

Copyright © 2018 Dr. Lokesh A et. al. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.12) (2018) 374-379

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research Paper

Designing and analyzing highly scalable and reliable of full

fledged parallel algorithm for computing strongly

connected com-ponents to analyze

social graphs

Dr. Lokesh A 1 *, Mr. Maria Navin J R 1, Mr. Balaji K 2, Mr. Pradeep M4 3

1 Associate Professor, Dept. of ISE, Sri Venkateshwara College of Engineering, Bengaluru, Karnataka, India

2 Assistant Professor, Dept. of CSE., Sri Venkateshwara College of Engineering, Bengaluru, Karnataka, India
3 Assistant Professor, Dept. of CSE., M S Engineering College, Bengaluru, Karnataka, India

*Corresponding author E-mail: lokeshyadav.ka@gmail.com

Abstract

With the recent advent of Big Data, developing efficient distributed algorithms for computing Strongly Connected Components of a large

dataset has received increasing interests. For example, social networks, information networks and communication networks such as the

communities of people that have formed on those networks, what community a person belongs or finding cyclic de-pendencies in the graph.

Apache Giraph is an open-source implementation of Google’s Pregel. It is an iterative and real-time graph processing engine designed to

be scalable, fault tolerant and highly efficient. This framework provides an accurate platform for the development of parallel algorithms in

a distributed environ-ment. It adopts a vertex-centric programming model inspired by Bulk Synchronous Parallel model. A strongly con-

nected component is a maximal sub graph in which all vertices are reachable from every other vertex. Maximal means that it is the largest

possible sub graph. It is not possible to find another vertex anywhere in the graph such that it could be added to the sub graph and all the

verti-ces in the sub graph would still be connected. In a directed graph G, a pair of vertices u and v are said to be strongly connected to

each other if there is a path in each direction between them. Here, we have implemented a parallel algorithm which is based on the new

paradigm of graph decomposi-tion for computing strongly connected components. The final outcome mainly focuses on the reduc-tion of

total communication costs.

Keywords: Apache Giraph; Graph; Strongly Connected; Cost; Parallel; Graph Processing.

1. Introduction

1.1. Scope of work

A graph is a structure that represents abstract entities (or vertices)

and their relationships (or edges). Graphs are used in computer sci-

ence in a variety of domains to represent data and express problems.

Many common data structures like trees and

linked lists are graphs; their nodes are connected with links accord-

ing to the criteria that define each specific data structure. Graphs

have been useful in representing domains such as social media,

communication systems, computer network, web and many more.

However, efficient processing of graphs poses challenges due to

their scalability [1].

Pregel uses an explicit message approach to acquiring remote infor-

mation and does not replicate remote values locally. The most crit-

ical difference is that Pregel provides fault-tolerance to cope with

failures during computation, allowing it to function in a huge cluster

environment where failures are common, e.g., due to hardware fail-

ures or preemption by higher-priority jobs [2].

Apache Giraph provides a vertex-centric programming model that

requires the developer to think like a vertex that can exchange mes-

sages with other vertices. The programming model hides the com-

plexity of programming a parallel and distributed system.

1.2. Giraph as a hadoop tool

Hadoop is a popular platform for the management of Big Data. It

has an active community and a high adoption rate with yearly

growth of around 60%, and a number of companies make support-

ing these enterprises their mission. Hadoop started as an implemen-

tation of the Google distributed file system and the MapReduce

framework in the Apache Nutch project. Over the years, it has

turned into an independent Apache project. It has evolved into a

full-blown ecosystem. Hadoop Distributed File System and the

MapReduce framework lie under its functionalities. All these sys-

tems were developed to tackle different challenges related to man-

aging large amounts of data, from storage to processing and more.

Giraph is a relatively newcomer to the Hadoop ecosystem.

2. Literature review

Recently frameworks available for parallel processing for large

graph applications on high performance computing clusters [3] [4],

massively multi-threaded architectures [5] and GPUs [6]. MapRe-

duce [7] [8] which is a tuple based method has been considered as

a an appropriate solution for large graph processing and not suitable

for many graph applications [9].

