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Abstract

The objective of this paper is to indicate a class of new exact solutions of the equations governing the steady plane
flows of incompressible fluid of variable viscosity. The class consists of the stream function characterized by equation
(2). Exact solutions are determined for g(r)=const. and g(r)=const. When f (r) is arbitrary we can construct an infinite
set of streamlines and the velocity components, viscosity function, generalized energy function L and temperature
distributionT . Therefore, an infinite set of solutions to flow equations. When £ (r) is not arbitrary, there are two values
of f (r) and therefore, two exact solutions to flow equations. The streamlines are presented through Fig.(1-56) for some
chosen from of f (r).

Keywords: A Class of Exact Solutions; Exact Solutions to the Flow Equations of Incompressible; Variable Viscosity; Navier-Stokes Equations; New
Exact Solutions Variable Viscosity.

1. Introduction

Due to complex mathematical structure of the fluid flow equations, it is extremely difficult to achieve exact solutions.
However, researchers have developed methods/techniques through which some exact solutions were determinable. The
readers interested in these methods/techniques may refer to [1]-[23] and the references therein.

The aim of this paper is to indicate a class of new exact solutions of the equations describing the steady plane flows of
incompressible fluid of variable viscosity. The aim is achieved by transforming flows equations into Martin system —
(¢w). In Martin system, the coordinate lines , = constant represents streamlines and coordinate lines ¢=constant are left
arbitrary. We take ¢=r(x,y) to achieve our aim. When f (r) is arbitrary an infinite set of velocity components implying
an infinite set of solutions to flow equation. When f (r)is not arbitrary there are only two values of f (r) indicating a
set of two solutions.

The streamlines of the class of flows under consideration are characterized by

0-f (r)
g(r)

= const (1)

where f (r) and g(r)=0 are continuously differentiable functions andr , ¢ the polar coordinates. The equation, with
loss of generality, implies

0=f (r+g(r)v(y) )

where v(y) is unknown function such that v'(y) #0.
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The paper is organized as follow: In section (2), we give basic flow equations and transform them into Martin system.
In section (3), we take ¢=r(x,y) and transform the equations of section (2) in to a new system of equations. The
solutions to new system of equations are determined. In section (4) we discuss the solutions of section (3). In section (5)
we present conclusions.

2. Basic flow equations

The basic non-dimensional equations of motion governing a steady plane flow of an incompressible fluid of variable
viscosity, in the absence of external force with no heat addition are

u+v,=0 3)
U+ VU= —p, +Rie [(2u,), +{ulu, +v,)},] )
v, + Vv = op, +Rie [2uv,), +{u, +v,)},] ®)
G v T E e B, e, Y, ) (6)

e’r e

where p is the pressure, x is the viscosity, T is the temperature, u and v are velocity components.
On introducing the vorticity functionw , the total energy function L , the function A and B defined by

w=v, -, (7
— 12 .2 _2pu,

L=p+ > U*+v?) R (8)

A= u@ +v,), B=4uu, )

The system of equations (3 — 6) can be rewritten as

u+v,=0 (10)

-vw=-L, + Ay (11)
R.

e LA 12)

ut tv Ty=% + ﬁ (B*+4A%) (13)

Now following Martin we introduce the curvilinear coordinate (¢,i) in the physical plane in which the coordinate lines
w = constant are the streamlines and the coordinate lines ¢=constant left arbitrary.
In transforming the flow equations into curvilinear coordinates (¢,»), Martin considered the transformation defined by

x =x(gy)andy =y (4,) (14)

The transformation in (14) defines a system of curvilinear coordinates (¢,») in the physical plane (x,y) such that the

i - ox.y)
Jacobian, J 26

of the transformation is non-zero and finite. The first fundamental form ds?in (4,») system is

given by

ds? = E(gy) df’ +2 F(py) dg dy + G(gy) dy’ (15)
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where
E@w) =X, +y,, Flgw) = X, x,*y,y, .G@y) = x;+y] (16)

Differentiating equation (14) with respect to x and y , and solving the resulting equations for v, , v, , ¢, , ¢, yield:

X, =3 vy, X, == ¢, Y= 3 ¥, Y, = ¢ (17)
wherein
3 =2 JEG-F=2(x, Yy, - Y, x,) = 1w (18)

