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Abstract 
 

Big data is a term that describes the large volume of data – both structured and unstructuredthat includes a business on a day-to-day basis 

including Intelligent Transportation Systems (ITS). The emerging connected technologies created around ubiquitous digital devices have 

opened unique opportunities to enhance the performance of the ITS. However, magnitude and heterogeneity of the Big Data are beyond 

the capabilities of the existing approaches in ITS. Therefore, there is a crucial need to develop new tools and systems to keep pace with 

the Big Data proliferation. In this paper, we propose a comprehensive and flexible architecture based on distributed computing platform 

for real-time traffic control. The architecture is based on systematic analysis of the requirements of the existing traffic control systems. In 

it, the Big Data analytics engine informs the control logic. We have partly realized the architecture in a prototype platform that employs 

Kafka, a state-of-the-art Big Data tool for building data pipelines and stream processing. We demonstrate our approach on a case study of 

controlling the opening and closing of a freeway hard shoulder lane in microscopic traffic simulation. 
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1. Introduction 

The rapid advancement of communication and detection technolo-

gies, low-cost and widespread sensing and a dramatic drop in data 

storage costs have significantly increased the amount of easily 

extractable information on transport and mobility. According to 

[1] "the volume and speed at which data are generated, processed 

and stored is unprecedented". In essence, Big Data is a process of 

gathering, management and analysis of data to generate 

knowledge and reveal hidden patterns. The advent of Big Data has 

triggered disruptive changes in many fields including Intelligent 

Transport Systems (ITS) with a wide range of applications from 

smart urban planning to enhanced vehicle safety. However, meth-

odologies and regulations in many domains of ITS have not kept 

pace with the proliferation of Big Data. More specifically, the 

current traffic control approaches such as feedback loop or model 

predictive methods do not fit to the paradigm of Big Data analyt-

ics. Other researchers [2] have foreseen the evolution of the exist-

ing IT’S into a data-driven system. In Big Data approaches, the 

challenge is not anymore to collect the data, but to draw valuable 

conclusions by properlyanalyzing them. To be clear, exploiting the 

collected data has been always considered by researchers and 

practitioners, but the high velocity, magnitude and heterogeneity 

of massive stream of real-time data push the limits of the current 

storage, management and processing capabilities. Admittedly, the 

classical statistical methodologies are challenged (especially with 

respect to bias) and cannot be applied on the emerging opportunis-

tically and crowed sensed data streams. Some of these data 

streams are structured in a way that serve only one predefined 

purpose and cannot be directly used for other means. Yet, there 

are emerging unstructured data such as context-based data [3] 

from the internet and social media as well as credit card transac-

tions that is not clear if they can be used to better understand the 

mobility patterns. Therefore, it is essential to develop modern 

system abstractions that allow us to efficiently process large and 

new data streams. Even though the number of studies on Big Data 

in transport has considerably increased, most of the systems de-

ployed so far in order to support Big Data analytics in ITS rely on 

ad-hoc architecture solutions [4-5]. They focus on satisfying spe-

cific predefined goals (mining GPS data, predicting traffic flow, 

etc.) and are hard to extend to accommodate different applications 

and data sources. This results in rigid systems and overall limits 

the uptake of Big Data technologies in ITS. 

In response, we propose a comprehensive architecture for Big 

Data analytics for real-time traffic control. The architecture is 

based on systematic analysis of the requirements of the existing 

traffic control systems. It is flexible in that it can accommodate an 

open-ended and diverse set of data sources and a number of dif-

ferent ITS applications, particularly decision support for real-time 

traffic control. The architecture is modular in the sense that differ-

ent analytical engines as well as data storage systems could be 

easily plugged in. At the same time, it offers a minimum set of 

functionalities for an easy start. To shield the users (in this case, 

mostly ITS administrators) from the complexities of Big Data 

technologies, our architecture offers a core set of interfaces and 

concepts that facilitate the programming of different data analysis 

tasks. 

A substantial part of the proposed architecture has been reified in 

a platform prototype which relies mainly on a Kafka, an estab-

lished tool for efficient processing of Big Data streams. 

The data analysis is scalable, i.e. can scale to a large number of 

data sources simultaneously sending data at high rates, and relia-

ble, i.e. it can tolerate hardware faults(e.g. failing computing ma-
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chines) without loss of data. We believe that our approach can be 

used for accelerating the adoption of Big Data analytics in ITS. 

