

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research Paper

Secondary steel mill furnace performance

Yogesh Chandra Gupta¹*, Kamal bansal², S.N.Sriniwas³

¹Industry Fellow, College of Engineering Studies, University of Petroleum & Energy Studies, Energy Acres,

Bidholi Campus, Dehradun, Uttarakhand, India – 248007

²Dean, College of Engineering Studies, University of Petroleum & Energy Studies, Energy Acres,

Bidholi Campus, Dehradun, Uttarakhand, India – 248007

³Program Officer – Energy & Environment, UNDP India, Lodhi Road, New Delhi, India *Corresponding author E-mail: ycgupta@ddn.upes.ac.in

Abstract

Energy in a steel re-rolling mill is mainly consumed in furnaces. Therefore, furnace performance is very important and its contribution in the cost of product is very high. Data has been collected for two different furnaces in Stackle mill and analyzed for performance of furnace. In this paper, effect of furnace performance on secondary steel sector is analyzed. These data about performance is collected on Walking beam furnace in Stackle mill and Re-heating furnace,

Keywords: Furnace, Efficiency, performance, steel mill, secondary steel

1. Introduction

India is having ample steel re-rolling mills spread across the country. In today's scenario, Infrastructure growth at fast pace is need of the country and Infrastructure requires steel products in various form. Therefore, India's Secondary steel sector is very important. Approximate 3500 SRRM are running across the country and these consume good amount of energy for rising the temperature of furnace to bring the temperature to 1100 degc. Major energy consuming equipment in steel re-rolling mill is Re-Heating furnace. Data is collected at a steel mill in Haryana, India for the testing of performance of furnaces. At the time of data collection, installed capacity of this plant was 4.30 lacs metric ton and annual consumption of this steel mill is 186 GWh.

2. Energy data collection approach

The targeted data collection and energy auditing ${}^{\scriptscriptstyle [1]}$ is performed in following five steps

2.1. Past data & specifications / parameters

For this, mainly manual / specifications provided by original equipment manufacturer (OEM) has been referred

2.2. Instruments required

Ο

Furnace temperature is kept above 1100 deg C. Therefore, High temperature Infrared thermal scanners and imagers are used for monitoring of running parameters.

2.3. Data collection and measurements

Various temperature and heat related data has been collected and running parameters are measured for calculation of heat losses. 2.4. Data analysis & report preparation

Data is collected for two furnaces and analysed using Sankey's diagram. Detailed report is prepared for this data collected.

2.5. Final report submission

Final report with heat loss calculations is prepared and submitted. The suggestions for performance improvement also has been advised.

3. Process flow and equipment description

The process flow for thermal equipment ^[2] was under analysis. The list of main thermal equipment installed in this plant are:

- 1. Steel Melting Shop-1
- 2. Steel melting Shop-2
- 3. Furnaces
 - a. Pre-heating Furnace (PHF)
 - b. Walking Beam Furnace (WBF)
 - c. Annealing furnace
 - d. Strip mill furnace
 - e. Boggie furnace
 - Finishing mill
- 5. Cooling Tower
- 6. Oxygen plant

3.1. Process Flow

4.

Copyright © 2018 Authors. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig. 1: Steel manufacturing process

Integrated Steel plants are firstly processing the Ore at high temperature and Blooms / Ingots are formed out of molten steel. Then it is taken to secondary steel sections for Re-shaping to desired format of product. It is known as steel re-rolling mill^{[3].}

Furnace is equipment used to rais the temperature of steel products to 1100 - 1200 deg C. then the products are rolled to give the desired shape. There are variety of furnaces available. There are eight furnaces installed in the plant under observation. Those are:

1.	Strip mill furnace	-	1no.
2.	Stackle mill furnace	-	2 no.
3.	Annealing Furnace	-	1 no.
4.	Finishing Furnace	-	1no.
5.	Boggie Furnace	-	1no.

Stackle mill is having two furnaces. Out of these two, one is walking Beam Furnace (WBF) and another one is Pre-heating furnace (PHF). The fuel in these furnaces are LPG & LVFO respectively.