If o is the angle between the tangent at the point P(x,y) to the coordinate line y =constant and the x-axis, then
tana = L (19)
Equation(17), on utilizing equation (19), gives

x, = JE Cos a, x :%[F Cos a —J Sin ]

v

y, = E sina, YW:%[FSinoﬁJCosa] (20)

The integrablity conditions

Xyp = Xy, Y = Yo (21)
Forx andy , yield
2
a, = JEl ya,= Jlﬂ% (22)
wherein
r2 :i[—FE +2EF -EE ], T = L lec -FE,] (23)
117 2 ¢ é v 2w ? / i

Equation (19), applying the integrability condition «,, =«,, for a(g,y) , yields

) )

where K is called the Gaussian curvature and equation (24) is called Gaussian equation. This equation represents a
necessary condition that E (4,w) , F(¢,») and G (¢,w) are coefficients of the first fundamental form in equation (15). The
system of equations (10 — 13), on utilizing equations (20 — 24), is transformed into a new system of equations given in
the following theorem.

Theorem I:
If the streamlines y =constant and the curves ¢ =constant left arbitrary, generate a curvilinear net in the physical

plane, the equations (10 — 13), are transformed in to the following system of equations

a-YE (25)



432 International Journal of Basic and Applied Sciences

. 1 .
-RWJIE = RJEL,+ A,((F*-J%)cos2a—2F)sin2a) + EA, (Jsin2a—F cos2a)) fB¢(E(F2—J2)sm2a+FJ cosZa]

+EB, (%F sin2a +1J coszaj (26)
_ , 1 - EB, .
0=-RJL,+EA, cos2a—A,[Fcos2a—Jsin2a| + Ba,(EFsm 20— J sin a) ——5sin2a (27)
o) 6]
willw ), w),
GT —FT ET_-FT
: A N e YV s (29)
JR,P, J 5 J 4 uR, J
v

)05

wherein ¢ and y are considered as independent variables. This is a system of six equations in seven unknowns e , F ,c
W , L, T andq. Inequations (26 — 29) the functions A(g,») and B (¢,w) are given by

-~ (Fcosa-Jsina)

A@Byw)=ul TERE {E,(2E3°cosar+F\E sina) — 4E23% cosa —2ENE F,sina + ENE E, sina }

+ 22 {E,(Fsina+J cosa) — 260, cosa ~EG,sina } + ESNLIZCBD [ 5B —26),) sina

sina . .

+ cosa [-FE,+2EF,-EE,]1} - o {(E,(sina—Fcosa) —2EJ  sina + EG, cosar }] (31)
B(dw)= éﬁ [E,(Fsina+Jcosa)’ —2 E(Fsina+J cosa) (F,sina+J,cosa) + E*(J, sin2a+G,sin’a) | (32)
wherein
Cosa= —=, sine=YEl  cosoa= 2B, sin2g=2¥E-L (33)

JE JE E E

3. Exact solutions

Since our objective is to determine a class of exact solutions to flow equations for which the streamlines are
characterized by equation (1) and to achieve it we set

p=r(x.y) (34)
where
x =rCos @, y =rSiné@ (35)

Utilizing equations (34) and (35) in equations (25-33), we get

_NE
e (36)
Rw =R,L,—JA + JE-1A, + B, (37)

0=-R, Lr+AV’(i_E)+ArE fL;lBW (38)
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E E EJ "
I, 2ELT, vV HET, (v')2+(J,—2h—Re Pror +[TW—2 EEfil— = +'§—[“’/—]] TV

B’ +4A%) (39)

JE,P,
e

W{f’(r)g"(r)_Zf '(r)g'(r)N 1 j+{g'(r)+g"(r>_2{g'(r)}z}[v(v))

ro® 90 o' JWve)) lremem o' | L)
+[ LI '(r)}ZM VW) J L2 OIOVEV W) | {9 OF V) V) (40)
o' o' | [ wF o' ()Y o’ (0 WF

where

23, JE-1 _ E, +—(2—E)Jw]

A= 71 ] 1 77 (41)
B(rw) = 4u Jig[—a L+VE1,] (42)
E=1+ 1 [f'")+g'(r) v I (43)
F=JJE-1 (44)
e =1t gi(r) vy)® (45)
w S 3=r g(r) vy (46)
JE-1 = rf(+rg'(r) viy) (47)

In order to determine the solution of the flow equations we require an equation which the functionst ,g , v and the
viscosity x must satisfy for the class of flows under consideration and this is obtained by using the integrability
condition L,, =L, . The integrability condition, utilizing equations (43) and (46) yields

[1-r(f "+g'v) ]A

rgviA, —2r(f'+g'v)A,, — -
rgv

yy

+ gv’ArfAW((f'+g’v)+r(f ”+g”v))*{&-%} = ReWr (48)
gv

Once a solution of this equation is determined, the function L and temperature distribution T are determined from
equations (37-38) and (39), respectively.

