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Abstract

In this paper, we have proposed predator-prey models with mono-

tonic and non-monotonic functional response with additional food to

top-predator. Bifurcation analysis of the proposed models confirm the

vital role of response function in the controllability of the predator-prey

system dynamics with additional food. We observe that additional food

is a very powerful tool for controlling dynamics of a predator-prey model

with monotonic functional response but not very useful for the system

with non-monotonic response function.
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1 Introduction

In population dynamics, a functional response is the rate at which each
predator captures prey. The simplest form of functional response was obtained
by assuming that in the time available for searching, the total change in the
prey density is proportional to the prey density. Hence, if x(t) represents the
prey concentration at time t, then the functional response is ax(t), where a > 0
is a constant. Such a response was used almost simultaneously by Lotka in
1925 for studying a hypothetical chemical reaction and by Volterra in 1926
for modeling a predator-prey interaction. However, the curve defined by the
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Lotka-Volterra response function is a straight line through the origin and it
is unbounded. But, the more natural response functions should be nonlinear
and bounded. In 1913, Michaelis and Menten proposed a nonlinear response
function f(x) = mx

a+x
, where m > 0 denotes the maximal growth rate of the

species and a > 0 is the half-saturation constant. Holling [1] also used this
function as one of the predator functional responses. It is now referred to as
a Michaelis-Menten function or a Holling type-II function. Another response
function is f(x) = mx2

a+bx+x2 , which is known as sigmoidal response function.

It’s simplfied form f(x) = mx2

a+x2 is known as Holling type-III response func-
tion. There is experimental and observational evidence which indicates that
this need not always be the case, for example, in the cases of “inhibition ”in
microbial dynamics and “group defense ”in population dynamics( Freedman
et al. [2]), Mischaikow et al. [3], Wolkowicz [4] ). So many researchers (An-
drews [5], Boon and Landelout [6], Yang and Humphrey [7], Ruan and Xiao [8]
etc.) investigaed that non-monotonic responses occur at the microbial level:
when the nutrient concentration reaches a high level an inhibitory effect on
the specific growth rate may occur. This is often seen when microorganisms
are used for waste decomposition or for water purification. To model such an
inhibitory model Andrews [5] suggested a function f(x) = mx

a+bx+x2 called the
Monod-Haldane function or Holling type-IV function (Taylor [9]) for low con-
centrations but includes the inhibitory effect at high concentrations. Sokol and
Howell [10] proposed a simplified Monod-Haldane function or Holling type-IV
function of the form f(x) = mx

a+x2 and found that it fits their experimental
data significantly better and is simpler since it involves only two parameters.
The nature of monotonic and non-monotonic functional responses are shown
in figure 1.

The consequences of providing a predator with additional food and
the corresponding effects on the predator-prey dynamics and its utility in bi-
ological control have been the great topic of study for many scientists due
to its eco-friendly nature. In recent years, many biologist, experimentalists,
and theoreticians have investigated the consequences of providing additional
food to predators in a predator-prey systems ( Bilde and Toft [11]), Coll and
Guershon [12], Harmon [13], Harwood et al.[14], Murdoch et al.[15], Sabelis
and van Rijn [16], Srinivasu et al. [17], Van Baalen et al. [18], Van Rijn et
al. [19] ). Srinivasu et al. [17] investigated qualitative behavior of a predator-
prey system in presence of additional food to the predator. They concluded
that handling times for the available foods to the predator play the key role in
determining the eventual state of the eco-system. Sahoo et al. [20] proposed a
food chain model with seasonal effects on additional food. Sahoo [21] discussed
the extinction criteria of species in a system depends on interaction functions
and supply of the quality of additional food. A predator-prey system with
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Figure 1: Red colour dash ( - ) curve represents the monotonic functional
response f(x) = mx

a+x
and blue colour line curve represents the non-monotonic

functional response f(x) = mx
a+x2 with m = 2, a = 1.

different growth rates and different functional response is analysed and the
results of the system with additional food is compared by Sahoo [22]. In very
recent, Sahoo [23] proposed a consumer-nutrient-predator model and observed
that for biological conservation, additional food plays a vital role for servival
of consumer species in an ecosystem.