The remaining of this paper is structured as follows: in section 

2,we give an overview of both the existing ITS applications and 

the Big Data analytics approaches, with emphasis on Kafka . In 

section 3, an overview of related work with regard to Big Data 

architectures in IT’S is presented. Our proposed architecture is 

described in section [4] and validated in a microscopic traffic sim-

ulation in Section [5]. In Section [6], we discuss the obtained re-

sults, and give a conclusion together with our recommendations 

for further research in section 7. 

2. Background 

2.1. Characteristics of real-time traffic control system 

The objective of this paper is to adopt the emerging Big Data ap-

proaches i.e. Kafka in building an extensible real-time traffic con-

trol system. Thus, it is crucial to explore the similarities and dif-

ferences among the existing control system and stream analytics 

performed on Kafka. Real-time traffic control systems are com-

posed of two main components: observation of the situation (data 

collection) and implementation of the selected control strategy 

(data processing and information dissemination). A local system 

analyzes the real-time input data where they are integrated and 

process to identify the situation (e.g. incident detection). Once a 

threshold is exceeded, one of the predefined strategies is imple-

mented to optimize the 

controller objective function. In some cases, a central system de-

fines the strategic objective and local systems are flexible to act 

adaptively according to the local situations. Feedback loop and 

Model Predictive Control (MPC) [14] are the most common traffic 

control approaches. However, they are mainly single objective and 

require purposely-sensed data (i.e. fundamental traffic flow pa-

rameters). 

2.2. Data-driven approaches in ITS 

Examples of Big Data approaches in the existing transport system 

are limited. The majority of studies are still using the traditional 

data sources i.e. inductive loop detectors and travel surveys, and 

the new data sources are limited to mobile location data, probe 

vehicle data, public transport smart cards, social network and web-

based information and crowd sourced data. To provide a better 

overview of the recent trends, we divide the applications of Big 

Data in ITS in three main categories: 

Urban planning: In this domain, most of the studies have focused 

on travel demand and mobility pattern estimation using mobile 

location data [6], [7] or call details records [8, 9]. Such data has 

helped researchers and practitioners to design public transport 

networks [10], [11], estimation of route travel times [12] or model 

the route choice of bicyclists [13]. 

Transportation operation: Services in this domain either focus on 

decision-making support systems for traffic operations or enhance 

the Advanced Traveler Information Systems (ATIS). For example, 

travel time prediction [14],[15], traffic incident and anomaly de-

tection [16], [17], anticipatory vehicle routing [18], dynamic con-

gestion charging [19], demand responsive parking pricing [20], 

and predicting bus bunching in network using smart card data [11] 

are among the most popular studies that have been conducted. 

Safety: Exploring the critical situations arising from the design of 

the infrastructure has been studied by analyzing trajectories ex-

tracted from video data [12]. Understanding the volatile behaviors 

of drivers using detailed speed data has also been addressed in 

[13]. With the emerging advanced sensing technologies available 

in modern vehicles (which come with hundreds of sensors), en-

hanced vehicle safety analysis is gaining the attention of research-

ers to develop driving behavior models particularly for self-

driving vehicles. For instance, real-time data mining has been used 

to detect traffic signs [14] or to predict crash [15]. 

Not all of the studies mentioned above have necessary large vol-

ume, velocity, and variety of data to qualify as Big Data applica-

tions. However, they have contributed to the development of data-

driven models, where the application of machine learning and 

clustering methods are becoming increasingly prevalent. The ur-

gent need for a new ITS architecture becomes vivid by looking at 

the trending connected vehicle and connected traveler technolo-

gies. According to the United State Department of Transport 

(USDOT) [16], a data stream rate of between 10 and 27 petabytes 

per second of connected vehicle Basic Safety Message (BSM) is 

expected to be generated. Connected infrastructure in V2X para-

digm is also being implemented in test tracks. In these cases, both 

the volume and velocity of data are large. For instance, it is re-

ported [17] that monitoring an area the size of the city of Amara-

vati can publish 2 terabytes of data per day. Big Data approaches 

naturally lend themselves in storing and analyzing such vast 

amounts of data. 

2.3. Big data analytics 

Big Data analytics approaches scale with respect to the amount 

and speed of data that needs to be analyzed by relying on a set of 

storage and computing machines called cluster [28]. 