Details of Stackle mill are as follows:

Table 1: Stackle mill Specifications				
S. No	Description	Unit	Flat	JBS
1	Type of Fuel		FO	LVFO / HSD
2	Cycle Time			
	Productivity	T/Hr	45.0	12.0
	Cycle	Sec	120	360
3	Raw Material			

	Bloom Size (T X W X L)	Cm	2*2*50.5	2*2.6 *33.5
	Bloom Weight	Kg	1530	1330
	Bloom Size	Cm	2*2.6*50.5	
	(T X W X L)			
	Bloom Weight	Kg	2000	
4	Recuperator parameters			
	Inlet	٥F	1022 - 1166	1166- 1292
	Outlet	٥F	356 - 410	392 - 428
	Hot Air	٥F	536 - 662	626- 752

4. Pre-heating furnace

The furnace specifications of Pre-heating furnace in Stackle mill are as follows:

S.No	Parameter	Units	Value
1	Installed Capacity	Ton/Hr	150.00
2	Furnace Dimensions:		
	Length	Cm	15500
	Width	Cm	11900
	Height	Cm	2500
3	Steel Grade		JT1250
4	Fuel		LDO
5	Feed-in Temperature	°F	158
6	Feed-out Temperature	°F	932
7	Ambient Air Temperature	°F	100
8	Hot air Inlet Temperature	°F	523
9	Recuperator Inlet Temperature	°F	926
10	Flue gas outlet Temperature	°F	644

4.1. Pre-Heating Furnace Process Flow

Fig. 2: Pre-Heating furnace process flow

4.2. Pre-Heating Furnace Fuel consumption

Month wise fuel consumption in the Pre-Heating

Furnace of Stackle mill is as follows:

Fig. 3: Pre-Heating furnace Fuel consumption

4.3. Heat losses in Pre-Heating Furnace

Fig. 4: Pre-Heating furnace Sankey's diagram

5. Walking Beam Furnace

5.1. Walking Beam Furnace Process Flow

The schematic process flow diagram of a typical walking beam furnace [4] is

Fig. 5: Walking Beam furnace process flow

4.4. Flue gas loss saving potential

Table 3: Pre-Heating Furnace losses				
Flue gas Waste Heat Potential				
Parameter	Units	Value		
Flue Gas Temperature	°C	560.0		
Recommended stack Temp	°C	200.0		
Flue gas flow rate	T/hr	11.0		
Specific Heat of Flue gas	kJ/kg degK	1.17		
Waste Heat recovery possible	GCal/hr	19.48		
operational hours	hrs	24		
operational Days	days	320		
Annual waste heat saving potential	GCal/Annum	59838.86		

Hence, thermal energy loss of **59.8** x 10^9 Kcal /annum may be saved by using waste heat recovery devices. Hence, efficiency of PHF will improve accordingly [6].

4.5. Sankey's diagram of Flue gas

5.2. Walking Beam Furnace Fuel consumption

Month wise fuel consumption in the Walking Beam Furnace of Stackle mill is as follows:

Fig. 6: Walking Beam furnace Fuel consumption

The burner specifications in this Stackle mill are:

Table 4: Stackle mill burner specifications				
Area		Location	No of	Burner
			Burner	Model
			Installed	No
STACKEL	PHF	Side Wall	3 + 3	1201-100
MILL	WBF	Heat Zone	10 + 8	1201-250
		Soaking	10 + 7	1202-200
		Zone		

. ...

5.3. Heat losses in Walking Beam Furnace

No process is 100% perfect; some losses are certain in the process^[6]. The heat loss of walking beam furnace are:

Fuel Consumption	$= 1054.00 \text{ Nm}^{3}/\text{Hr}$
Cycle time of furnace	= 210 minutes
C.V. of Fuel (L.P.G.)	= 25.77 MCal/Nm ³
Heat input	= m*GCV
-	= 1054.00 * 25.77 * 210
	= 95.08 G Cal
Initial Temperature of Slah	– 1009 °C
Final Temperature of Slab	- 15/3 °C
Slab quantity in furnace	= 13+3 C = 14 Nos
Cp of Slab	= 450 J/kg deg K
Net Weight of Feed stock in	furnace = 248.15 Ton
Heat output (Q)	$= m^* Cp^* \Delta T$
	$= 248.15*450 \times 10^{-3}*(1543-1009)$
	= 14.26 G Cal

Therefore, the total difference in heat input and output is the loss and the quantity of loss =

Heat Input-Heat Output
= 95.08 G Cal -14.26 G Cal
= 80.82 G Cal

This is the heat loss due to Flue gas. The efficiency of furnace is

Efficiency % = (Heat Output/Heat Input)*100 = (14.26 / 95.08)*100 = 14.97 %.

The efficiency of this furnace is very low. These losses may be reduced by recovering the heat from flue gas 171. Therefore, the waste heat recovery techniques [6] should be applied to the system so that the heat loss in flue gas is reduced and efficiency of furnace is improved [8].

