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Abstract 
 

The idea of replacing the first derivative in time by a fractional derivative of order 𝛼, where 0 < 𝛼 ≤ 1, leads to a fractional generaliza-

tion of any partial differential equations of integer order. In this paper, we obtain a relationship between the solution of the integer order 

equation and the solution of its fractional extension by using the Laplace transform method. 
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1. Introduction 

As a generalization of the integer order partial differential equa-

tion, fractional partial differential equation is used to model im-

portant phenomena in various fields such as fluid flow, electro-

magnetic, acoustics, electrochemistry, cosmology, and material 

science. To find the explicit solutions of linear and nonlinear frac-

tional partial differential equations, many powerful methods have 

been used such as the variational Iteration method, the homotopy 

perturbation method [10], the Laplace transform method [5], the 

Mellin transform method, the fractional complex transform meth-

od [3], [4] and the exponential function method [11]. 

In this paper, by Laplace transform method, we will obtain a rela-

tionship between the solution of the integer order partial differen-

tial equation and the solution of its fractional extension. In the 

following section we discuss the preliminaries. In Section 3, we 

apply the Laplace transform method to prove the main theorem of 

this paper, then we solved the time fractional Black-Scholes equa-

tion in Caputo’s sense as an application for our results. 

2. Preliminaries 

2.1. Caputo’s fractional derivative 

Let 0 < α < 1  and f(t) ∈ AC[a, b] , then the Caputo’s fractional 

derivatives Da+
αC f(t)  and Db−

αC f(t)  are exist almost everywhere 

on [a, b], and they are defined respectively by 

 

Da+
αC f(t) =

1

Γ(1−α)
∫

f′(ξ)

(t−ξ)α dξ
t

a
                                                       (1) 

 

And 

 

Db−
αC f(t) = −

1

Γ(1−α)
∫

f′(ξ)

(ξ−t)α dξ
b

t
.                                                  (2) 

 

If α = n ∈ ℕ  and the usual derivative f (n)(t)  of order n  exists, 

then Da+
nC f(t)  coincides with f (n)(t) , while Db−

nC f(t)  coincides 

with f (n)(t) with exactness to the constant multiplier (−1)n. Thus, 

Da+
nC f(t) = f (n)(t)  and Db−

nC f(t) = (−1)nf (n)(t) . In particular, 

Da+
1C f(t) = f ′(t)  and Db−

1C f(t) = −f ′(t) . For more detailed in-

formation on the Caputo’s fractional derivative, one can refer to 

[1], [8]. 

Now, we’re going to introduce a lemma, but we’ll use it later in 

section 3. 

 

Lemma 2.1: 𝐷𝑇−,𝑡
𝛼𝐶 𝑓(𝑡) = 𝑎𝛼 𝐷0+,𝑢

𝛼𝐶 𝑔(𝑢)  where 𝑓(𝑡) = 𝑔(𝑢) 

with 𝑢 = 𝑎(𝑇 − 𝑡) such that 0 < 𝑡 < 𝑇 , 0 < 𝛼 ≤ 1 and 𝑎 ∈ ℝ −
{0}. 

 

Proof:  

Case (1): If 0 < α < 1. 

Let f(t) = g(u) with u = a(T − t). Then by (2), we get 

 

DT−,t
αC f(t) =

a

Γ(1−α)
∫

g′(a(T−ξ))

(
u

a
−[T−ξ])

α dξ
T

T−
u

a

.                                          (3) 

 

Now let z = a(T − ξ), thus 

 

DT−,t
αC f(t) =

aα

Γ(1−α)
∫

g′(z)

(u−z)α dz
u

0
.                                                   (4) 

 

Thus, from (1), we get DT−,t
αC f(t) = aα D0+,u

αC g(u)  where 0 <

α < 1. 

Case (2): If α = 1. 

Then,  DT−,t
1C f(t) = −f ′(t) = −[−ag′(u)] = ag′(u) =

a D0+,u
1C g(u). 

Therefore, DT−,t
αC f(t) = aα D0+,u

αC g(u)  where f(t) = g(u)  with 

u = a(T − t) such that 0 < t < T, 0 < α ≤ 1 and a ∈ ℝ − {0}. 

