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Abstract

Hysteresis, quasiperiodicity and chaoticity in a nonlinear dissipative hybrid oscillator are studied. The modified Rayleigh-Duffing oscillator
is considered. We simultaneously take into account the new nonlinear cubic, pure quadratic and hybrid dissipative terms which modify the
classical Rayleigh-Duffing oscillator. The influence of each of these new parameters on the dynamics of the oscillator has been seriously
studied and interesting results are obtained. It is clear that each of these new dissipation terms can be used to control the dynamics of this
oscillator. Some may be used to reduce or eliminate hysteresis, amplitude jump and resonance phenomena; others may accentuate them.
Similarly, these new parameters can be used to impose on the systems modeled by this oscillator, a regular, quasi-periodic or even chaotic
behavior according to their field of application. Thus, one of the original results obtained is the equation of the curve delimiting the zone of
instabilities of the amplitudes of harmonic oscillations. This equation thus makes it possible to know the zone of amplitude permitted or of
the amplitude jump for the systems and thus to control and predict the loss or gain of energy during this jump. Finally, the second stability of
the oscillations of the system is studied as well as the influence of the dissipation parameters on this stability. It should be noted that the
influence of some of these parameters depends on the simultaneous presence of these parameters.
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1. Introduction

In recent years, a twofold interest has attracted theoretical, numeri-
cal, and experimental investigations to understand the behaviour of
nonlinear oscillators. Theoretical (fundamental) investigations reveal
their rich and complex behaviour, and the experimental (self-excited
oscillators) describes the evolution of many biological, chemical,
physical, mechanical, and industrial systems [1, 2]. The interest
devoted to chaos by many scientist is due to the fact that this new
phenomenon appears in various fields, from mathematics, physics,
biology, and chemestry, to engineering, economics and medecine.
Consequently, there are many opportunities for application of chaos.
For example, in physics, chaos has been used to refine the under-
standing of planetory orbits, to reconceptualize quantum level pro-
cesses, and to forecast the intensity of solar activity. In engineering,
chaos has been used in bulding of better digital filters, and to model
the structural dynamics in such structures as buckling columns. In
medecine, it has been used to study cardiac arrhythmias and pat-
terns of disease communication. In psychology, it has been used to
study mood fluctuations, the operation of the olfactory lobe during
perception, and partterns of innovation in organizations. In eco-
nomic it is being used to find patterns and develop new types of
econometric model for the stack market to variations in coton prices.
There are also many opportunities for exploitation of chaos: synchro-
nized chaos, mixing with chaos, encoding information with chaos,

anti-control of chaos, tracking of chaos and targetting of chaos.

An important class of systems in general and in particular oscillators
who presented a complex or chaotic behaviour can be determined
on the basis of nonlinear damping [3]. Such damping can, in some
systems, change the sign depending on velocity or displacement
values, and provide excitation energy to the examined system. These,
so called, self-excited damping terms are often used to describe
systems with dry friction, bearings lubricated by a thin layer of oil,
shimming in vehicle wheels or chatter in a cutting process [4, 5, 6, 7].
In Ref. [8], the authors have studied with considerable detail the
effects of the damping level on the resonance response of the steady-
state solutions and in the basin bifurcation patterns of the escape
oscillator. In particular they analyzed the effect of using different
damping levels and how this contributes to the erosion of the safe
areas in phase space, and they also provided a comprehensive global
picture of the main bifurcation boundaries. More recently such a
nonlinear damping force has also been considered [9] of a modern
vehicle suspension system due to electro- or magneto-rheological
fluid damping where it is causing a hysteretic effect. In this model,
the authors used a self-excited term of the Rayleigh and the Duffing
type with a double well potential. Parametric excitation occurs in a
wide variety of engineering application [10].

In this vein, we propose to study in this paper hysteresis, quasiperi-
odicity and chaoticity in a system modeled by a modified Rayleigh-

Copyright © 2016 Author. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.



