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Abstract 
 

Particle filter methods are used in the estimation and tracking of the objects for non-linear and non-gaussian noise conditions. In this paper 

work the object estimation using partial resampling methods are discussed. On using partial resampling method resampling becomes faster. 

The performance of particle filter with partial resampling scheme is analyzed using the state estima-tion of a simple pendulum. 

 
Keywords: Particle Filters; Partial Resampling; Simple Pendulum; State Estimation. 

 

1. Introduction 

In optimal filtering method, the state of time varying objects are 

estimated optimally. In Bayesian filtering method, the state of the 

object is estimated based on the dynamic variables like velocity, ac-

celeration, orientation etc., [1].The solution to the Bayesian infer-

ence equation is obtained by Monte Carlo methods, this performs 

computation by taking samples from distribution and the quantities 

will be estimated by the averaging of samples [2]. Estimation in 

Monte-Carlo approximation is estimated by independent random 

variables [4], [5]. During the collection of samples, degeneration 

problem occurs, where the collected particles may have zero 

weights or some particles having huge weights [2]. This is avoided, 

by obtaining N new samples replacing the previous samples from 

the discrete distribution defined by the weights. This process is 

called as Resampling. In this paper the corresponding work is to 

implement the resampling using the particle filter. By choosing the 

nonlinear system and considering the nonlinear equations of the 

pendulum and implemented the particle filter on that system. 

The basic idea of particle filters are generation of new particles, 

calculate weight of particles, and resampling process[6]. The 

resampling process is hard in every implementation of particle fil-

tering because without it, the weights of the particles are varied, 

then the assumption is made by using only a very small number of 

particles. The main idea of resampling is removing particle trajec-

tories having small weights and replace them with trajectories with 

large weights [6].  

2. Particle filter 

This is a primeval model which works well immensely on nonlinear 

systems, which is problematic for Kalman filter. This was designed 

by the work of Sir. Nicolas Metropolis and Sir. Norbert Wiener in 

1949 by investigating sets of particles rather than individual 

species[1]. 

Even though the EKF (Extended Kalman Filter) works for certain 

nonlinear data, it cannot process systematically, the nonlinearity is 

high because it relies on linearization of mean and covariance of 

propagation. First order accuracy was followed by EKF, UKF fol-

lows higher order accuracy, here comes the irreducible divergence, 

if the nonlinearity is still severe. So, the particle filter is a perfect 

suit for nonlinear system tracking. Particle filter primarily depends 

on probabilities for estimation. Bayesian state estimator stands as a 

basis for the particle filter. 

Hence the aim of particle filtering is to resample the particles based 

on their weights. At first, the discrete distribution of pendulum 

measurements should be considered. The measurements of the pen-

dulum are calculated based on the distance of the bob from the 

ground. The most likely and unlikely particles are separated by each 

particle from a discrete distribution. The categorization of 

estimating likely and unlikely particles is that the likely particles 

are those whose measurements are identical to the position of the 

bob from the ground. The likely particles will be assigned with huge 

weights compared to unlikely particles. The unlikely particles are 

not important for sampling. The resampling is done to remove those 

unlikely particles and to add more number of likely particles so that 

the movement of the pendulum optimally is estimated. 

The main procedure of resampling is to replace the small weighted 

particles with large weights, this adds extra variance to the esti-

mates. So proper resampling techniques should be followed. This 

algorithm provides an optimal solution for resampling with less var-

iance. 

By the adaptive resampling technique, it select the required sample 

size based on the variance of particle 

 

neffective=
1

∑ (B)2N
i=1

                                                                             (1) 

 

B=Mk
(i)-normalized weight of i’th particle at k th time step. 

Resampling is made whenever the adequate number of particles is 

less than that of total number of particles. There sampling procedure 

is done in three steps: 
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1) First identify the weight of each samples Mk (i)which is the 

probability of obtaining the i th sample in the distribution { 

yk (i)} where, i= 1,2,3,4,5,6…..N 

2) Remove the samples whose weights are nearly to zero and 

add new samples that are likely to the measurement using 

resampling.  

3) After resampling set the weights of new samples and old 

samples as constant say, Mk (i) = 1/N. Since there is no 

resampling of the particles at every time step of estimation of 

pendulum position, it adds additional variance to the estima-

tions.  

• At first draw, the prior samples Z(i) given by 

 

Z(i)=P(Y0)                                                                                      (2) 

 

Where i=1, 2…N and set the effectiveweight, MK
 (I) =1/N of i’th 

particle at time step k  

• • For each step of k draw the new samples from a distribution 

called importance distribution π (Y| Z1:K) denoted by  

 

Yk
(i)=π(YK|YK-1

(i),Z1:k)                                                                  (3) 

 

Where i= 1, 2….N The whole process is called as Sequential 

importanceresampling (SIR) because here adds a resampling step 

to each importance sampling. The weight of each particle is esti-

mated by the whole process is called as Sequential importance 

resampling (SIR) because here resampling step is added to each im-

portance sampling. 