Srinivasu et al. [17] have investigated the effects of additional food
to predators in a di-trophic food chain model. But, a tri-trophic food chain
model (Hastings and Powell [24]) is much more realistic than any di-trophic
food chain model. Therefore the study of tri-trophic food chain model with
additional food is necessary. In this paper, we have investigated the effects of
additional food (characterized by predator’s handling time) to top-predator in
tri-trophic food chain model with monotonic as well as non-monotonic func-
tional responses. The main object of this paper is to compair the effects of
additional food with monotonic and non-monotonic functional responses on
the controllability of predator-prey dynamics. Bifurcation analysis is done
with respect to quality and quantity of additional food and with respect to
saturation constant.

2 Models

The famous HP [24] model with pairwise interactions between three species,
namely, X, Y , Z, which incorporates a Holling type-II functional interactions
in both consumer species is the following
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dX

dT
= R0X(1 −

X

K0

) − C1A1

XY

B1 + X
dY

dT
= A1

XY

B1 + X
− A2

Y Z

B2 + Y
− D1Y (1)

dZ

dT
= C2A2

Y Z

B2 + Y
− D2Z

Now, we consider a tri-trophic food chain model with Monod-Haldane
response function ( non-monotonic functional response ) of the form

dX

dT
= R0X(1 −

X

K0

) − C1A1

XY

B1 + X2

dY

dT
= A1

XY

B1 + X2
− A2

Y Z

B2 + Y 2
− D1Y (2)

dZ

dT
= C2A2

Y Z

B2 + Y 2
− D2Z

Here X be the numbers of species at lowest level of the food chain,
Y the numbers of the species that preys upon X and Z the numbers of the
species that preys upon Y . Here T is time. The constant R0 is the “intrinsic
growth rate”and the constant K0 is the “carrying capacity”of the species X.
The constant C−1

1 and C2 are conversion rates of prey to predators for species
Y and Z respectively; D1 and D2 are constant death rates for species Y and
Z respectively. The constants Ai and Bi for i = 1, 2 are maximal predation
rate and half saturation constants for Y and Z respectively.

If h1 and e1 are constants representing handling time of the top-predator
Z per intermediate item and ability of the predators to detect the prey then we
have A2 and B2, representing the maximum predation rate and half saturation
values of the top-predator Z, to be 1/h1 and 1/e1h1, respectively.

Now, we modify the model (1) and model (2) by providing “additional
food”to predators population. We make the following assumptions:

(a) The prey population grows as per logistic equation in the absense of
predators.
(b) Predators are provided with additional food of constant biomass A which
is distributed uniformly in the habitat.
(c) The number of encounters per predator with the additional food is propor-
tional to the density of the additional food.
(d) The proportionality constant characterizes the ability of the predator to
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identify the additional food.

With the above assumptions, the Hastings and Powell model (1) takes
the following form:

dX

dT
= R0X(1 −

X

K0

) − C1A1

XY

B1 + X
dY

dT
= A1

XY

B1 + X
− A2

Y Z

B2 + αµA + Y
− D1Y (3)

dZ

dT
= C2A2

(Y + µA)Z

B2 + αµA + Y
− D2Z

and the model (2) takes the form:

dX

dT
= R0X(1 −

X

K0

) − C1A1

XY

B1 + X2

dY

dT
= A1

XY

B1 + X2
− A2

Y Z

B2 + αµA + Y 2
− D1Y (4)

dZ

dT
= C2A2

(Y + µA)Z

B2 + αµA + Y 2
− D2Z

If h2 represents the handaling time of the top-predator Z per unit
quantity of additional food and e2 represents the ability for the top-predator
Z to detect the additional food, then we have µ = e2/e1 and α = h2/h1. The
terms µA represents effectual additional food for the top-predator Z.