2 International Journal of Basic and Applied Sciences

Duffing oscillator on the form

ẍ+µ(1− ẋ2)ẋ+β ẋ2 + k1ẋx+ k2ẋ2x+
(γ +α cosΩt)x+λx3 = F cosΩt, (1)

where µ,β ,k1,k2,γ,λ ,F and Ω are parameters. Physically, µ,k2,β
and k1 represent respectively pure cubic, unpure cubic, pure
quadratic and unpure quadratic nonlinear damping coefficient terms;
α and F are respectively the amplitudes of the parametric and exter-
nal periodic forcing whereas

√
γ and Ω are respectively natural and

external forcing frequency. Moreover λ characterizes the intensity of
the restoring nonlinearity. The nonlinear damping term corresponds
to the Modified Rayleigh oscillator, while the nonlinear restoring
force corresponds to the Duffing oscillator. The basic physical sense
of the Rayleigh-Duffing equation lies in the allowance for the de-
pendence on the highest powers of the velocity in the dissipative
coefficient and in the frequency for a classical oscillator.
This equation which has nonlinear dissipative terms and parametric
excitation term can be used to model some systems such as Brus-
selator, Selkov, rolling response, certain MEMS systems, El Nino-
southern oscillation... [4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].
The paper is organized as follows. In Section 2, we focussed a deph
attention on harmonic oscillatory states and stability analysis in order
to study hysteresis and jump phenomena. Section 3 addresses the
phase portraits, largest Lyapunov exponent, the bifurcation diagrams
and basins of attraction, from which a concluding remark is made
in connection to the tendency of the system to have quasiperiodic,
nonperiodic evolutions and the transition to chaos according to the
choice of initial conditions. We provided a conclusion in the last
section.

2. Harmonic oscillatory states and stability
analysis

2.1. Harmonic oscillatory states

Assuming that the fundamental component of the solution and the
external excitation have the same period, the amplitude of harmonic
oscillations can be tackled using the harmonic balance method [5,
21, 22, 23]. For this purpose, we express its solutions as

x = Acos(Ω−ψ) t +ξ (2)

where A represents the amplitude of the oscillations and ξ a constant.
Inserting this solution Eq.(2) into Eq.(1) and equating the constants
and the coefficients of sinΩt and cosΩt, we have

[−AΩ
2 +

1
2

βΩ
2A2 +αξ + γA+3λξ

2A+

[
3
4

λA3 − 1
4

k2Ω
2A3]2 ++µΩA− 3

4
µΩ

3A3 + k1Ωξ A]2

= F2
0 , (3)

−1
2

βΩ
2A2 − 1

2
k2ξ Ω

2A2 +
1
2

αA+ γξ +λξ
3 +

3
2

λξ A2 = 0. (4)

If it is assumed that |ξ |� |A|, then ξ 2 and ξ 3 terms can be neglected
and Eq.(4) becomes

−1
2

βΩ
2A2 − 1

2
k2ξ Ω

2A2 +
1
2

αA+ γξ +
3
2

λξ A2 = 0 (5)

which solution is

ξ =
− 1

2 βΩ2A2 + 1
2 αA

−γ − 1
2 (−k2Ω2 +3λ )A2

. (6)

Substituting the solution Eq.(6) into Eq. (3) one obtains the following
nonlinear algebraic equation

[−AΩ2 + 1
2 βΩ2A2 + γA+A+ 1

4 (−k2Ω2 +3λ )A3+
− 1

2 αβΩ2A2+ 1
2 α2A

−γ− 1
2 (−k2Ω2+3λ )A2 ]

2+

[µΩA− 3
4 µΩ3A3 + k1Ω

− 1
2 βΩ2A2+ 1

2 αA
−γ− 1

2 (−k2Ω2+3λ )A2 A]2

= F2
0 . (7)

We investigate the effects of the different parameters on the oscil-
lation amplitude A. For this purpose, we solved Eq. (7) using the
Newton-Raphson algorithm. Fig.1 shows the amplitude-response
curve where hysteresis and jump phenomena appear. Figs.1 (a) and
(b) illustrate the effect of the pure cubic damping and pure quadratic
damping on amplitude-response curve respectively. Through these
figures, we notice that jump and hysteresis phenomena appear when
each damping coefficient increases. In Fig.1(c), the effect of the am-
plitude of parametric excitation α is shown. These two phenomena
always exist whatever the value of α and become more and more
accentuated when α increases. The behaviour of the amplitude of
the system oscillations is investigated when the external frequency
Ω varies. The analytical and numerical frequency-response curves
obtained are provided in Fig.2. The resonance obtained from Fig.2
is affected by the nonlinear damping parameter, the nonlinear restor-
ing parameter, the parametric excitation amplitude and the external
forced amplitude (see Figs. 3, 4). Hysteresis and jump phenomena,
and multistability oscillations are also observed and are affected by
the nonlinearities parameters and parametrical excitation amplitude.
For instance, from Figs.3(a) and (b) the peak value of resonance
amplitude increases while the resonance frequency descreases with
the external excitation amplitude F and parametrical excitation am-
plitude α . The resonance amplitude increases while the resonance
frequency decreases when the nonlinear restoring parameter λ in-
creases remaining below λ = 1 (see Fig. 3(c)); the inverse evolutions
are observed for the amplitude and the resonant frequency when λ

