnutu
,"lJtilFm gFmililFg iliJgeililuolC"eigni3102

[16] Chaisiri, S.; Bu-Sung Lee; Niyato, D., "Optimization of Resource

Provisioning Cost in Cloud Computing," Services Computing,
IEEE Transactions on, vol.5, no.2, pp.164,177, April-June 2012doi:

10.1109/TSC.2011.7

[17] Amazon EC2 Reserved Instances, [ONLINE]

[18] http://www.forbes.com/sites/joemckendrick/2016/11/13/with-

internet-of-things-and-big-data-92-of-everything-we-do-will-be-in-

the-cloud/#639f6196593f
[19] http://www.cisco.com/c/en/us/solutions/service-provider/visual-

networking-index-vni/index.html#cloud-forecast

http://aws.amazon.com/ec2/reserved-instances, 2013.
[20] http://www.cloudbus.org/

[21] Transitioning to the Private Cloud with Confidence Cisco Web

Learning White papers.
http://www.cisco.com/web/learning/le21/le34/downloads/689/rsa/C

isco_transitioning_to_the_private_cloud_with_confidence.pdf

[22] V. Vivek; Srinivasan R; Elijah Blessing Rajsingh Resource Provi-
sioning Methodologies: An Approach of Producer and Consumer

Favorable in Cloud Environment‟, International Journal of Emerg-

ing Technology and Advanced Engineering, Volume 3, pp.8-13,
Special Issue 4, October 2013 (ISSN 2250 – 2459)

[23] Philip Healy, Theo Lynn, Enda Barrett, and John P. Morrison.

2016. Single system image. J. Parallel Distrib. Comput. 90, C
(April 2016), 35-51.

DOI=http://dx.doi.org/10.1016/j.jpdc.2016.01.004

[24] Jiayin Li; Meikang Qiu; Jian-Wei Niu; Yu Chen; Zhong Ming,
"Adaptive resource allocation for preemptable jobs in cloud sys-

tems," Intelligent Systems Design and Applications (ISDA), IEEE

2010 10th International Conference on, vol., no., pp.31,36, Nov. 29
2010-Dec. 1 2010.

[25] Kyong Hoon Kim; Buyya, R., "Policy-based Resource Allocation

in Hierarchical Virtual Organizations for Global Grids," Computer
Architecture and High Performance Computing, 2006. SBAC-PAD

'06. IEEE 18TH International Symposium on, vol., no., pp.36, 46,
Oct. 2006.

[26] Amit Nathani, Sanjay Chaudhary, Gaurav Somani, Policy based

resource allocation in IaaS cloud, Future Generation Computer Sys-
tems, Volume 28, Issue 1, January 2012, Pages 94-103, ISSN 0167-

739X.

[27] Baker, T.P., "A stack-based resource allocation policy for realtime
processes," Real-Time Systems Symposium, 1990. IEEE Proceed-

ings., 11th, vol., no., pp.191,200, 5-7 Dec 1990

[28] Apostol, E.; Leordeanu, C.; Cristea, V., "Policy Based Resource
Allocation in Cloud Systems," P2P, Parallel, Grid, Cloud and Inter-

net Computing (3PGCIC), 2011 IEEE International Conference on,

vol., no., pp.285,288, 26-28 Oct. 2011.
[29] Mochizuki, K.; Kuribayashi, S.-i., "Evaluation of Optimal Resource

Allocation Method for Cloud Computing Environments with Lim-

ited Electric Power Capacity," Network-Based Information Systems

130 International Journal of Engineering & Technology

(NBiS), 2011 IEEE 14th International Conference on, vol., no.,

pp.1,5, 7-9 Sept. 2011.

[30] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. 2012.
Energy-aware resource allocation heuristics for efficient manage-

ment of data centers for Cloud computing. Future Gener. Comput.

Syst. 28, 5 (May 2012), 755-768.
DOI=10.1016/j.future.2011.04.017.