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 375

Vertex-centric and block-centric approaches are the two graph pro-

cessing systems. In vertex-centric approaches, messages are ex-

changed directly between vertices and whereas in block centric ap-

proaches, messages are exchanged between connected subgraph

[10].

Based on distributed in-memory big graph processing we can divide

them as systems for offline graph analytics and systems for online

graph querying[11].

The key to success is parallelization based on a “shared nothing”

architecture and non-blocking networks ensuring a smooth commu-

nication among servers. I/O and data processing are distributed by

moving computing tasks to the server nodes where the data resides.

Distributed parallel processing provides several advantages. Execu-

tion of a query or similar data operation by many nodes at the same

time increases performance and delivers fast results. In order to

make the overall configuration fault-tolerant, data is automatically

replicated to several nodes. If a server fails, the respective task can

be continued on a server where a data replica resides, fully trans-

parently for software development and operation. Data updates

need to be considered for all data copies, otherwise the system

would be inconsistent. On the software layer the server farm is co-

ordinated as a distributed storage system which coincidentally runs

as a parallel processing cluster. This is seen as one of the biggest

enablers for Big Data analytics.

3. System architecture

3.1. Applications of strongly connected components

• Finding Strongly Connected Components in a social network

graph can reveal information about the communities of peo-

ple that have formed on those networks. Social Networks can

study the evolution of those communities and teach what.

• Community a person belongs to and may help getting better

contacts for him.

• Strongly Connected Component algorithms can help find the

cyclic dependencies in a program. Given a dependency graph

G (directed graph), the Strongly Connected Components

which contains more than one node of G (if any), gives the

cycles in the graph.

• The whole idea is that collapse the graph to the essentials,

removing redundancy. If you can reach one vertex from an-

other and vice versa, you can treat them as essentially.

The same vertex. This new graph has no cycles. Since you may be

reducing out many nodes, you may be able to more efficiently find

how one vertex is related to another.

4. Implementation

4.1. Computation

It is the most crucial stage in achieving a new successful system for

efficient performance and this action requires preliminary thinking.

Implementation of any software or system is always carried by dif-

ferent factors and platforms. Thus, implementation defines the final

phase of model building.

4.2. Loading phase

• The input data contains a representation of the graph and

metadata on the vertices or edges.

• The graph is loaded into Giraph through a vertex or edge in-

put format.

• The output is observed in several output formats.

• The Input and Output formats are present in org. apache.

giraph. io. formats.

• Apache Giraph consists of several built-in vertex input for-

mats such as :

• Giraph File Input Format

• GiraphTextInputFormat

• IntIntNullTextInputFormat

• JsonBase64VertexFormat

• JsonBase64VertexInputFormat

• GeneratedVertexInputFormat

• LongLongNullTextInputFormat

• SequenceFileVertexInputFormat

• IntIntNullTextVertexInputFormat

• IntIntTextVertexValueInputFormat

• AdjacencyListTextVertexInputFormat

• PseudoRandomIntNullVertexInputFormat

• JsonLongDoubleFloatDoubleVertexInputFormat

• LongDoubleDoubleAdjacencyListVertexInputFormat

• TextDoubleDoubleAdjacencyListVertexInputFormat

Apache Giraph consists of several built-in edges input formats such

as:

• TextEdgeInputFormat

• IntNullTextEdgeInputFormat

• PseudoRandomEdgeInputFormat

• PseudoRandomLocalEdgesHelper

• IntNullReverseTextEdgeInputFormat

Giraph's I/O builds on top of Hadoop's input/output format API.

This allows us to easily incorporate existing Hadoop formats.

• The input graph may be laid out in two main ways:

• The directed edges may be grouped by source vertex i.e., rep-

resented as an adjacency list. Here, any metadata for the ver-

tex can be read together with its outedges. This is achieved

by implementing VertexInputFormat.

• They may appear in arbitrary order. Here, edges will be read

by means of an EdgeInputFormat. If there is additional data

for the vertices, it will be read separately by a VertexValue-

InputFormat.

