Parametric identification method for an absorption air conditioning parabolic trough collector solar plant

  • Authors

    2023-12-20
    https://doi.org/10.14419/k81wh647
  • In this work is established a parametric identification method for an absorption air conditioning solar plant. A scaled thermal plant, consisting of a thermal capacitor and a flow line that acts as a capacitor and thermal energy radiator is used. As the mathematical model of the scaled plant is structurally identical to that of the solar plant the first is used to determine the methodology that can be used later for the identification of the PTC solar plant. Parametric identification is a necessary step that allows to determine the unknown parameters of the mathematical model of any solar/thermal plant. This model then can be used to analyze the plant characteristics and design an appropriate control algorithm. Although the system model is nonlin-ear it can be expressed in the form of a linear regressor in the parameters. This permits to use the least squares method as the identification method. The method is applied to the thermal plant to identify the useful form that the covariance matrix and excitation signals should have to ensure that when applied to the solar plant its unknown parameters can be properly estimated. Once the solar plant parameters are properly estimated model can be used to analyze and simulate the operation of the ab-sorption air conditioning system.

    Author Biography

    • R. J. Romero, Intenational Journal of Basic and Applied Sciences Editor since 2018 till 2020.

      Environmental Engineering,

      Engineering & Technology,

      Mechanical Engineering Research,

      Basic and Applied Sciences,

      Solar Energy,

      Desalination, 

      Environmental Science and Technology,

       

       

  • References

    1. Al-Alili, A., Hwang, Y., & Radermacher, R. (2014). Review of solar thermal air conditioning technologies. International Journal of Refrigeration, 39, 4–22. https://doi.org/10.1016/j.ijrefrig.2013.11.028.
    2. Askarzadeh, A., & Gharibi, M. (2018). Accurate estimation of cost function parameters for thermal power plants using a novel optimization approach. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 40(24), 2986–2999. https://doi.org/10.1080/15567036.2018.1514440.
    3. Berenguel, M., Rubio, F. R., Martínez, D., & Camacho, E. F. (2012). Control of solar energy systems. In Advances in industrial control. https://doi.org/10.1007/978-0-85729-916-1.
    4. Braun, R., Haag, M., Stave, J., Abdelnour, N., & Eicker, U. (2020). System design and feasibility of trigeneration systems with hybrid photovoltaic-thermal (PVT) collectors for zero energy office buildings in different climates. Solar Energy, 196(March 2019), 39–48. https://doi.org/10.1016/j.solener.2019.12.005.
    5. Camacho, E. F., Rubio, F. R., Berenguel, M., & Valenzuela, L. (2007). A survey on control schemes for distributed solar collector fields. Part I: Modeling and basic control approaches. Solar Energy, 81(10), 1240–1251. https://doi.org/10.1016/j.solener.2007.01.002.
    6. Camacho, E.F., Rubio, F. R., & Hughes, F. M. (1992). Self-tuning control of a solar power plant with a distributedncollector field. In Control Systems, IEEE (Vol. 12, Issue 2, pp. 72–78). https://doi.org/10.1109/37.126858.
    7. Camacho, Eduardo F., Berenguel, M., & Gallego, A. J. (2014). Control of thermal solar energy plants. Journal of Process Control, 24(2), 332–340. https://doi.org/10.1016/j.jprocont.2013.09.026.
    8. Diaz-Salgado J., Basurto-Pensado, M. A., & R.J., R. (2017). Diseño y Dimensionamiento del Actuador de un Sistema de Seguimiento Solar de un Colector Cilindro-Parabólico para una Planta Solar de Aire Acondicionado Utilizando Herramientas de Simulación por Software Design and power calculation of the Sun Tracking Sy. Programación Matemática y Software, 9, 1–9. https://doi.org/10.30973/progmat/2017.9.3/1.
    9. Duffie, J. a., Beckman, W. a., & Worek, W. M. (2013). Solar Engineering of Thermal Processes, 4nd ed. In Journal of Solar Energy Engineering (Vol. 116). https://doi.org/10.1115/1.2930068.
    10. Karl J. Astrom, B. W. (1994). Adaptive Control. In Dover.
    11. Lemos, J. M. (2006). Adaptive control of distributed collector solar fields. Internatioal Journal of Systems Science, 37(January 2014), 523–533. https://doi.org/10.1080/00207720600783686.
    12. Luna, Y. R. G. (2018). Diseño, construcción y evaluación experimental de una planta piloto solar para acondicionamiento de espacio utilizando la mezcla NaOH-H20 para climas cálidos subhúmedos.
    13. Mathur, D. (2020). A REVIEW ON SOLAR COOLING. 11(5), 12–21. https://doi.org/10.34218/IJMET.11.5.2020.002.
    14. Secui, D. C., Hora, C., Bendea, G., & Bendea, C. (2020). Parameter estimation using a modified whale optimization algorithm for input-output curves of thermal and hydro power plants. International Transactions on Electrical Energy Systems, 30(2). https://doi.org/10.1002/2050-7038.12188.
    15. Siddiqui, M. U., & Said, S. A. M. (2015). A review of solar powered absorption systems. Renewable and Sustainable Energy Reviews, 42, 93–115. https://doi.org/10.1016/j.rser.2014.10.014.
    16. Tashtoush, B., & Nayfeh, Y. (2020). Energy and economic analysis of a variable-geometry ejector in solar cooling systems for residential buildings. Journal of Energy Storage, 27(November 2019), 101061. https://doi.org/10.1016/j.est.2019.101061. https://doi.org/10.1016/j.est.2019.101061
  • Downloads

  • How to Cite

    Díaz-Salgado, J., García - López, S., R. Galindo - Luna, Y., & J. Romero, R. (2023). Parametric identification method for an absorption air conditioning parabolic trough collector solar plant. International Journal of Basic and Applied Sciences, 12(1), 14-21. https://doi.org/10.14419/k81wh647