[31] Warneke, D.; Odej Kao, "Exploiting Dynamic Resource Allocation

for Efficient Parallel Data Processing in the Cloud," Parallel and
Distributed Systems, IEEE Transactions on, vol.22, no.6, pp.985,

997, June 2011. doi: 10.1109/TPDS.2011.65
[32] Kim, Tai-hoon and Adeli, Hojjat and Cho, Hyun-seob and Gervasi,

Osvaldo and Yau, StephenS. In addition, Kang, Byeong-Ho and

Villalba, JavierGarcía, a Dynamic Resource Allocation Model for
Virtual Machine Management on Cloud, Springer Berlin Heidel-

berg.

[33] K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang, “Live Migration
of Multiple Virtual Machines with Resource Reservation in Cloud

Computing Environments”, in Proc. IEEE CLOUD, 2011, pp.267-

274.
[34] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen,

Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. 2005.

Live migration of virtual machines. In Proceedings of the second
conference on Symposium on Networked Systems Design & Im-

plementation - Volume 2 (NSDI'05), Vol. 2. USENIX Association,

Berkeley, CA, USA, 273-286.
[35] William Voorsluys, James Broberg, Srikumar Venugopal, and Raj-

kumar Buyya. 2009. Cost of Virtual Machine Live Migration in

Clouds: A Performance Evaluation. In Proceedings of the 1st Inter-
national Conference on Cloud Computing (CloudCom '09), Martin

Gilje Jaatun, Gansen Zhao, and Chunming Rong (Eds.). Springer-

Verlag, Berlin, Heidelberg, 254-265.
[36] Xiaoqiao Meng, Canturk Isci, Jeffrey Kephart, Li Zhang, Eric

Bouillet, and Dimitrios Pendarakis. 2010. Efficient resource provi-

sioning in compute clouds via VM multiplexing. In Proceedings of

the seventh international conference on Autonomic computing

(ICAC '10). ACM, New York, NY, USA, 11-20.

DOI=10.1145/1809049.1809052.
[37] Zhen Xiao; Weijia Song; Qi Chen, "Dynamic Resource Allocation

Using Virtual Machines for Cloud Computing Environment," Paral-

lel and Distributed Systems, IEEE Transactions on , vol.24, no.6,
pp.1107,1117, June 2013 doi: 10.1109/TPDS.2012.283

[38] Xingwei Wang; Jiajia Sun; Min Huang; Chuan Wu; Xueyi Wang,

"A Resource Auction Based Allocation Mechanism in the Cloud
Computing Environment," Parallel and Distributed Processing

Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th

International, vol., no., pp.2111,2115, 21-25 May 2012 doi:
10.1109/IPDPSW.2012.260

[39] Advances in Computing, Communication, and Control Communi-

cations in Computer and Information Science Unnikrishnan, Srija
Surve, Sunil Bhoir, Deepak R 10.1007/978-3-642-36321-4_2 T

Market-Driven Continuous Double Auction Method for Service Al-

location in Cloud Computing Springer Berlin Heidelberg 2013-01-
01 cloud computing continuous double auction intelligent agent

market-driven agents resource allocation Farajian, Nima Zamanifar,

Kamran 14-24.
[40] Kuo-Chan Huang; Bo-Jyun Shen; Tsung-Ju Lee; Hsi-Ya Chang;

Yuan-Hsin Tung; Pin-Zei Shih, "Resource allocation and dynamic

provisioning for Service-Oriented applications in cloud environ-
ment," Cloud Computing Technology and Science (CloudCom),

2012 IEEE 4th International Conference on, vol., no., pp.839,844,

3-6 Dec. 2012. doi: 10.1109/CloudCom.2012.6427592
[41] Kui Ren; Cong Wang; Qian Wang, "Security Challenges for the

Public Cloud," Internet Computing, IEEE, vol.16, no.1, pp.69, 73,
Jan.-Feb. 2012. doi: 10.1109/MIC.2012.14

[42] Dimitrios Zissis, Dimitrios Lekkas, Addressing cloud computing

security issues, Future Generation Computer Systems, Volume 28,
Issue 3, March 2012, Pages 583-592, ISSN 0167-739X,

http://dx.doi.org/10.1016/j.future .2010.12.006.