2.2. Laplace transform 

The Laplace transform of a function f(t) of a real variable t ∈ ℝ+ 

is defined by 

 

f̃(s) = ℒ{f(t); s} = ∫ e−stf(t)dt
∞

0
, (s ∈ ℂ).                                   (5) 
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If the integral (5) is convergent at the point s0 ∈ ℂ, then it con-

verges absolutely for s ∈ ℂ such that Re(s) > Re(s0). The infi-

mum cf of values s for which the Laplace integral (5) converges is 

called the abscissa of convergence. Thus the Laplace integral (5) 

converges for Re(s) > cf  and diverges for Re(s) < cf . In other 

words, if the function f(t) be continuous or piecewise continuous 

over every finite interval in [0, ∞) and of exponential order eat, 

i.e., there exist constants M > 0 and T > 0 such that |f(t)| ≤ Meat 

for all t > T, then the Laplace transform ℒ{f(t); s} of f(t) exists 

for all s provided Re(s) > a. 

The original f(t) can be restored from the Laplace transform f̃(s) 

with the help of the inverse Laplace transform 

 

f(t) = ℒ−1{f̃(s); t} =
1

2πi
∫ est f̃(s)ds

c+i∞

c−i∞
,                                     (6) 

 

Where c = Re(s) > cf. The integral in (6) is also called Bromwich 

integral [1]. 

Now, we review some of the basic properties and results of the 

Laplace Transform. Suppose that ℒ{𝑓(𝑡); 𝑠} = 𝑓(𝑠) 

and ℒ{𝑔(𝑡); 𝑠} = 𝑔̃(𝑠), then the following statements hold [2]: 

 

ℒ{𝑡𝑛; 𝑠} =
𝑛!

𝑠𝑛+1, Where (𝑛 = 0,1,2,3, … )                                      (7) 

 

ℒ{𝑡𝑎; 𝑠} =
𝛤(𝑎+1)

𝑠𝑎+1
, Where (𝑎 > −1)                                              (8) 

 

Laplace Transform of the 𝑛 − 𝑡ℎ Derivative: 

 

ℒ{𝑓(𝑛)(𝑡); 𝑠} =  

 

𝑠𝑛𝑓(𝑠) − 𝑠𝑛−1𝑓(0) − 𝑠𝑛−2𝑓′(0)                                                 (9) 

 

− ⋯ ⋯ − 𝑠𝑓(𝑛−2)(0) − 𝑓(𝑛−1)(0),  
 

Where 𝑓(𝑟)(0) is the value of 𝑓(𝑟)(𝑡) at 𝑡 = 0, 𝑟 = 0,1, … , (𝑛 −
1) and 𝑛 ∈ ℕ. 

 

Convolution Theorem: 

 

ℒ{𝑓(𝑡) ∗ 𝑔(𝑡); 𝑠} =  
 

ℒ {∫ 𝑓(𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏
𝑡

0
; 𝑠} = 𝑓(𝑠)𝑔̃(𝑠).                                       (10) 

 

Laplace Transform of the Caputo’s fractional derivative 

𝐷0+
𝛼𝐶 𝑓(𝑡): 

 

ℒ{ 𝐷0+
𝛼𝐶 𝑓(𝑡); 𝑠} = 𝑠𝛼𝑓(𝑠) − 𝑠𝛼−1𝑓(0),                                     (11) 

 

Where 0 < 𝛼 ≤ 1 

2.3. Abel’s integral equation 

The Abel’s integral equation for any 𝛽 ∈ (0, 1) is given by 

 

𝑓(𝑡) = ∫
𝜑(𝜏)

(𝑡−𝜏)𝛽 𝑑𝜏
𝑡

0
 , 𝑥 > 0,                                                         (12) 

 

Where the function 𝑓(𝑡)  has a continuous derivative on some 

interval [0, 𝛽] [9]. 

However, the only solution of equation (12) is given by [6] 

 

𝜑(𝑡) =
1

𝛤(𝛽)𝛤(1−𝛽)
∙

𝑑

𝑑𝑡
(∫

𝑓(𝜏)

(𝑡−𝜏)1−𝛽 𝑑𝜏
𝑡

0
).                                       (13) 

3. Method of Laplace transform 

In this section, we introduce a new method for finding closed-

form solutions to boundary and initial value problems for time-

fractional partial differential equations based on the Laplace trans-

form method. 