This lifts the barriers of single CPU and hard disk space, but adds 

additional complexity in setting up and operating the appropriate 

tools. The main principle in Big Data analytics is that of "bringing 

computation to data": each machine in a Big Data cluster operates 

on its own, locally stored, set of data (map function); the results 

from individual machines are then aggregated and summarized 

(reduce function). To accommodate different applications and user 

needs, different Big Data analytics tools have emerged. The main 

distinction is between tools that apply so-called batch analytics on 

historical data, typically stored in a Hadoop Distributed File Sys-

tem (HDFS) or a NoSQL database (e.g. Cassandra, HBase). 

Batch analytics tools include Spark, Hadoop's MapReduce [29] 

and Tez, and several SQL-like front-ends such as Hive and Pig. 

On the other side lie tools applying stream analytics, i.e. which 

process data as they come in predefined time windows. This is 

preferable when low-latency data-driven decisions are needed. 

Important tools in this category include Flink, Kafka Streams (ex-

tension of Kafka), and Spark Streaming.711 Kafka is a tool for 

building real-time data pipelines with high throughput and low 

latencies [33]. In Kafka, a stream of messages of a particular type 

(e.g. vehicles' speed) is defined by a topic. Producers (e.g. vehi-

cles) publish messages to topics; consumers (e.g. traffic control 

operators) subscribe to topics and pull new messages when they 

become available. Important properties of Kafka are (i) its ability 

to scale horizontally to accommodate extra load of incoming data 

and (ii) its guarantees of at-least-one delivery of data from pro-

ducers to consumers. 

3. Related work 

We overview here research on developed architecture for Big Data 

analytics in ITS. Khazaei et al. [11] have proposed a cluster-based 

platform named "Sipresk" to collect, process and store data for 

historical analysis. Their platform is built based onthe Godzilla 

conceptual framework [32] and is validated in a case study where 

it is used to estimate the average speed and thecongested sections 

of a highway. In another study, Xia et al. [4] have employed Ha-

doop distributed computing platform with MapReduce parallel 

processing to forecast near-future traffic flow. Similarly, in [5] a 

parallel distributed computing framework based on MapRe-

ducedhas been developed mainly for data mining over real-time 

GPS data for different purposes e.g. congestion estimation on 

freeway. From the above, we draw two important conclusions: (i) 

literature in applying Big Data approaches in ITS is rather scares-a 

rather surprising fact given the high potential of this combination, 

and (ii) none of the approaches we surveyed focus on Big Data 

stream processing. In our work, we try to bridge this gap by pro-
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posing an architecture and platform for Big-Data driven real-time 

analysis of ITS data and traffic control. 

4. Proposed big data analytics architecture for 

real-time traffic control 

In a transport system, data consumers (henceforth consumers) 

make various types of queries. Therefore, when developing a plat-

form for data analytics, we should take into account the variability 

of the queries. In our approach, we have divided the possible que-

ries into four groups: 

Periodic vs. non-periodic: some consumers (e.g. a traffic signal 

actuator) have to monitor the system continuously to adapt on the 

changes if needed periodically (e.g. every cycle), whereas other 

consumers ask for information only once (e.g. a driver asking for 

the shortest route). 

Descriptive vs. predictive: some queries look into the data that 

describe the current (or previous) state of the system e.g. the cur-

rent queue length for signal optimization, while other queries ask 

for predictive information, for example the expected number of 

arriving vehicle in next signal cycle. 

Real-time vs. non-real time: most queries in real-time traffic con-

trol need to be answered within certain predictable latencies. 

However, there might be some queries that do not impose any 

strict timing requirements; consider, e.g. analytics queries related 

to urban planning. 

Single vs. multiple sources: due to privacy, security and accessi-

bility issues not all sources are available for all purposes. For ex-

ample, a signal control system may only rely on data obtained 

from loop detectors, while route recommendation might use sev-

eral sources including crowd-sourced data. 

4.1. Requirements on big data architecture for traffic 

control 

In order to address the different types of queries and usage scenar-

ios, an architecture for traffic control that relies on Big Data ana-

lytics has a number of requirements, namely, it should: 

• Support analysis of data in streaming mode (to achieve low 

latencies) and analysis of historical data in batch mode. 