increases from λ = 1 (see Fig. 3(d)). In Figs.4(a), (b) and (d),
we noticed that the unpure cubic damping k2 has the same effect as
λ while the pure cubic damping µ and unpure quadratic damping
k1 have the opposite one. From Fig.4(c), it can been pointed out
that when β increases, the resonance amplitude decreases while the
resonance frequency increases and hysteresis appears.
Fig. 5 shows the jump and hysteresis phenomena for a given value of
restoring amplitude λ = 3.5 at different levels of external excitation.
Here, we obtained the loci of the two sets of jump points for different
values of F . The equations of these two loci can be obtained as
discussed below. At the points of vertical tangency in Fig. 5, dA

dΩ
→

∞. Differentiating both sides of Eq. (7) with respect to Ω with other
parameters as constants and setting the denominator for dA

dΩ
to zero,

gives

δ1∆1D2 +δ2∆2D2 +(−βΩ
2A+

1
2

α)D+

(3λ − k2Ω
2)AN = 0, (8)

with

N =−1
2

βΩ
2A2 +

1
2

αA,

D =−γ − 1
2
(3λ − k2Ω

2)A2,

δ1 =−Ω
2 +βΩ

2A+ γ +
9
4

λA2 − 3
4

k2Ω
2A2,

δ2 = µΩ− 9
4

µΩ
3A2 + k1Ωξ ,
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Figure 1: Amplitude-response curves with the parameters α = 0.3,β =
0.05,k1 = 0.5,k2 = 0.5,µ = 0.5,λ = 1,γ and Ω = 1.105. (a) Effect of µ ,
(b) Effect of β , (c) Effect of α

∆1 =−Ω
2A+

1
2

βΩ
2A2 +αξ + γA+

3
4

λA3 − 1
2

k2Ω
2A3,

∆2 = µΩA− 3
4

Ω
3A3 + k1Ωξ A.

Thus, Eq. (8) describes the two loci of the jump points.

2.2. Stability analysis

Stability analysis of the harmonic solution given by Eq. (7) is now
carried out. A convenient analytical tool for addressing this issue
of stability is the Floquet theory [5, 22, 23]. For this, the harmonic
solution is perturbed by ξ and the time development of this distur-
bance is tracked. Thus, x = Acos(Ω−ψ) t + ξ is substituted into
Eq. (1). By setting τ = Ωt−ψ

2 and neglecting nonlinear terms of ξ

and the constant terms, we obtain the following linear variational
equation :

ξ̈ +[2ϒ +Φ(τ)] ξ̇ +Ξ(τ)ξ = 0, (9)

where

ϒ =−ε +
µ

2
−µ

4k2A2

Ω
,

Φ(τ) = Γ1 cos2τ +Γ2 sin2τ +Γ3 cos4τ +Γ3 sin4τ,

Ξ(τ) = Λ0 +Λ1 cos2τ +Λ2 sin2τ +Λ3 cos4τ +Λ4 sin4τ,

with

Γ1 = k1A, Γ2 =−8βA
Ω

,

Figure 2: Frequency-response curves with the parameters α = 0,β =
0.05,k1 = 0.05,k2 = 0.05,µ = 0.145,λ = 1,γ = 1 and F = 0.07.

Figure 3: Effects of parameters frequency-response curves with the parame-
ters of Fig.2: (a) effect of F , (b) effect of α , (c) effect of λ for λ < 1 and
(d): effect of λ for λ > 1.

Γ3 =−24µA2

Ω2 , Γ4 =
−4k2A2

Ω
,

Λ0 = γ + ε
2 − εµ +2k2A2 +

3
2

λA2 +
24εµA2

Ω2 ,

Λ1 = α − εk1, Λ2 =
8εβA−4k1A

Ω
,

Λ3 =

(
3λ

2
− 8k2

Ω2 − 24εµ

Ω2

)
A2, Λ4 =

4εk2A2

Ω
,

and
ε =

µ

Ω
.