To determine the exact solutions of equation (48), the presence of term (f '+g’v) in equation (48) and equation (2)
suggests to consider the following two cases.

Casel g = Constant (49)
Case Il g Constant (50)

Case I: For the sake of simplicity we take g =1. On substituting g =1 in equations (36-42), in the absence of body force
become

P Uy (51)
rv'(y)
| Tr) 1 A g | [ VW)
w {T +f (r)} (v’(u/)j{rZ +{f '(n)} } [{V,(W)}S] , (52)

“RW = R, VL, —rV(@)A + rf'vA + VB, (53)
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0=-R, L+ rf'A+ f'B

v

{-(f)3A,
r
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(V@) T, =20VE) T, + r(' @) L+ )3T, + Ve’ {ve) -RP }T,

,rZ(Vr(I//))IS(rf l)! Tv = _ Ec:lrl‘] [BZ + 4A2]

_ rv’((//) Arr + 2 rf’ V'(W) Avr + V'(u/) {{l_(rﬂ}Aw _ V’(l//)f rBW
VW) B, —vW) A V@) (fY A = w R,
where

Ay = —H [ g G V) g

) TZ%%
BOW) = oy LY@Vl

(54)

(55)

(56)

(57)

(58)

The above system of equations indicates that its solutions strongly depend on the function v(w) and its derivatives.

Since v'(w) =0, therefore we consider the following cases
Case | (a) v'(w)=0

Case I(b) v'@w)=0

Case I(a): v'=0 Qives

v(y)=ay +b

wherea=o0 and b are real constants.
Inserting equation (59) in equations (51-58) we get

«f1+(rf i

ar

RaL=arA—rfaa—ag—R(f"+")
ar

_r2f 12
Rel, = r f'AﬁwA,ff'B

v v

2¢ 12
ar Trr_2 ar f'Tvr-}. %
—raA,t2arf'A,+ —aA +aA (rf’)y —af'B,+aB, = -w,
w = it

ar
where

- M n_gr
A= = (rfr-f
ar )

—4yu

©
-

) T, —a@f"+f)T,+ @-RP)T, =

-arE P (B*+4A?%)

4u

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)
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It is obvious from equation (64) that it is difficult to obtain exact solutions. However, we see that on eliminating
from equations (66) and (67) the function A can be eliminated from equation (64). On eliminating ., we get

A= X(r)B (68)
where
X (r)= &1] (rF"—rf " (69)

provided (r?f "—rf")=0.
Inserting equation (68) in equation (64) we get

a{M -X (1-M?)}

arX B,, —a (1+2M X) B, + B, + aB, {2rX '+X }

—a(zmx'+|v|'x)Bv+aB(rx')':R(M,J’ (70)
‘lar

where

M(r)=rf’(r) (71)
The form of equation (70) suggests to seek a solution of the form

B=S(n)+ K(Nv(y) (72)

where S(r)and K (r) are to be determined.
Substituting equation (72) in equation (70) we get

vip) [ X K7 (r)+(X +2r X )K'(r) +(X '+ X")K(r)]+[arX s"(r) + a(X +2rX’) S'(r) + a(rX')' s(r)]

'

= Re[';/lr,] +a (1+2M X) K'(r) +a (2MX'+M'X ) K(r) (73)

As r and  are independent variables therefore equation (73) provides

rX K'ry+(X +2r X' )K'(r) +(X'+r Xx")K(r)=0 (74)
and

arx S"(r) + a(X +2rX’) S'(r) + a(rx’) s(r) = Z,(r) (75)
where

Z,(r)= Re(’:rj +a (1+2M X) K'(r)+a (2MX'+M'X ) K(r) (76)

Equation (74) can be rewritten as
[r(x K)1 =0 7

Equation (77) yields
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k. Inr k