• Provide an easy way to specify a data analytics query and its 

triggering policy (e.g.periodic/aperiodic). 

• Provide an easy way to plug-in the analysis of different data 

sources, even as they becomeavailable. 

• Provide intuitive mechanisms to considering multiple data 

sources in answering a single query. 

• Provide an easy way to plug-in advanced data analysis (e.g. 

machine learning) algorithms. 

• At the same time, considering that safety-critical nature of 

traffic control, the architecture should be resilient and al-

ways on. In particular, it should be able to: accommodate 

• Large number of data sources and consumers and scale line-

arly with these numbers. 

• Faults (hardware faults, disconnections) by continuous op-

eration and without loss of data (incase of safety critical 

scenarios with low latency, every data item can be im-

portant). 

4.2. Overall architecture 

In order to satisfy the above requirements, we came up with the 

overall architecture depicted in Fig. 1. In it, the different ITS ac-

tors (i.e. drivers, detectors, actuators, operators, etc.) act either as 

publishers or subscribers to Kafka topics. Kafka is used as the 

layer that decouples publishers and subscribers from the analytics 

engine. Once a publisher publishes a new data item, this gets sent 

to Kafka and also saved in a Hadoop Distributed File System 

(HDFS) data warehouse for posterior analysis (of raw data). The 

analytics engine gets input from all the publishing topics and per-

forms data analysis (e.g. data aggregation, summarization, statis-

tics or machine learning). The results of the data analysis may 

trigger changes that are (i) published to one or more subscriber 

topics, and (ii) logged in a NoSQL database for posterior analysis 

of the findings (e.g. in order to determine the accuracy/recall of a 

predictive model mined from the incoming data). Once a change is 

published, it is picked up by the ITS actors that listen to the par-

ticular subscriber topic; they are ultimately responsible for enact-

ing the change in the ITS (e.g. opening the hard shoulder on free-

way). 

 

 
Fig. 1:Architecture of the Proposed Platform. 

4.3. Prototype of big data platform for traffic control 

We describe here our initial prototype of a platform that reifies 

substantial parts of the architecture described in section 4.2. In our 

platform, Kafka has the role of the communication medium be-

tween the traffic system with its sensors (probe vehicles, loop 

detectors, etc.) and actuators (traffic lights, Variable Message Sign 

(VMS), etc.) and the data analysis module. 

A number of Kafka topics represent the different types of incom-

ing data from the traffic systems. Different topics can be, e.g., 

mean speed from loop detectors, vehicle speed and position data 

from onboard GPS devices, trajectories extracted from video foot-

age, tweets from Twitter, etc. There are no assumptions on the 

format of the data of each topic, i.e. they can from strictly struc-

tured to completely unstructured (e.g. plain text). For simplicity, 

in our experiments, we have used JSON structured data. 

A special Kafka topic, represented as change provider in the plat-

form is responsible for delivering the changes in the form of Kaf-

ka messages (again, of arbitrary structure) that should be enacted 

in the traffic actors. Such changes are the results of the data ana-

lytics engine. 

The data analytics engine performs the analysis and/or control 

logics defined by each consumer into vary from simple feedback 

loop to sophisticated machine-learning algorithms. 

Moreover, users can customize the time intervals for receiving the 

outcome of the analytics engine. As data come in, they are being 

processed via user-specified reducer functions. These functions 

are specific to each topic. For example, in case of speed data, a 

possible reducer function can compute the moving average of the 

incoming data. In the end of each time interval, a separate evalua-

tor function is invoked. The evaluator can access the results of all 

the reducers; this is where decisions can be made based on com-

bining the individual analysis. In case of automatic traffic control 

operation, the evaluator conditionally triggers changes to the traf-

fic system by sending specific messages via the change provider. 

5. Simulation case study 

We have used the platform prototype in a real-life traffic control 

problem to validate its effectiveness1. In the traffic control prob-

lem, the controller receives the average density from loop detec-

tors on a cross section of a three-lane freeway and decides whether  
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the hard shoulder should be opened or closed. Due to safety rea-

sons, an operator observes the section via Surveillance camera to 

detect obstacles or stopping vehicles on the hard shoulder. We 

study the hard shoulder opening system on a 3 km segment of A9 

freeway in the north of Munich. This section of the freeway has 

been used as a digital testbed to assess the performance different 

types of sensors e.g. radar, camera, Bluetooth, etc., which fits to 

Big Data definition in term of volume, velocity and variety suita-

ble the characteristics of a Big Data analytics.  