To further discuss the stability boundaries, we use the following
tranformation

ξ = χ exp(−ϒ τ)exp
[
−1

2

∫
τ

0
Φ(τ ′)dτ

′
]
. (10)

Thus, we obtain the following standard Hill equation

ξ̈ +(σ0 +2σ1s sin2τ +2σ1c cos2τ +2σ2s sin4τ+
2σ2c cos4τ +2σ3s sin6τ +2σ3c cos6τ +2σ4s sin8τ+
2σ4c cos8τ)ξ = 0, (11)

where
σ0 = Λ0 −ϒ

2 − 1
8
(Γ2

1 +Γ
2
2 +Γ

2
3 +Γ

2
4),

σ1s =
1
2

(
Λ2 +Γ1 −Γ2ϒ − Γ1Γ4 −Γ2Γ3

4

)
,
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Figure 4: Effects of damping on frequency-response curves with the param-
eters of Fig.2: (a) effect of µ , (b) effect of k2, (c) effect of β and (d) effect
of k1.

Figure 5: Effects of external forced amplitude on frequency-response curves
with λ = 3.5 and other parameters of Fig.3.
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)
,
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1
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4

)
,
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1
2
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2
8

)
,

σ3s =−Γ1Γ4 +Γ2Γ3

8
,

σ3c =−Γ1Γ3 −Γ2Γ4

8
,

σ4s =−Γ3Γ4

8
,

σ4c =−
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3 −Γ2
4

16
.

From Eq. (11), the stability boundaries are to be investigated around
four main parametric resonances defined at σ0 = n2(n = 1,2,3,4).
The Floquet theory states χ may decrease to zero or grow to infinity.
Here, the Whittaker method is used to discuss unstable solutions.
We assume that the solution of Eq. (11) at the nth unstable region is
defined as follows:

χ = exp(κτ)sin(nτ −θ), (12)

with κ being the characteristic exponent and θ a constant. Substitut-
ing Eq. (12) into Eq. (11), the characteristic exponent can be written
as the following expression:

κ
2 =−(σ0 +n2)+

√
4n2σ0 +σ2

nc +σ2
ns. (13)

The stability of the process is realized when χ(τ) goes to zero as
time increases, so that the real part of the quantity −ϒ ±κ should be
negative since χ must be real and always positive. Remember that
according to Floquet theory, ϒ 2 > κ2. Thus, the occurence of stable
oscillatory states is given as follows :

υn = (σ0 −n2)2 +2(σ0 +n2)ϒ 2+
+ϒ

4 − (σ2
nc +σ

2
ns)> 0, n = 1,2,3,4, (14)

where n = 1,2,3,4 represent the first, second, third and fourth para-
metric resonant state respectively. The fulfillment of the criterion
(14) is essential to ensure the stability of a modified Rayleigh-
Duffing oscillations. The stability criterion is plotted in Figs.6, 7, 8,
9. The stability criterion is always guaranteed for n= 2,3,4 as shown
in Fig.6. For n = 1, the system is unstable when α > 0.707. The
stability domain is strongly influenced by the damping parameters
(see Figs. 7, 8, 9).

Figure 6: (a) State of the second stability criterion for all the four parametric
resonances in the (α,υn) plane with γ = 1,β = 0.05,k1 = 0.5,k2 = 0.5,µ =
0.0005,λ = 1,A = 0.53 and Ω = 1.105; (b) zoom of (a).

Figure 7: State of the second stability criterion for all the four parametric
resonances (β ,υn) with the parameters of Fig.6: (a) α = 2.05; (b) α = 0.

3. Bifurcation and transition to chaos

Our aim in this section is to investigate the way under which chaotic
motions arise in the model described by Eq. (1) for resonant states
since they are of interest in many phyics phenomena. For this pur-
pose, we numerically solve this equation using the fourth-order
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Figure 8: State of the second stability criterion for all the four parametric
resonances (k1,υn) with the parameters of Fig.6: (a) α = 2.05; (b) α = 0.

Figure 9: State of the second stability criterion for all the four parametric
resonances (k2,υn) with the parameters of Fig.6: (a) α = 2.05; (b) α = 0.

Runge Kutta algorithm. We plot the resulting bifurcation diagrams
and the variation of the corresponding largest Lyapunov exponent as
the amplitude F and the nonlinearity parameters varied. The strobo-
scopic time period used to map various transitions which appear in
the model is T = 2π

