BSA binding affinity, free radical scavenging capacity and antibacterial activity of new Silver(I) complexes with Schiff base ligands

  • Authors

    • Emir Horozić Faculty of Technology, University of Tuzla
    • Maida Å ljivić Husejnović
    • Adem Bajrić
    • Merima IbiÅ¡ević
    • Enida Karić
    • Amra Džambić
    • Darja Husejnagić
    • Edita Nurković
    2022-02-02
    https://doi.org/10.14419/ijbas.v9i3.31182
  • Metal Complexes, Bioactivity, Antioxidants, BSA Interaction.
  • In this work, four silver(I) complexes with Schiff bases derived from ninhydrin and selected amino acids (methionine, histidine, cysteine, and phenylalanine) were synthesized. The aim of this study is to determine the potential biological activity of these complexes. FTIR and UV/VIS spectroscopy were used for structural characterization of the products. Antioxidant activity was examined in vitro using DPPH method. Antimicrobial screening was performed by diffusion technique on reference bacterial strains from the ATCC collection. Interaction with bovine serum albumin (BSA) was examined using UV/VIS spectroscopy. Based on the obtained spectral data, it is assumed that all Schiff bases coordinate the Ag(I) ion as a tridentate ONO donor ligand. The antioxidant activity of the synthesized compounds is extremely high, with a range of IC50 values of 0.023-0.06 mg/mL. Antimicrobial screening determined the inhibitory ability of almost all complexes for concentrations of 1 and 2 mg/mL, with zones of inhibition in the range of 9-19 mm. Examination of the interaction of BSA with Ag(I) complexes revealed the same change in the absorption maximum (hyperchromic shift) in the region of about 205 nm, which indicates that the interaction of BSA and the complex results in conformational changes of BSA.

     

     

     

  • References

    1. [1] J. Jimenez, I. Chakraborty, M. Rojas-Andrade, PK. Mascharak (2017), Silver complexes of ligands derived from adamantylamines: Water-soluble silver-donating compounds with antibacterial properties. J. Inorg. Biochem. 168, 13-17. https://doi.org/10.1016/j.jinorgbio.2016.12.009.

      [2] AA. Korany, MA. Mokhles, M. Khaled (2013), Synthesis and Anticancer Properties of Silver (I) Complexes Containing 2,6-Bis(substituted)pyridine Derivatives. J. Med. Chem. 2013. https://doi.org/10.1155/2013/256836.

      [3] SM. Mirsattari, RR. Hammond, MD. Sharpe, FY. Leung, GB. Young (2004), Myoclonic status epilepticus following repeated oral ingestion of colloidal silver. Neurology 62(8), 1408-1410. https://doi.org/10.1212/01.WNL.0000120671.73335.EC.

      [4] I. Pinzaru, D. Coricovac, C. Dehelean, EA. Moacă, M. Mioc, F. Baderca, I. Sizemore, S. Brittle, D. Marti, CD. Calina, AM. Tsatsakis, C. Şoica (2018), Stable PEG-coated silver nanoparticles - A comprehensive toxicological profile. Food Chem. Toxicol. 111, 546-556. https://doi.org/10.1016/j.fct.2017.11.051.

      [5] AC. Burdușel, O. Gherasim, AM. Grumezescu, L. Mogoantă, A. Ficai, E. Andronescu (2018), Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials (Basel)., 8(9), 681. https://doi.org/10.3390/nano8090681.

      [6] JH. Leitão, SA. Sousa, SA. Leite, MFNN. Carvalho (2018), Silver Camphor Imine Complexes: Novel Antibacterial Compounds from Old Medicines. Antibiotics, 7(3), 65. https://doi.org/10.3390/antibiotics7030065.

      [7] U. Kalinowska-Lis, A. Felczak, L. Checinska, M. Malecka, K. Lisowska, J. Ochocki (2016), Influence of selected inorganic counter-ions on the structure and antimicrobial properties of Silver(I) complexes with imidazole-containing ligands. New J. Chem., 40, 694-704. https://doi.org/10.1039/C5NJ02514A.

      [8] U. Kalinowska-Lis, A. Felczak, L. Checinska, I. Szablowsja-Gadomska, E. Patyna, M. Malecki, K. Lisowska, J. Ochocki (2016), Antibacterial Activity and Cytotoxicity of Silver (I) Complexes of Pyridine and (Benz) Imidazole Derivatives. X-ray Crystal Structure of [Ag (2,6-di(CH2OH)py)2]NO3. Molecules 21(2), 87. https://doi.org/10.3390/molecules21020087.

      [9] U. Ndagi, N. Mhlongo, ME. Soliman (2017), Metal complexes in cancer therapy - an update from drug design perspective. Drug Des. Devel. Ther., 11, 599-616. https://doi.org/10.2147/DDDT.S119488.

      [10] M. McCann, R. Curran, M. Ben-Shoshan, V. McKee, M. Devereux, K. Kavanagh, A. Kellett (2013), Synthesis, structure and biological activity of silver(I) complexes of substituted imidazoles. Polyhedron 56, 180-188.
      https://doi.org/10.1016/j.poly.2013.03.057.

      [11] O. Dömötör, CG. Hartinger, AK. Bytzek, T. Kiss, BK. Keppler, EA. Enyedy (2013), Characterization of the binding sites of the anticancer ruthenium(III) complexes KP1019 and KP1339 on human serum albumin via competition studies. J. Bio. Inorg. Chem. 18(1), 9-17. https://doi.org/10.1007/s00775-012-0944-6.