Consider the following initial value problem 

 
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
+ 𝐿𝑥𝑢(𝑥, 𝑡) = 0                                                                (14) 

 

With 

 

𝑢(𝑥, 0) = 𝑓(𝑥),                                                                            (15) 

 

Where 𝐿𝑥  is an arbitrary linear differential operator in 𝑥 (of any 

order in the derivatives) and 𝑢(𝑥, 𝑡) be a function of apace and 

time, such that 0 < 𝑥 < ∞ and 0 < 𝑡 < 𝑇. 

Now, by taking the Laplace transform (5) for equation (14) with 

respect to 𝑡 and using (9), we get 

 

𝑠𝑢̃(𝑥, 𝑠) = 𝑓(𝑥) − 𝐿𝑥𝑢̃(𝑥, 𝑠),                                                      (16) 

 

Where ℒ{𝑢(𝑥, 𝑡); 𝑠} = 𝑢̃(𝑥, 𝑠). 

 

Now, consider the following time-fractional initial value problem 

 

𝐷0+,𝑡
𝛼𝐶 𝑢𝛼(𝑥, 𝑡) + 𝐿𝑥𝑢𝛼(𝑥, 𝑡) = 0                                               (17) 

 

With 

 

𝑢𝛼(𝑥, 0) = 𝑓(𝑥),                                                                          (18) 

 

where 𝐿𝑥 is the same linear differential operator as before, 𝐷0+,𝑡
𝛼𝐶  

is the Caputo’s fractional derivative of order 𝛼 (0 < 𝛼 < 1), and 

𝑢𝛼(𝑥, 𝑡) be a function of apace and time, such that 0 < 𝑥 < ∞ and 

0 < 𝑡 < 𝑇. 

By applying the Laplace transform (5) for equation (17) with re-

spect to 𝑡 and using (11), we get 

 

𝑠𝛼𝑢𝛼̃(𝑥, 𝑠) = 𝑠𝛼−1𝑓(𝑥) − 𝐿𝑥𝑢𝛼̃(𝑥, 𝑠),                                       (19) 

 

Where ℒ{𝑢𝛼(𝑥, 𝑡); 𝑠} = 𝑢𝛼̃(𝑥, 𝑠). 

 

Since the 𝐿𝑥 operator is the same in the two equations (14) and 

(17), therefore by the uniqueness of the Laplace transform, we 

conclude that 

 

𝐿𝑥𝑢̃(𝑥, 𝑠) = 𝐿𝑥𝑢𝛼̃(𝑥, 𝑠).                                                              (20) 

 

Then, from (16), (19) and (20), we get  

 

𝑢̃(𝑥, 𝑠) = 𝑓(𝑥)[𝑠−1 − 𝑠𝛼−2] + 𝑠𝛼−1𝑢𝛼̃(𝑥, 𝑠).                            (21) 

 

Theorem 3.1: Suppose that 𝑢(𝑥, 𝑡) is the solution of the initial 

value problem (14) subject to the condition (15), and 𝑢𝛼(𝑥, 𝑡) is 

the solution of the time-fractional equation (17) subject to the 

condition (18), then the solutions 𝑢(𝑥, 𝑡) and 𝑢𝛼(𝑥, 𝑡) are related 

by 

 

𝑢𝛼(𝑥, 𝑡) =
1

𝛤(𝛼)
∙

𝑑

𝑑𝑡
(∫

𝑢(𝑥,𝜏)

(𝑡−𝜏)1−𝛼 𝑑𝜏
𝑡

0
) + 𝑓(𝑥) [1 −

𝑡𝛼−1

𝛤(𝛼)
],              (22) 

 

Where 0 < 𝛼 ≤ 1. 

 

Proof:  

Case (1): If 0 < 𝛼 < 1. 