• It is also possible to develop a customized vertex input for-

mat as required.

• In our implementation we use have developed a customized

vertex input format named as

SccLongLongNullTextVertexInputFormat.

4.2.1. Input graph

The first step of any Giraph application is to determine the format

for the graph input data.

• Vertex ID - The Vertex ID is the identifier for a vertex in the

graph. The framework defines it to be something no more

complex than a label.

• Vertex Value -The Vertex Value optional, and is another

place to store additional information associated with a vertex.

Typically, this field is used to store values or objects that

should be updated during graph processing.

• Edge Tuples - The final piece of input data is the collection

of information necessary to define the set of out-edges asso-

ciated with the source vertex ID. It is composed of tuples with

two components per edge: the destination Vertex ID and the

Edge Weight such as in JsonLongDoubleFloatDou-

bleVertexInputFormat. Any bi-directional edge must be de-

fined as two separate out-edges with opposite directions.

• Input Format Selection - Once the data types for each of these

pieces of information have been defined, a MapReduce Input

Format must be selected. Giraph package holds the imple-

mentation of many different input formats so that common

data types can be easily accommodated.

4.2.2 Example input graph

Consider a graph input represented in the JsonLongDou-

bleFloatDoubleVertexInputFormat.

• The first value represents the vertex ID

• The second represents the vertex value.

• The edge tuple is represented by the destination ID and the

edge weight.

376 International Journal of Engineering & Technology

The input is defined in a text file as follows:

[1, 4.3, [[2, 2.1], [3, 0.7]]]

[2, 0.0, []]

[3, 1.8, [[1, 0.7]]

Fig. 4.1: Graphical Representation of Vertex Input Format in Giraph.

4.2.3 Strongly connected components vertex input format

• A customised vertex input has been defined for the computa-

tion of Strongly Connected Components.

• It is named as SccLongLongNullTextVertexInputFormat.

• Here, the values are separated by a space or tab as a delimiter.

• The first value represents the vertex ID.

• The vertex value is not specified as it is an optional field.

• The edge tuple consists of the outgoing edges or destination

vertex ID.

• The edge weight is not mentioned as it is an un-weighted

graph.

The input is defined in a text file as follows:

1 4

2 8

3 6

4 7

5 2

6 9

7 1

8 6 5

9 7 3

Fig. 4.2: Graphical Representation of the Input Graph.

4.3 Compute Phase

Our algorithm consists of multiple computational steps called

“phases”. For example, an algorithm might prune the graph in one

phase and traverse it in another. A global object “phase”stores the

current phase of the algorithm that is executing. The master.com-

pute() function contains the logic of which phase should be exe-

cuted in the next superstep, depending on the current phase and pos-

sibly other global objects.

The different phases to be performed by master compute () are as

follows:

• Transpose Graph Formation

• Trimming

• Forward-Traversal

• Backward-Traversal

For each phase, the Vertex class contains one subroutine imple-

menting the vertex-centric logic of the phase. According to the in-

formation found in phase global object vertex.compute() function

calls the specific subroutine.

4.3.1. Generate transpose graph

The algorithm first constructs the transpose of the input graph G.

This construction requires 2 supersteps where in each superstep is

considered to be one iteration.

• In the first Superstep, each vertex creates an array of its par-

ent vertices based on the traversal through the outgoing edges.

• In the second superstep, send the vertex ID and vertex value

to its neighbours.

4.3.2. Trimming phase

In this phase the algorithm identifies the trivial SCCs i.e, vertices

with only one incoming or onlyoutgoing edges or neither is re-

garded as disconnected component. This requires one superstep.

Every vertex with only one incoming or only outgoing edges or nei-

ther sets its value to its own ID. Messages subsequently sent to the

vertex are ignored. The remaining vertices propagate their values to

their neighbours.

4.3.3. Forward-traversal phase

In the forward traversal phase, the algorithm traverses G in parallel

from each vertex. During the traversals, each vertex v sets its own

value as the maximum ID of the vertex that can reach v (possibly v

itself). The Forward-Traversal phase has two properties:

• G is partitioned into disjoint sets of vertices according to their

new vertex values.