      [12] S. Parveen, S. Govindarajan, H. Puschmann, R. Revathi (2018), Synthesis, crystal structure and biological studies of new hydrazone ligand, 2-(Methoxycarbonyl-hydrazono)-pentanedioic acid and its silver(I) complex. Inorg. Chim. Acta 477, 66-74. https://doi.org/10.1016/j.ica.2018.02.022.

      [13] N. Shahabadi, M. Maghsudi, Z. Ahmadipour (2012), Study on the interaction of silver(I) complex with bovine serum albumin by spectroscopic techniques. Spectrochim. Acta A 92, 184-188. https://doi.org/10.1016/j.saa.2012.02.071.

      [14] S. Äuric, S. Vojnovic, T. Andrejevic, N. Stevanovic, N. Savic, J. Nikodinovic-Runic, B. Glisic, M. Djuran (2020), Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands. Bioinorg. Chem. Appl., 2020, Article ID 3812050. https://doi.org/10.1155/2020/3812050.

      [15] E. Horozić, J. Suljagić, M. Suljkanović (2019), Synthesis, Characterization, Antioxidant and Antimicrobial Activity of Copper (II) Complex with Schiff Base Derived from 2,2-dihydroxyindane-1,3-dione and Tryptophan. Am. J. Org. Chem., 9(1), 9-13.

      [16] E. Horozić, A. Zukić, L. Kolarević, D. Bjelošević, Z. Ademović, B. Šarić-Kundalić, D. Husejnagić, A. Kudumović, S. Hamzić (2019), Evaluation of antibacterial and antioxidant activity of methanol needle extracts of Larix Decidua Mill., Picea Abies (L.) H. Karst. and Pinus Nigra J. F. Arnold. Tec. Techn. Edu. Manag., 14(1), 14-19.

      [17] MG. Derebe, VJT. Raju, N. Retta (2002), Synthesis and characterization of some metal complexes of a Schiff base derived from Ninhydrin and α, L-alanine. Bull. Chem. Soc. Ethiop., 16(1), 53-64. https://doi.org/10.4314/bcse.v16i1.20948.

      [18] GF. Swiegers, TJ. Malefetse (2000), New Self-Assembled Structural Motifs in Coordination Chemistry. Chem. Rev., 100, 3483-3538. https://doi.org/10.1021/cr990110s.

      [19] A. Stănilă, C. Braicu, S. Stănilă, RM. Pop (2011), Antibacterial Activity of Copper and Cobalt Amino Acids Complexes. Not. Bot. Horti. Agrobo., 39(2), 124-129. https://doi.org/10.15835/nbha3926847.

      [20] E. Bendary, RR. Francis, HMG. Ali, MI. Sarwat, S. El Hady (2013), Antioxidant and structure-activity relationships (SARs) of some phenolic and anilines compounds. Ann. Agric. Sci., 58(2), 173-181. https://doi.org/10.1016/j.aoas.2013.07.002.

      [21] I. Slimani, L. Mansour, N. Abutaha, AH. Harrath, J. Al-Tamimi, N. Gürbüz, I. Özdemir, N. Hamdi (2020), Synthesis, structural characterization of silver(I)-NHC complexes and their antimicrobial, antioxidant and antitumor activities. J. King Saud. Univ. Sci., 32(2), 1544-1554. https://doi.org/10.1016/j.jksus.2019.12.010.

      [22] H. Wu, J. Yuan, Y. Bai, G. Pan, H. Wang, J. Kong, X. Fan, H. Liu (2012), Synthesis, structure, DNA-binding properties and antioxidant activity of silver(I) complexes containing V-shaped bis-benzimidazole ligands. Dalton Trans., 41, 8829-8838. https://doi.org/10.1039/c2dt30512g.

      [23] H. Wu, Y. Zhang, C. Chen, J. Zhang, Y. Bai, F. Shi, X. Wang (2014), DNA-binding studies and antioxidant activities of two-, three- and four-coordinate silver(I) complexes containing bis(2-benzimidazolyl)aniline derivatives. New J. Chem., 38, 3688-3698. https://doi.org/10.1039/C4NJ00503A.

      [24] J. Liu, Y. He, D. Liu, Y. He, Z. Tang, H. Lou, Y. Huo, X. Cao (2018), Characterizing the binding interaction of astilbin with bovine serum albumin: a spectroscopic study in combination with molecular docking technology, RSC Adv., 8, 7280-7286. https://doi.org/10.1039/C7RA13272G.

      [25] M. Manjushree, HD. Revanasiddappa (2018), A Diversified Spectrometric and Molecular Docking Technique to Biophysical Study of Interaction between Bovine Serum Albumin and Sodium Salt of Risedronic Acid, a Bisphosphonate for Skeletal Disorders. Bioinorg. Chem. Appl., 2018, Article ID 6954951. https://doi.org/10.1155/2018/6954951.

  • Downloads

  • How to Cite

    Horozić, E., Šljivić Husejnović, M., Bajrić, A., Ibišević, M., Karić, E., Džambić, A., Husejnagić, D., & Nurković, E. (2022). BSA binding affinity, free radical scavenging capacity and antibacterial activity of new Silver(I) complexes with Schiff base ligands. International Journal of Basic and Applied Sciences, 9(1), 12-16. https://doi.org/10.14419/ijbas.v9i3.31182