By using the Laplace inverse (6), (7), (8), and the convolution 

theorem (10), equation (21) becomes 

 

∫
𝑢𝛼(𝑥,𝜏)

(𝑡−𝜏)𝛼 𝑑𝜏
𝑡

0
= 𝛤(1 − 𝛼) [𝑢(𝑥, 𝑡) − 𝑓(𝑥) +

𝑡−𝛼+1

𝛤(2−𝛼)
∙ 𝑓(𝑥)].        (23) 

 

And thus an Abel’s integral equation for any 𝛼 ∈ (0, 1).Hence, 

from (13), we get 
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𝑢𝛼(𝑥, 𝑡) =  

 

𝛤(1−𝛼)

𝛤(1−𝛼)𝛤(𝛼)
∙

𝑑

𝑑𝑡
(∫

𝑢(𝑥,𝜏)−𝑓(𝑥)+
𝜏−𝛼+1

𝛤(2−𝛼)
∙𝑓(𝑥)

(𝑡−𝜏)1−𝛼
𝑑𝜏

𝑡

0
).                              (24) 

 

Thus, 

 

𝑢𝛼(𝑥, 𝑡) =  

 
1

𝛤(𝛼)
∙

𝑑

𝑑𝑡
(∫

𝑢(𝑥,𝜏)

(𝑡−𝜏)1−𝛼 𝑑𝜏
𝑡

0
) −

𝑓(𝑥)

𝛤(𝛼)
∙ 𝑡𝛼−1 +                                      (25) 

 
𝑓(𝑥)

𝛤(𝛼)𝛤(2−𝛼)
∙

𝑑

𝑑𝑡
(∫ (𝑡 − 𝜏)𝛼−1𝜏−𝛼+1𝑑𝜏

𝑡

0
).  

 

Let 𝑧 =
𝑡−𝜏

𝑡
, then 

 

∫ (𝑡 − 𝜏)𝛼−1𝜏−𝛼+1𝑑𝜏
𝑡

0
=                                                            (26) 

 

𝑡 ∫ 𝑧𝛼−1(1 − 𝑧)(−𝛼+2)−1𝑑𝑧
1

0
= 𝑡 ∙ 𝐵(𝛼, 2 − 𝛼),  

 

Where 𝐵(∙ ,∙) is the famous Beta function? 

 

We know 𝐵(𝑥, 𝑦) =
𝛤(𝑥)𝛤(𝑦)

𝛤(𝑥+𝑦)
, therefore equation (25) becomes 

 

𝑢𝛼(𝑥, 𝑡) =
1

𝛤(𝛼)
∙

𝑑

𝑑𝑡
(∫

𝑢(𝑥,𝜏)

(𝑡−𝜏)1−𝛼
𝑑𝜏

𝑡

0
) + 𝑓(𝑥) [1 −

𝑡𝛼−1

𝛤(𝛼)
].              (27) 

 

Case (2): If 𝛼 = 1. 

We have 𝐷0+
1𝐶 𝑢(𝑥, 𝑡) =

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
, since 𝛼 = 1. Therefore, equation 

(14) and equation (17) are the same subject to the same initial 

condition. Thus, must 𝑢𝛼(𝑥, 𝑡) = 𝑢(𝑥, 𝑡). Hence, the result valid 

for 𝛼 = 1. 

Therefore, equation (27) is true for any 𝛼 ∈ (0,1]. 
 

Corollary 3.1: If 0 < 𝛼 < 1 , then 𝑢𝛼(𝑥, 𝑡) = 𝐷0+,𝑡
1−𝛼𝐶 𝑢(𝑥, 𝑡) +

𝑢(𝑥, 0). 

 

Proof:  

When  0 < 𝛼 < 1 , we have 𝐷𝑎+
𝛼𝐶 𝑦(𝑡) = 𝐷𝑎+

𝛼 𝑦(𝑡) −
𝑓(𝑎)

𝛤(1−𝛼)
(𝑡 −

𝑎)−𝛼 ,  where 𝐷𝑎+
𝛼  is the Riemann-Liouville fractional derivative 

operator of order 𝛼 (0 < 𝛼 < 1), and it is given by 𝐷𝑎+
𝛼 𝑦(𝑡) =

1

𝛤(1−𝛼)

𝑑

𝑑𝑡
(∫

𝑦(𝜉)

(𝑡−𝜉)𝛼
𝑑𝜉

𝑡

𝑎
). 