_ 1 2
K(r)= 0 +x o (78)

where k and k, are constants.
Also equation (75) can be rewritten as

[rX$)1=2 () (79)

Whose solution is

1 1 kyInr+k
S() = [ [+ Z,0)r ] ar + 5 (80)
wherek, and k, are constants.
On substituting equation (78) and equation (80) in equation (72) we get

1 k,Inr+k

B= xi L2 1Zy(r)dr ] dr +7k3'”;+k4 + (71 n)£+ 2)V(v/) (81)
The expression for viscosity employing equation (66) or equation (67) is

_ar? k,Inr+k
ur) =L [z, + KTk [l ) ) (82)

The expression of function L is determined by finding the solution of equation (61) and (62). The solution, employing
equations (81) and (68), is

aReL:fRe[M
ar

] vtar(SX) v—akKMX +1) v +ar(KX)(§j

+ a[M (S X )’dr +j{${ax (1-M?)-aM }}dr + p (83)

The temperature distribution 1 is determined from equation (64). Equation (64) utilizing equations (68), (81) and (82)
becomes

all+ri 7

arT, —2arfT,+ )T, a (rfr4f)T, + @R P)T, = M{S(r)+K(r)v} (84)

Right-hand side of equation (84) suggests to seek a solution of the form
T =Ty(N)+T,(Nv(y) (85)

On using equation (85) into equation (84), we get

T+ @RP) o= 7 (86)
ar

T BERP) =7 (87)
ar

where

Z,(r)= %ﬁ“xz)sm +2ar f'T)+a (rf"+f)T, (88)

23(r) :MK () (89)

ar?
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It is obvious from equation (86) and (87) that their solutions depend on the value of (@a—R,P.). The solution of equations
(86) and (87) when (@a-R,P.)=0 is

—(a-R, P, a-R, P, -(@R.P)
T,(r) = |r n )[j{r( a )Zz(r)}dr}dr + H,Jr @ dr+H, (90)

—(a-R, P,) (a-R. P,) -(a-R.P;)
T(r) = [r = {j{r a Zz(r)}dr}dr +H, Jr * dr+H, (91)

Now when (a-R,P,)=0 the solution of equations (86) and (89) is
T(r) = J[Z,(rdrdr + H, 1+ H (92)
T,(r) = J[Z,(r)drdr + H, 1+ Hg (93)
where H,,i=12,..8 are constant.
On eliminating » from (66) and (67), the equation (69) indicates that it is valid only for (f "—f y=0. When (f "—f ")=0,
the function a =0 and we get

_1
f (r)—Eclr2+c2 (94)
Equation (64) on substituting A =o
¢, rB,-B,=0 (95)
The solution of equation (95) is

B = % ¢, b, r? +b,v(w)+ 1 (r)dr +c, oo

In abovec, #0,c,,c, and b, are constants. The function 1 (r) is an unknown function. Utilizing equation (96) in equation
(67) we get

w= 2 Lo b, + L by 1 () ] ©7)
The solution of equations (61) and (62), for f (r)= %clrz +c, IS

2c,Re

aZ

Re L = (~b,— ) v— %clblr2+M0 (98)

where M, is a real constant

The energy equation (63) employing equations (96) and (97), becomes

artT,,—2c arT, +ar@+c’r*) T, —2c,ar’T,+r @-R,P)T, = E_P, [c, +bv(y) +% b, r? +{1(r)dr ] (99)
Equation (99) suggests to seek a solution of the form

T = AV() +R,(NV(Y) + Ry(NV(y) +Ry(r) (100)
Equation (99), employing equation (100), provides

ar’Ry+ r (a-R,P)R; = 6acAr’ (101)



438 International Journal of Basic and Applied Sciences

ar’R/+r (@a-R,P) R, = dac,r’R; + 4dac,r’R, — 6aA r(l+c’r*) +bE_P,

ar’R/+r @-RP)R]

When (a—R_P,)=0 the equations (101-103) give

R,(r) = 3aAcr® | an
2 (2a-R,P) R,P

R.P
ra +n,,(2a-R,P.)#0

BaAcr® GaAr %a’Acir? 4 2acr’n, o oan rR“aP +n—
4

55a-R,P) (@-R,P) (4a-R,P)(a-R,P) (2a-R,P) R,P,

Ri(r) =

e
Re P,

L anr a [Za (c,r’n,+n)+R, P, (2c1r2n1+n3)}
RE PI’(ZaiRe PI') ’

where (2a-R,P.)=0, (4a-R,P,)#0,(5a-R,P.)#0
Ry(r) = n,+ [M,(r)dr

(@R Pr) (@R Pr)