5.4. Radiation losses in Walking Beam Furnace

Table 5: Radiation losses in Walking Beam Furnace					
Surface Radiation Losses Of WBF					
Parameter Units Value					
Ambient temperature	°C	40			
Total Surface Area					
Right wall	Cm ²	776400			
Left wall	Cm ²	776400			
Ceiling	Cm ²	1659200			
Charging door	Cm ²	120000			
Discharging door	Cm ²	120000			
Average skin temperature					
Right wall	°C	175			
Left wall	°C	150			
Ceiling	°C	215			
Charging door	°C	182			
Discharging door	°C	245			

emissivity of external wall surface	Е	0.75		
Right wall Losses				
Heat losses through the right wall	G Cal/hr	0.165793		
Left wall Losses				
Heat losses through the left wall	G Cal/hr	0.124551		
Ceiling Losses				
Heat Losses through Ceiling	G Cal/hr	0.581814		
Charging door Losses				
Heat losses through charging door	G Cal/hr	0.027549		
Dis-Charging door losses				
Heat Losses through discharging door	G Cal/hr	0.047884		
Overall heat losses through surface	G Cal/hr	0.947592		
Energy input to furnace	G Cal/hr	27.166850		
% losses through radiation	%	3.48%		

Radiation losses through surface of furnace are only 3.48%. Still these may be reduced by proper insulation of furnace. This may require replacement of refractory or insulation.

5.5. Flue gas waste heat recovery in this Furnace

The furnace efficiency comes out as 14.97% only. Major heat loss in furnace is through Flue gas loss^{[9].} This may be recovered through appropriate recuperator and other waste heat recovery equipment [10].

Table 6:	Waste Heat Recovery potential of flue gas

Flue gas Waste Heat Potential			
Parameter	Units	Value	
Flue Gas Temperature	°C	461	
Recommended Temp	°C	200	
Flue gas flow rate	T/hr	36	
Specific Heat	kJ/kg deg K	1.17	
Waste Heat Potential	G Cal/hr	46.20	
operational hours per day	Hrs.	24	
operational Days	days	320	
Waste heat saving potential per annum	G Cal/Annum	141945.8	

5.6. Sankey's diagram for walking beam furnace

Fig. 7: Sankey's chart Walking Beam furnace

6. Conclusion

After The analysis of the Stackle mill, we observed that the efficiency of the walking Beam furnace installed in the plant is very low (15% only). The reason for low efficiency is mainly excessive flue gas losses. In addition to this, there are radiation losses 9Surface heat losses) are approx. 3.5%. The energy saving potential from flue gases of this furnace is 1, 41,945 G Cal per annum. The efficiency of Pre-Heating furnace is 48%. While still there is a thermal loss saving potential of 59,838 G Cal per annum. Installation of appropriate waste heat recovery devices ^[11] for recovery of heat is strongly recommended and can improve the efficiency of furnaces. Similar energy conservation measures ^[12] may be deployed to other furnaces across the steel Re-rolling mill sector.

References

- Hasanbeigi, Ali, and Lynn Price. "Industrial energy audit guidebook: Guidelines for conducting an energy audit in industrial facilities." (2010).
- [2]. Manjari Jha and V.K. Singh (2013) Assessment of energy efficiency in reheating furnace of a steel plant by using process heating assessment and survey tool.
- [3]. Zhang, Qi, et al. "Carbon element flow analysis and CO2 emission reduction in iron and steel works." Journal of Cleaner Production 172 (2018): 709-723.
- [4]. Chan, David Yih-Liang, et al. "The case study of furnace use and energy conservation in iron and steel industry." Energy35.4 (2010): 1665-1670.
- [5]. Joshi, Mahendra L., Harley A. Borders, and Olivier Charon. "Method and system for increasing the efficiency and productivity of a high temperature furnace." U.S. Patent No. 6,113,389. 5 Sep. 2000.
- [6]. Lingyan Hu (2016) A Simplified Practical Model for a Walking Beam Type Reheat Furnace with Specific Heat Transfer Characteristics.
- [7]. Brückner, Sarah, et al. "Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies." Applied Energy 151 (2015): 157-167.
- [8]. Ma, Guang-yu, et al. "Analytical research on waste heat recovery and utilization of China's iron & steel industry." Energy Procedia 14 (2012): 1022-1028.
- [9]. Morrow III, William R., et al. "Assessment of energy efficiency improvement and CO2 emission reduction potentials in India's cement and iron & steel industries." Journal of Cleaner Production 65 (2014):131-141.
- [10]. Lu H, Price L, Zhang Q. Capturing the invisible resource: Analysis of waste heat potential in Chinese industry. Applied Energy. 2016 Jan 1;161:497-511.
- [11]. SZEMMELVEISZ, ERIKA KUN1–TAMÁSNÉ. "Energy efficiency enhancement in the Hot Rolling Mill." Materials Science and Engineering 3.2 (2014): 43-50.
- [12]. Zhang, Qi, et al. "Waste energy recovery and energy efficiency improvement in China's iron and steel industry." Applied energy 191 (2017): 502-520.