We nondimensionalize the model (3) and (4) with x = X
K0

, y = C1Y
K0

,

z = C1Z
C2K0

, t = R0T and we obtain the following systems

dx

dt
= x(1 − x) −

a1xy

1 + b1x
dy

dt
=

a1xy

1 + b1x
−

a2yz

1 + αξ + b2y
− d1y (5)

dz

dt
=

β(y + cξ)z

1 + αξ + b2y
− d2z

and

dx

dt
= x(1 − x) −

a1xy

1 + b1x2

dy

dt
=

a1xy

1 + b1x2
−

a2yz

1 + αξ + b2y2
− d1y (6)

dz

dt
=

β(y + cξ)z

1 + αξ + b2y2
− d2z
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where
a1 = A1K0

R0B1

, a2 = A2K0C2

B2R0C1

, b1 = K0

B1

, b2 = K0

B2C1

, c = C1B2

K0

, ξ = µA
B2

, d1 = D1

R0

,

d2 = D2

R0

. The systems (5) and (6) are to be analyzed with the following initial
conditions: x(0) > 0, y(0) > 0, z(0) > 0.

Here a1 and a2 represent prey and intermediate predator consumption
rate, b1 and b2 represent prey and intermediate predator saturation constant,
d1 and d2 represent intermediate predator death rate and top-predator death
rate, β represents conversion rate of intermediate predator to top-predator, c is
the conversion rate of quantity of additional food. The parameter α represents
the “quality”of the additional food ( ratio between top-predator’s handling
time towards additional food and per intermediate predator item) and ξ rep-
resents the “quantity”of the additional food for top-predator. Here α, ξ are
the paramaters which characterize the additional food for top-predator. Now,
we shall analyze the dynamics of the systems (5) and (6) and compare the
effects of monotonic and non-monotonic functional response on the dynamics.

3 Results

We have done the bifurcation analysis of the systems (5) and (6) with
respect to the parameter b1, quality of additional food α and quantity of addi-
tional food ξ respectively, with the set of ecosystem parameters values a1 = 5.0,
a2 = 0.1, b2 = 2.0, c = 0.85, β = 0.08, d1 = 0.4, d2 = 0.01, which are taken
from Hastings and Powell model [24]. The remaining three parameters b1, α
(quality of additional food) and ξ (quantity of additional food) are varied to
perform the bifurcation analysis of the systems.

3.1 Bifurcation analysis with respect to b1

Figure 2 is the bifurcation analysis of system (5) and (6) with respect to the
parameter b1 with out supply of additional food (i.e, for α = 0, ξ = 0). From
figure 2(a), we observe that system (5) has stable coexistence for 1.4 < b1 < 2.2.
After b1 ≥ 2.2, the system (5) depicts chaotic behaviour. The system (6) has
stable coexistence for 1.4 < b1 < 1.9, chaotic attractors for 1.9 ≤ b1 < 3.4 and
for 3.4 ≤ b1 ≤ 7, it has limit cycle oscillation which is observed in figure 2(b).

Figure 3 is the bifurcation analysis of system (5) and (6) with respect to
the parameter b1 with additional food α = 2, ξ = 0.04. From figure 3(a), we
observe that system (5) is reported stable coexistence for 1 < b1 < 1.7, limit
cycle behaviour for 1.7 ≤ b1 < 2.62. After b1 ≥ 2.62, the system (5) shows
high periodic and chaotic behaviour. From figure 3(b), we observe that the
system (6) has stable coexistence for 0.8 < b1 ≤ 1.35, periodic behaviour for
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Figure 2: Bifurcation diagram with respect to the parameter b1 with out supply
of additional food (α = 0, ξ = 0). Diagrams (a) is for the system (5) and (b)
is for the system (6).
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Figure 3: Bifurcation diagram with respect to the parameter b1 with additional
food α = 2, ξ = 0.04. Diagrams (a) is for the system (5) and (b) is for the
system (6).
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Figure 4: Bifurcation diagram with respect to the parameter b1 with additional
food α = 2, ξ = 0.1. Diagrams (a) is for the system (5) and (b) is for the
system (6).

1.35 < b1 < 1.9, chaotic attractors and high periodicity for 1.9 ≤ b1 < 5.2 and
for 5.2 ≤ b1 ≤ 7, it has limit cycle oscillation.