Therefore, equation (27) becomes 

 

𝑢𝛼(𝑥, 𝑡) =  

 

𝐷0+,𝑡
1−𝛼𝑢(𝑥, 𝑡) −

𝑢(𝑥,0)

𝛤(𝛼)
𝑡−(1−𝛼) + 𝑢(𝑥, 0).                                      (28) 

 

Thus, 

 

𝑢𝛼(𝑥, 𝑡) = 𝐷0+,𝑡
1−𝛼𝐶 𝑢(𝑥, 𝑡) + 𝑢(𝑥, 0).                                           (29) 

 

Now, consider the following boundary value problem 

 
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
− 𝐿𝑥𝑢(𝑥, 𝑡) = 0                                                                (30) 

 

With 

 

𝑢(𝑥, 𝑇) = 𝑔(𝑥),                                                                           (31) 

 

Where 𝐿𝑥  is an arbitrary linear differential operator in 𝑥 (of any 

order in the derivatives) and 𝑢(𝑥, 𝑡) be a function of apace and 

time, such that 0 < 𝑥 < ∞ and 0 < 𝑡 < 𝑇. 

 

Now, we need to reverse the direction of time, so that the terminal 

condition (31) becomes the initial condition for the given equation 

(30). Set 𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑧), where 𝑧 = 𝑇 − 𝑡; is a new time coor-

dinate which runs over the interval (0, 𝑇). 

Thus, the boundary value problem becomes 

 
𝜕𝑣(𝑥,𝑧)

𝜕𝑧
+ 𝐿𝑥𝑣(𝑥, 𝑧) = 0                                                                (32) 

 

With 

 

𝑣(𝑥, 0) = 𝑔(𝑥).                                                                            (33) 

 

Now, consider the following time-fractional boundary value prob-

lem 

 

− 𝐷𝑇−,𝑡
𝛼𝐶 𝑢𝛼(𝑥, 𝑡) − 𝐿𝑥𝑢𝛼(𝑥, 𝑡) = 0                                            (34) 

 

With 

 

𝑢𝛼(𝑥, 𝑇) = 𝑔(𝑥),                                                                         (35) 

 

Where 𝐿𝑥  is the same linear differential operator as in (30), 

𝐷𝑇−,𝑡
𝛼𝐶  is the Caputo’s fractional derivative of order  (0 < 𝛼 < 1), 

and 𝑢𝛼(𝑥, 𝑡) be a function of apace and time, such that 0 < 𝑥 < ∞ 

and 0 < 𝑡 < 𝑇. 

We need to reverse the direction of time, so that the terminal con-

dition (35) becomes the initial condition for the given equation 

(34). Set  𝑢𝛼(𝑥, 𝑡) = 𝑣𝛼(𝑥, 𝑧) , where 𝑧 = 𝑇 − 𝑡 ; is a new time 

coordinate which runs over the interval (0, 𝑇). Hence, by lemma 

2.1, we have 𝐷𝑇−,𝑡
𝛼𝐶 𝑢𝛼(𝑥, 𝑡) = 𝐷0+,𝑧

𝛼𝐶 𝑣𝛼(𝑥, 𝑧). 

Thus, the given time-fractional boundary value problem becomes 

 

𝐷0+,𝑧
𝛼𝐶 𝑣𝛼(𝑥, 𝑧) + 𝐿𝑥𝑣𝛼(𝑥, 𝑧) = 0                                               (36) 

 

With 

 

𝑣𝛼(𝑥, 0) = 𝑔(𝑥).                                                                          (37) 

 

Theorem 3.2: Suppose that 𝑢(𝑥, 𝑡) is the solution of the boundary 

value problem (30) subject to the condition (31), and 𝑢𝛼(𝑥, 𝑡) is 

the solution of the time-fractional equation (34) subject to the 

condition (35), then the solutions 𝑢(𝑥, 𝑡) and 𝑢𝛼(𝑥, 𝑡) are related 

by 

 

𝑢𝛼(𝑥, 𝑡) = −
1

𝛤(𝛼)
∙

𝑑

𝑑𝑡
(∫

𝑢(𝑥,𝑇−𝜏)

(𝑇−𝑡−𝜏)1−𝛼 𝑑𝜏
𝑇−𝑡

0
)  

 

+𝑔(𝑥) [1 −
(𝑇−𝑡)𝛼−1

𝛤(𝛼)
],                                                                  (38) 

 

Where 0 < 𝛼 ≤ 1. 