 

 
Fig. 2:Topics from Kafka Publishers in SUMO Experiment. 

 

Since we are interested in high-level ITS architecture and proof of 

concept for smooth operation of the proposed platform, without 

losing generality, we have modeled this section in SUMO [13], a 

microscopic traffic simulation. In order to achieve a realistic rep-

resentation of the reality, we use virtual detectors in SUMO, each 

corresponding to an existing sensor. An area detector is placed 

over the hard shoulder to represent the surveillance camera, virtual 

loop detectors that measure mean speed and occupancy and float-

ing car data that provide momentary speed and position as well as 

travel time along the section. Fig. 2 depicts a comparison of the 

real-world with our SUMO experiment and Fig. 3 illustrates the 

Kafka publishers and subscribers together with the corresponding 

published topics. The queries can be various for each subscriber, 

for instance, query 3 for the VMS could be dynamic speed limit 

and sign for lane opening/closure. 

 

 
 

 
Fig. 3:Cross-Comparison of SUMO Experiment with Real-World Situa-
tion. 

6. Discussion 

So far, we have reified parts of the proposed architecture in a pro-

totype platform. We discuss here the extent to which the platform 

satisfies the requirements on the Big Data traffic control architec-

ture identified in Section 4.1 Where applicable, we mention also 

our future plans on extending the platform. Our platform can al-

ready handle large bandwidth of incoming data stream thanks to 

Kafka. To cope with cases where in-memory Python computation 

can be an issue (e.g. in cases of very large data with very high 

velocity), the platform offers the option to use Spark as a pre-

processor. In such case, the reducer function has to be implement-

ed as a Spark or Kafka Streaming job. With respect to historical 

data analysis, we will pipe all incoming data to all topics not only 

to the analytics engine, but also to an HDFS. This is a straightfor-

ward extension of our platform planned as future work. Another 

important feature of the platform is the possibility to plug-in dif-

ferent data sources. Since data sources just publish to a number of 

Kafka topics, adding more sources entails augmenting these topics 

when a data source needs to publish an item of a new type. Multi-

ple data sources (if needed) can be easily used to answer queries, 

since the evaluator function has access to the common state hold-

ing the result of the reducer functions applied at each Kafka topic. 

Regarding the data analytics query specification, we provide a set 

of Python functions (reducers, evaluator) that should be imple-

mented by the user of the platform; the platform takes care of 

calling them in the right time and sequence. In this paper we used 

a very simple analysis, but the platform is flexible to plug-in ad-

vanced data analysis algorithms (i.e. machine learning). This is 

possible either in Python, which already provides proven machine 

learning and statistics libraries or in Spark Streaming that can be 

plugged-in as pre-processor of the stream of each Kafka topic. The 

last two requirements concerning safety-critical issues are fulfilled 

thanks to Kafka. Our platform can scale out on demand to ac-

commodate extra load arising from large number of data sources 

and consumers. Moreover, Kafka guarantees atleast one semantics 

on data delivery. Also, Kafka clusters tolerate faults of individual 

machines without loss of data (via data replication mechanisms). 

7. Conclusion 

In this work, we proposed a comprehensive and flexible architec-

ture for real-time traffic control based on Big Data analytics. The 

architecture is based on systematic analysis of the requirements of 

the domain. The proposed architecture has been partly reified in a 

platform employing Kafka. It has been put to action in operating a 

feedback control loop to open or close hard shoulder of a freeway. 

The main limitation of the study was lack of access to real-world 

data. Although using simulation in traffic studies is common, data 

generated in SUMO are well-structured, valid and do not require 

data quality and plausibility checks. We recommend to consider 

these essential issues in future research. 

Despite a simple control logic, this real-life example requires ana-

lyzing large and heterogeneous data streams from multiple 

sources. Using such a platform to perform only traditional control 

measures requires a lot effort, but with the emerging autonomous 

vehicles such multi-objective control platforms are crucial, partic-

ularly to coordinate the control measures among all components 

simultaneously e.g. the strategic decisions for movement of indi-

vidual vehicles. Therefore, for future work, we suggest to investi-

gate using Kafka Streams or Spark Streaming to be able to per-

form complex analytics such as machine learning in real-time. 
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