Ω
. The largest Lyapunov exponent which is used

here as the instrument to measure the rate of chaos in the system is
defined as

Lya = lim
t→∞

ln
√

dx2 +dẋ2

t
(15)

where dx and dẋ are respectively the variations of x and ẋ. The initial
condition which is used here is (x0, ẋ0)= (0,0). From the bifurcation
diagram and its corresponding Lyapunov exponents, quasiperiodic
and chaotic behaviours are displayed (see Fig. 10). In order to have
an idea about the system behaviour as predicted by the bifurcation
diagram, various phase portraits for several different values of F
chosen in the above mentioned regions are plotted in Fig. 11 us-
ing the parameters of Fig. 10. Figs 11 (a) and (b) represent the
phase portrait and its corresponding times histories respectively for
F = 0.3. The portrait phase in this case seems to be like a torus. One
might expect to see a quasiperiodic oscillation since the overall torus
resembles to the one observed in case of solenoidal attractor (the
so-called quasiperiodic attractor). Indeed, by looking at its corre-
sponding time series, one can observe a quasiperiodic state as shown
in Fig. 11 (b). The chaotic oscillation is shown in Figs 11 (c) and
(d) which presented the phase portrait and its corresponding time
series respectively for F = 1.15. For this value of the external force
and the parameters of Fig. 11, in order to situate some regions of

the initial conditions for which chaotic oscillations are observed, the
basin of attraction have been plotted in Fig. 12. In this figure, the
blue zone stands for the area where the choice of the initial condi-
tions lead to a chaotic motion while the white area is the domain
of periodic or quasiperiodic oscillations. The influences of both the
nonlinear unpure quadratic and unpure cubic dissipative parameters
and the parametric excitation on the bifurcation sequences and basin
of attraction are also investigated, and the results are reported in Figs.
13, 14, 15. Through Figs. 13, 14, we noticed that the quasiperiodic
and chaotic oscillations always existed and the chaotic oscillations
domain is abundant for high value of the unpure cubic damping
coefficient k2. The quasiperiodic and chaotic motions domains are
highly modified by the amplitude of parametric excitation and unsta-
ble oscillations domain become more abundant. Fig. 16 shows the
basin of attraction for k1 = 0.82,k2 = 4.73, α = 0 and α = 0.15. It
is observed that the basin of attraction becomes more erode when the
unpure quadratic damping k1 increases and the unstable oscillations
domains increase with α .

Figure 10: (a) Bifurcation diagram and (b) Lyapunov exponent versus the
amplitude F with parameters α = 0.0,β = 0.05,k1 = 0.05,k2 = 4.73,µ =
0.0005,λ = 1,γ = 1 and Ω = 1.105.

Figure 11: Various phase portraits and corresponding time histories: (a),(b)
F = 0.3; (c),(d) F = 1.15 and the parameters of Fig.10.
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Figure 12: Basin of attraction of the model showing regions of chaotic and
non chaotic motions with the parameters of Fig.11 (c).

Figure 13: (a) Bifurcation diagram and (b) Lyapunov exponent versus the
damping coffecient k2 with parameters α = 0.0,β = 0.05,k1 = 0.82,µ =
0.0005,λ = 1,γ = 1,F = 1.15 and Ω = 1.105.

4. Conclusion

In this work, regular and chaotic behaviours of a physical system
modelled by a modified Rayleigh-Duffing oscillator are investigated.
The originality of the work is related to the potential used, the analyt-
ical methods employed and then to the simultaneous consideration
into account of new nonlinear cubic, pure quadratic and hybrid dissi-
pative terms which modify the classical Rayleigh-Duffing oscillator.
It is obtained the hysteresis and jump phenomena and resonance
phenomenon appeared in (Ω,A) space. It is found that the nonlinear
damping and parametric excitation amplitude affected the amplitude
and frequency of resonance. The two loci of jump points equation
has been obtained indicating the jump phenomenon domain evo-
lution. It is also found the second stability criterion of harmonic
oscillations of the modified Rayleigh-Duffing oscillator by using the
Floquet theory and Whittaker method and the effects of the damp-
ing parameters on the unstable domains have been strongly studied.
Various bifurcation structures showing different types of transitions
from quasiperiodic motions to chaotic motions have been drawn and
the influences of different parameters on these motions have been
pointed out. It is noticed that chaotic motion is controlled by the
parameters k1,k2,α . The results of basin of attraction show a way to
predict initial conditions in which regular and chaotic behaviours are
obtained. This could be helpful for experimentalists whose interest is
to try to stabilize such a system with differents parameters or initial
conditions. For practical interests, it is useful to develop tools and to
find the ways to control or suppress such undesirable regions. This
will be also useful to control high amplitude of oscillations obtained

Figure 14: Bifurcation diagram versus the damping coffecient k2;
(a)α = 0.0, (b)α = 0.15 with others parameters β = 0.05,k1 = 0.82,µ =
0.0005,λ = 1,γ = 1,F = 1.15 and Ω = 1.105.

Figure 15: Basin of attraction of the model showing regions of chaotic and
non chaotic motions with the parameters of Fig.14.

and which are generally source of instability in systems modeled by
the modified Rayleigh-Duffing oscillator equation.
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