The bifurcation analysis of the systems (5) and (6) are done with
respect to the parameter b1 for α = 2, ξ = 0.1 which is shown in figure 4.
From figure 4(a) we observe that the system (5) is predicted stable steady
state for 0.81 < b1 < 1.2 and periodic orbits for 1.2 ≤ b1 < 7. Therefore
the chaotic behaviour vanishes from the system (5) for supply of this type of
additional food. From figure 4(b), it is observe that the system (6) have steady
state behaviour for 0.65 < b1 < 1.1, limit cycle behaviour for 1.1 < b1 ≤ 2,
and high periodic and chaotic behaviour for 2 < b1 ≤ 7.

3.2 Bifurcation analysis with respect to quality of addi-

tional food α

Figure 5 is the bifurcation diagram of the system (5) and (6) with respect
to quality of additional food α fixing ξ = 0.1, b1 = 3. Figure 5(a) shows that
the system (5) has limit cycle behaviour for 0 ≤ α < 8.9 and it settles down
to steady state for 8.9 ≤ α ≤ 10. From figure 5(b), we observe periodic and
chaotic attractors for differet ranges of 0 ≤ α ≤ 10. Therefore, the system (5)
depicts periodic behaviour and the system (6) shows chaotic behaviour with
respect to quality of additional food α.
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Figure 5: Bifurcation diagram with respect to quality of additional food α for
ξ = 0.1, b1 = 3. Diagrams (a) is for the system (5) and (b) is for the system
(6).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

2

4

6

8

10

12

14

 Quantity of additional food ξ

 T
op

−p
re

da
to

r

 (a)

 α=2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
13

14

15

16

17

18

19

20

21

22

23

 Quantity of additional food ξ

 T
op

−p
re

da
to

r

 (b)

 α=2

Figure 6: Bifurcation diagram with respect to quantity of additional food ξ
for α = 2, b1 = 3. Diagrams (a) is for the system (5) and (b) is for the system
(6).
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3.3 Bifurcation analysis with respect to quantity of addi-

tional food ξ

Figure 6 is the bifurcation analysis of the system (5) and (6) with respect
to quantity of additional food ξ fixing α = 2, b1 = 3. From figure 6(a), we
observe periodic behaviour for 0 ≤ ξ < 1.55. But the system (6) is reported
chaotic behaviour for 0 ≤ ξ ≤ 0.2 which is shown in figure 6(b).

The dynamical behaviors of the system (5) and the system (6) are
shown in tabular form in table 1 and table 2 respectively.

Bifurcation parameters Fixed parameter values Observations
b1 α = 0, ξ = 0 Stability, periodicity, chaos
b1 α = 2, ξ = 0.04 Stability, periodicity, chaos
b1 α = 2, ξ = 0.1 Stability, periodicity
α ξ = 0.1, b1 = 3 Limit cycle, stability
ξ α = 2, b1 = 3 Periodicity

Table 1: Behaviour of the system (5) with respect to the parameters b1, α, ξ.

Bifurcation parameters Fixed parameter values Observations
b1 α = 0, ξ = 0 Stability, periodicity, chaos
b1 α = 2, ξ = 0.04 Stability, periodicity, chaos
b1 α = 2, ξ = 0.1 Stability, periodicity, Chaos
α ξ = 0.1, b1 = 3 Periodicity, Chaos
ξ α = 2, b1 = 3 Chaos

Table 2: Behaviour of the system (6) with respect to the parameters b1, α, ξ.

4 Discussion

We have proposed three species predator-prey systems using monotonic
(Holling type-II) and non-monotonic (Holling type-IV) functional response in
presence of some additional food to top-predator. We have analysed the sys-
tems behaviour through bifurcation study with out additional food as well as
with additional food. We mainly focus on the effects of additional food to
the systems of monotonic and non-monotonic functional responses. Table 1
and table 2 are reported the dynamical behaviors of the system (5) and (6)
respectively. With out any supply of additional food, both monotonic and
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non-monotonic systems have chaotic attractors. But, the chaos is controlled
by supply of additional food in the monotonic system, while the non-monotonic
system shows chaotic behavior through supply of additional food. Therefore,
we conclude that for models with monotonic functional response with addi-
tional food makes very well to control the dynamics but it is not very useful
for model with non-monotonic response function. Our analysis will be useful
in fishery and biological pest control research for use of additional food with
propoer choice of response function.
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