 

Proof:  

From theorem 3.1, we know that the solution of the initial value 

problem (32) subject to the condition (33), and the solution of the 

time-fractional equation (36) subject to the condition (37) are 

related by  

 

𝑣𝛼(𝑥, 𝑧) =
1

𝛤(𝛼)
∙

𝑑

𝑑𝑧
(∫

𝑣(𝑥,𝜏)

(𝑧−𝜏)1−𝛼 𝑑𝜏
𝑧

0
) + 𝑔(𝑥) [1 −

𝑧𝛼−1

𝛤(𝛼)
],             (39) 

 

Where 0 < 𝛼 ≤ 1. 

 

Since 𝑢𝛼(𝑥, 𝑡) = 𝑣𝛼(𝑥, 𝑧), where 𝑧 = 𝑇 − 𝑡, then 

 

𝑢𝛼(𝑥, 𝑡) = −
1

𝛤(𝛼)
∙

𝑑

𝑑𝑡
(∫

𝑢(𝑥,𝑇−𝜏)

(𝑇−𝑡−𝜏)1−𝛼 𝑑𝜏
𝑇−𝑡

0
)  

 

+𝑔(𝑥) [1 −
(𝑇−𝑡)𝛼−1

𝛤(𝛼)
].                                                                  (40) 
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Corollary 3.2: If  0 < 𝛼 < 1  , then 𝑢𝛼(𝑥, 𝑡) = 𝐷𝑇−,𝑡

1−𝛼𝐶 𝑢(𝑥, 𝑡) +

𝑢(𝑥, 𝑇). 

Proof:  

When  0 < 𝛼 < 1 , we have 𝐷𝑏−
𝛼𝐶 𝑦(𝑡) = 𝐷𝑏−

𝛼 𝑦(𝑡) −
𝑓(𝑏)

𝛤(1−𝛼)
(𝑏 −

𝑡)−𝛼 ,  where 𝐷𝑏−
𝛼  is the Riemann-Liouville fractional derivative 

operator of order  𝛼  (0 < 𝛼 < 1) , and it’s given by  𝐷𝑏−
𝛼 𝑦(𝑡) =

−
1

𝛤(1−𝛼)

𝑑

𝑑𝑡
(∫

𝑦(𝜉)

(𝜉−𝑡)𝛼
𝑑𝜉

𝑏

𝑡
). 

Now, let 𝜉 = 𝑇 − 𝜏, then equation (38) becomes 

 

𝑢𝛼(𝑥, 𝑡) = 𝐷𝑇−,𝑡
1−𝛼𝑢(𝑥, 𝑡) −

𝑢(𝑥,𝑇)

𝛤(𝛼)
(𝑇 − 𝑡)𝛼−1 + 𝑢(𝑥, 𝑇).             (41) 

 

Hence, 

 

𝑢𝛼(𝑥, 𝑡) = 𝐷𝑇−,𝑡
1−𝛼𝐶 𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑇).                                           (42) 

 

The applicability of theorem 3.2 shall be demonstrated by the 

following example. 

 

Example 3.1: Let 𝑆 denote the price of the stock, 𝐾  denote the 

strike of the option (exercise price), 𝑟 denote the risk-free interest 

rate, 𝜎 denote the volatility of the stock’s returns, and 𝑡 denote a 

time in years (assuming expiry 𝑡 = 𝑇). In such setting, the time 

fractional Black-Scholes equation for the price of European put 

option 𝑝𝛼(𝑆, 𝑡) reads as 

 

− 𝐷𝑇−,𝑡
𝛼𝐶 𝑝𝛼(𝑆, 𝑡) +

𝜎2

2
𝑆2 𝜕2𝑝𝛼(𝑆,𝑡)

𝜕𝑆2
  

 

+𝑟𝑆
𝜕𝑝𝛼(𝑆,𝑡)

𝜕𝑆
− 𝑟𝑝𝛼(𝑆, 𝑡) = 0,                                                      (43) 

 

Where 0 < 𝑡 < 𝑇 and 0 < 𝑆 < ∞ subject to the boundary condi-

tions 

 

{
𝑝𝛼(𝑆, 𝑇) = 𝜃(𝑆) = (𝐾 − 𝑆)+,

𝑝𝛼(0, 𝑡) = 𝐾𝑒−𝑟(𝑇−𝑡),
                                                   (44) 

 

Where 𝑙𝑖𝑚𝑆→∞ 𝑝𝛼(𝑆, 𝑡) = 0 and 𝐷𝑇−,𝑡
𝛼𝐶  is the Caputo’s fractional 

derivative with respect to 𝑡; 0 < 𝛼 ≤ 1. 