The weight of each particle is estimated by  

 

MK
(i)α p(zk|yk

(i))p(yk
(i)|yk-1

(i))/ π(yK
(i)|yK-1

(i),z1:k)                            (4) 

 

Normalise the weight of each sample to unity. If thenumber of re-

sultant particles are too low, then perform resampling. The follow-

ing approximation used in filtering distribution is  

 

P(yk|z1:k)=∑ MN
i=1 k

(i)δ(Yk-Yk
(i))                                                     (5) 

 

Performance of SIR depends on the quality of importance distribu-

tion π(Y |Zy1:k). 

3. Pendulum basic eqations 

The differential equation for a simple pendulum of unit mass and 

unit length is given as [2] 

 

d2β/dt2=-g sin(β)+m(t)                                                                  (6) 

 

Where 

β -angle made by the equilibrium axis with respect to pendulum 

rod’s displacement 

g- Gravitational acceleration 

m (t)-random noise  

This mode in terms of state space model can be represented a 

 
d

dt
(q1

q2
)=( q2

−gsinq1
)+(0

1
)m(t)                                                          (7) 

 

Whereq1= β andq2=d β/dt 

The measurement along the horizontal position of the pendulum 

leads to a nonlinear measurement model, given by 

 

Zk=sin(θ(tk))+noise                                                                       (8) 

 

Now the continuous nonlinear state with respect to discrete nonlin-

ear measurements can be discretized as 

 

YK=F(mk-1,qk-1)                                                                             (9) 

 

ZK=H(Yk ,ZK)                                                                             (10) 

 

Where Zk is the measurement vector. 

The pendulum model is simply discretized as follows 

 

 (X1,k
x2,k

)=( x1(k−1)+x2(k−1)∗ΔT
x2(k−1)−g∗sin (x1(k−1)∗ΔT

)+qk-1                                     (11) 

 

Zk =sin(x1(k))+rk                                                                        (12) 

 

Where qk-1 ~ N and rk ~ N(0,R) are noise vectors to be considered. 

Jacobian matrices of f and h for first order system is as follows  

 

Q=qc(
dT∗dT∗dT

3

dT∗dT

2
;
dT∗dT

2
 dT)                                                  (13) 

 

Where qc is the spectral density of continuous time process noise. 

From equation (3) the weights for pendulum state can be computed 

a 

 

M= -1/e2R(y(k)-sin(x(k,i))2                                                                 (14) 

 

Where 

K-State; i-1, 2…N; R=variance 

Normalize the M by 

 

Mi=Mi/(∑ Mj
n
j=0 )                                                                        (15) 

4. Partial resampling 

The methodology of partial resampling is to perform resampling 

only on particles having high weights and replace them with parti-

cles with not cosiderable weights. Particles having moderate 

weights are not resampled [6]. The advantages of the partial 

resampling are  

1) Partial resampling is performed on smaller number of parti-

cles, so resampling becomes faster. 

2) In this method less particles are replicated and replaced com-

munication is shorter. 

In partial resampling method, resampling is introduced by a step 

that combines the particles according to their weights in three sets. 

The weight of each particle is compared with a high and a low 

thresholds, Rh, and Rl, respectively. Particles having weights be-

tween those two thresholds are considered as moderate weights and 

these weights are not resampled. Now the number of particles with 

weights greater than Rh and less than RL be denoted by Nh and Nl, 

respectively. The sum of weights of the particles that are resampled 

is counted using Ahl=∑ M(j)Nh+Nl
j=1 , here j is chosen on the condi-

tions 

 

Mt
(j) <RL or Mt

(j) > Rh 

 

It consists of two loops. The first loop contains N iterations and is 

used for classifying the particles as leading, moderate, or not con-

siderable. The second loop has (Nl + Nh) iterations,which is equal 

to the number of particles involved in the resampiing. Now a new 

random measure is produced, and it is given byMt
(j)=1/Ahl, forMt

(j) 

<RL OR Mt
(j) >RH and Mt

(j)=Mt-1
(j) in other conditions. 
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5. Results 

 
Fig. 1: The Black Line Indicates the True Position of Pendulum. The Blue 
Dots Represent the Measured Values. The Blue Dotted Line Indicates the 

Estimated Result Obtained Using Resampling. 

 

 
Fig. 2: The Yellow Line Indicates the True Position Value of the Pendulum 

and the Green Dots Represents the Measured Value of Pendulum at Partic-

ular Position. The X Axis Is Taken as Time Axis and Y Axis As A Pendulum 

Position. 

 

 
Fig. 3: RMSE of 100 Monte-Carlo results. 

6. Conclusion 

The pendulum state space model has nonlinearities , so by using 

particle filter for optimal estimation of the position of the pendulum 

the conclusion as follows, the root mean square error of 

measurement value is 0.5022 and the particle filter root mean 

square error is0.0846. This implies, Particle filter gives the optimal 

estimation of the system. 
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