• If the new maximum value is the value set for the partitioned

vertices, then the vertex i belongs entirely to a particular

SCCi.

• There are two subphases: Start and Rest.

4.3.3.1. Forward-traversal start phase

In the Start phase, each vertex sets its vertex value to its own ID and

propagates its ID to its outgoing neighbors.

4.3.3.2. Forward-traversal rest phase

In the Rest phase, vertices update their own vertex values with the

maximum value they have received, and propagate their values, if

updated, until the maximum values converge.

The Master sets the phase global object to Backward-Traversal

when the values converge.

4.3.4. Backward-traversal

In the Backward-Traversal phase, the algorithm detects one SCC

for each maximum value set,by doing a traversal from vertex in the

transpose of G and limiting the traversal to only the vertices in one

SCC. The detected SCCs are then removed from the graph.

Here we again break the phase into Start and Rest.

4.3.4.1. Backward-traversal start phase

In Start, every vertex whose vertex ID equals its vertex value prop-

agates its ID to the neighboring vertices.

4.3.4.2. backward-traversal rest phase

In each of the Rest phase super steps, each vertex receiving a mes-

sage that matches its vertex value

• Propagates its vertex value in the transpose graph.

• Sets itself inactive.

• Sets the “converged vertex-exists” global object (false at the

start of the superstep) to true. Messages subsequently sent to

the vertex are ignored.

The Master sets the phase global object back to Trimming when

“converged-vertex-exists” remains false at the end of a superstep.

International Journal of Engineering & Technology 377

4.4. Offloading phase

• Vertices are offloaded to HDFS through an OutputFormat.

• Output can be done both on a per-vertex and a per-edge basis:

a VertexOutputFormat will specify what data to write for

each vertex while EdgeOutputFormat will specify what

• data to write for each edge.

• In our implementation we make use of VertexOutputFormat.

• Giraph provides several built-in output formats such as:

• GraphvizOutputFormat

• GiraphTextOutputFormat

• TextEdgeOutputFormat

• IdWithValueTextOutputFormat

• InMemoryVertexOutputFormat

• JsonBase64VertexOutputFormat

• AdjacencyListTextVertexOutputFormat

• JsonLongDoubleFloatDoubleVertexOutputFormat

• LongDoubleDoubleAdjacencyListVertexOutputFormat

4.4.1. Strongly Connected components Output format

• The Output File should contain all vertices with the value of

their vertex.

• Each line should have the VertexId and the maximum vertex

value of the strongly connected component to which they be-

long.

• The VertexId and the vertex value should be of type int or

double.

• In our algorithm we represent the output in the IdWith-

ValueTextOutputFormat. This writes out vertices’ IDs and

values.

Fig. 4.3: Output of Strongly Connected Components.

The output would be present in the terminal as follows:

6 9

5 8

8 8

7 7

2 8

1 7

9 9

3 9

4 7

4.5. Execution in apache giraph framework

• In the hadoop directory run

• bin/start-dfs.sh

• bin/start-mapred.sh

• Create the input folder in the HDFS and move the input file

there.

• hadoop dfs –put /input_file.txt /in/

• Run the command, in which you should include:

• The jar file generated when installing giraph,

• The path to the main code, The path to the code for reading

the input file and the path to the input file,

• The path to the code for generating the output file and the

path to the output file,

• The number of workers. Below I give all these parameters in

the same order.

org.apache.giraph.GiraphRunner-Dgiraph.metrics.enable=true

org.apache.giraph.examples.scc.SccComputation –vip slk-

giraph/{input_file}.txt

–vif org.apache.giraph.examples.scc.SccLongLongNullTextInput-

Format -op slkgiraph/{

output_file} –vof

org.apache.giraph.io.formats.IdWithValueTextOutputFormat -w 1

–ca

giraph.zkList=orion-00:2181–ca giraph.checkpointFrequency=0 -

yj giraphexamples-

1.1.0-for-hadoop-2.6.0-jar-with-dependencies.jar-mc

org.apache.giraph.examples.scc.SccPhaseMasterCompute

Run the command to check the output

 hadoop dfs –cat /slk-giraph/{output_file}/part-m-00001

5. Results

Fig. 5.1: Manual User Input.