 

Solution: 

Consider the following Black-Scholes equation for the price of 

European put option 𝑝(𝑆, 𝑡), 

 
𝜕𝑝(𝑆,𝑡)

𝜕𝑡
+

𝜎2

2
𝑆2 𝜕2𝑝(𝑆,𝑡)

𝜕𝑆2 + 𝑟𝑆
𝜕𝑝(𝑆,𝑡)

𝜕𝑆
− 𝑟𝑝(𝑆, 𝑡) = 0,                      (45) 

 

Where 0 < 𝑡 < 𝑇 and 0 < 𝑆 < ∞ subject to the boundary condi-

tions 

 

{
𝑝(𝑆, 𝑇) = 𝜃(𝑆) = (𝐾 − 𝑆)+,

𝑝(0, 𝑡) = 𝐾𝑒−𝑟(𝑇−𝑡),
                                                     (46) 

 

And  𝑙𝑖𝑚𝑆→∞ 𝑝(𝑆, 𝑡) = 0. 

 

From [7], we know that the exact solution of the above problem 

(45) is given by 

 

 𝑝(𝑆, 𝑡) =  

 

𝑒
−

1
8(𝑇−𝑡)(𝜎+

2𝑟
𝜎

)
2

𝑆
(

1
2−

𝑟

𝜎2)

𝜎√2𝜋(𝑇−𝑡)
∙ ∫ 𝜃(𝑢)𝑢

−(
3

2
−

𝑟

𝜎2)
𝑒

−
(𝑙𝑛

𝑆
𝑢

)
2

2𝜎2(𝑇−𝑡)𝑑𝑢
∞

0
.                    (47) 

 

Let 𝑢 = 𝑆𝑒−(𝜎√𝑇−𝑡)𝛾, then 

 

𝑝(𝑆, 𝑡) =  

 

𝑒
−

1
8

(𝑇−𝑡)(𝜎+
2𝑟
𝜎

)
2

√2𝜋
∙ ∫ 𝜃 (𝑆𝑒−(𝜎√𝑇−𝑡)𝛾) 𝑒

(
1

2
−

𝑟

𝜎2)(𝜎√𝑇−𝑡)𝛾
𝑒−𝛾2

2 𝑑𝛾
∞

−∞
.      (48) 

Now, let  𝑧 = −𝛾 + (
1

2
−

𝑟

𝜎2
) (𝜎√𝑇 − 𝑡). Thus 

 

𝑝(𝑆, 𝑡) = 

 

𝑒−𝑟(𝑇−𝑡)

√2𝜋
∫ 𝜃 (𝑆𝑒

𝑧(𝜎√𝑇−𝑡)+(𝑟−
𝜎2

2
)(𝑇−𝑡)

) 𝑒−𝑧2

2 𝑑𝑧
∞

−∞
.                         (49) 

 

Therefore, by theorem 3.2, equation (43) has a unique solution of 

the following form 

 

𝑝𝛼(𝑆, 𝑡) = −
1

𝛤(𝛼)
∙

𝑑

𝑑𝑡
(∫

𝑝(𝑆,𝑇−𝜏)

(𝑇−𝑡−𝜏)1−𝛼
𝑑𝜏

𝑇−𝑡

0
)  

 

+𝜃(𝑆) [1 −
(𝑇−𝑡)𝛼−1

𝛤(𝛼)
],                                                                   (50) 

 

Where 𝑝(𝑆, 𝑡) =
𝑒−𝑟(𝑇−𝑡)

√2𝜋
∫ 𝜃 (𝑆𝑒

𝑧(𝜎√𝑇−𝑡)+(𝑟−
𝜎2

2
)(𝑇−𝑡)

) 𝑒−𝑧2

2 𝑑𝑧
∞

−∞
. 

4. Conclusion 

If we know the solutions of the integer order partial differential 

equation, then by our results it is easy to obtain an exact and ex-

plicit analytic solutions of its fractional extension in Caputo’s 

sense. 
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