Fig. 5.2: Select File from Local System.

Fig. 5.3: Graph in Vertex Input Format.

378 International Journal of Engineering & Technology

Fig. 5.4: Visual Representation of the Input Graph.

Fig. 5.5: Output Representing Vertex ID and Value.

Fig. 5.6: Graph in Vertex Input Format.

Fig. 5.7: Visual Representation of the Input Graph.

Fig. 5.8: Output Representing Vertex ID and Value.

6. Conclusions

After several months of developing and testing our algorithm using

a variety of approaches for distributed programming, we have fi-

nally developed a full-fledged parallel algorithm for

computing strongly connected components. This algorithm is

highly scalable and reliable due its development in Apache Giraph.

The main target of our algorithm is to analyze the social graphs to

identify the type of relationship among the entities such as weakly

connected, strongly connected, interconnected or disconnected. Our

algorithm has efficiently computed strongly connected components

for large graphs up to 100 nodes and out-going edges of graphs. In

the near future, our aim to enhance the scalability of our algorithm

for large datasets such as amazon or orkut graphs with millions of

vertices and edges. This will help us achieve greater efficiency in

parallel programming and Big Data analysis. The algorithm must

also be able to reduce the time computation cost by optimizing the

algorithm based on Apache Giraph programming constructs. This

method of distributed programming method can be extended to

other algorithm development such as Bi-connected components and

Graph coloring with appropriate analysis of the programming con-

structs and development tools.

References

[1] F. Pellegrini , “Current challenges in parallel graph partitioning”,

[2] Comptes Rendus Mécanique, vol. 339, no. 2-3, pp. 90-95, 2011.
[3] Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I.,

Leiser, N., Czajkowski, G.: Pregel: A system for large-scale graph

processing. In: ACM International Conference on the Management
of Data (SIGMOD), ACM (2010) 135–146.

[4] Gregor, D., Lumsdaine, A.: The Parallel BGL: A Generic Library for

Distributed Graph Computations. In: Parallel Object-Oriented Scien-
tific Computing (POOSC). (2005).

[5] A. Lumsdaine, D. Gregor, B. Hendrickson and J. Berry, “Challenges

in Parallel Graph Processing”, Parallel Processing Letters, vol. 17,
no. 1, pp. 5-20, 2007.

[6] Ediger, D., Bader, D.: Investigating Graph Algorithms in the BSP

Model on the Cray XMT. In: Workshop on Multithreaded Architec-
tures and Applications (MTAAP). (2013).

[7] Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on

the gpu using cuda. In IEEE High performance computing (HiPC).
(2007).

[8] Chen, R., Weng, X., He, B., Yang, M.: Large graph processing in the

cloud. In: ACM International Conference on the Management of
Data (SIGMOD), ACM (2010) 1123–1126.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters”, Proceedings of Sixth Symposium on Operating

Systems Design and Implementation, San Francisco, California,

USA, 2004.

[10] F. N. Afrati, A. Das Sarma, S. Salihoglu and J. D. Ullman, “Vision

Paper: Towards an Understanding of the Limits of Map-Reduce

Computation”, Proceedings of Cloud Futures 2012 Workshop,
Berkeley, California, USA, 2012

International Journal of Engineering & Technology 379

[11] Sabeur Aridhia, Alberto Montresorb, Yannis Velegrakisb: BLADYG:

A Graph Processing Framework for Large Dynamic Graphs, Univer-

sity of Lorraine, LORIA, Campus Scienti_que, BP 239, 54506 Van-

doeuvre-l_es-Nancy, France University of Trento, Italy

arXiv:1701.00546v1 [cs.DC] 2 Jan 2017.
[12] Arijit Khan, Sameh Elnikety: Systems for BigGraphs, 40th Interna-

tional Conference on Very Large Data Bases, September 1st 5th 2014,

Hangzhou, China. Proceedings of the VLDB Endowment, Vol. 7,
No. 13.