_[(@-R.P;) _
Ml(r):nsr{ a }+ r{ 2 }I{ECPr(c3+%c1b1r2+jl(r)dr)}r{ 2 }dr

@R P) [(@-R.P)]

+r7{ a }j{ZaclrzR1’+2aclr2R1—2ar(1+cfr“)R2}rl a gr

andn,,n,, n,, n,,n,,n,are non-zero constants.
When (a-R,P.)=0, equations (101-103) yield

R,(r)=3, A r>+n,r+n,

—BAC!
Rl(r)=ﬁr5+&fA1r“+%cln7r3+2c1n8r27 6ArInr +(6A1+n9)r7b1'%T°P'|nr +ny,

Ro(r)= [[M,(r)drdr +n,r+n,
where

ECPI'
e

by
2

M,(r)= 2c,rR/(r)+2c,R,(r) — %(1+cfr“)R2(r) + r>+[1(r)dr)

and n,,n, ny, n, Ny, N, are NON-zero constants.
Case I(b):
In this case v =0, the equations (57) and (58) can be rewritten as

A :r% [M'—2M ~(1-M Z)C’&J]

Equations (112) and (113) indicate that we can eliminate x from these equations if we set

2ac, r*R; + 2ac,r’R,— 2ar(l+c/r')R, +E_,P, [ca +%clb1r2 +1 (r)dr]

: bE, Inr
R

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)
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Equation (115) gives

o)
v=In| ———
.y +¢5)

wherec, =0and ¢, are constants.

On eliminating » from equations (112) and (113), employing (115), we get

B=Y(r) A
where

4(-1+M)

Y= ™' '—2M —-(1-M ?)’

M =1

Equation (56) employing equations (115) and (117), become

2
A MaY) A+ {MY@M)
r

Equation (119) suggests to seek solution of the form

A=C(r,v)+eD(r)

where the functions c(r,v) and D(r) are to be determined. Substituting equation (120) in equation (119) we get

2
rc,—-@mMm+y)c,+ (w

e [r D"+2(2M +Y ) D’ +4 [w] D+D’ +2(M'+Y ") D]

=R, (ezj [M'Jr (1+|:/|2)

¢’ r r

Which on equating the coefficients of e gives

2
rc —(@Ma4Y)C, + (MJ C,+C,—(M'+Y ") C, =0

P D"+r (4AM +2 +1) D' +[4MY —4(L-M*)+2r(M'+Y )| D = [ g
c

The equation (123) can be reduced to Cauchy equation if we set

UM +2 +1)= m,
and

AMY —4(1-M?)+2r(M'+Y ) =m,

The solution of the system of equations (119), (124) and (125) is

M=-1, m=-11, m,=16

]Avv+Ar —(M'+Y") A =R, [c

J C,tC.—M'+y")C,

’ 2
MT, d+M7)

439

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)
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Equation (123), utilizing equation (126), becomes

r’ D"-11r D'+16D = (RT} [;—ﬂ

The solution of equation (127) is

-R 1
D(r)=D r(6+zjs')+D r(sfzyﬁ)Jr e il
(r) 1 2 11(:: r2

where D, and D, are constants.
Equation (122), utilizing equation (126) becomes

r’c +6r Cc_+4cC_+r C =0

Equation (129) indicates to seek a solution of the form
C =C,(r)+S,(n)+C,(r)S,(v)

Substituting equation (130) in equation (129)

{r (ic) }+4s;+{4C, sy 461 C;5)+1 (1C}) 5,}=0

Differentiating equation (131) with respect to “r ” we get

’ '

[r(iciy | +4cysz+6(rcy) s+ [r(rer) | 5,20
Differentiating equation (132) with respect to “ 1 we obtain
4c; sy +65 Sy +[rd] 5,=0

where

'

J(r)=(rc;(r)

Equation (133) can be written as
’ Z " Z ' ' —_—

4CZ (7} +6J (?j+[l‘3] =0

where

Z(v)=5;(v)

Differentiating equation (134) with respect to “ v ” and arranging the terms we obtain

whered, is a non-zero arbitrary constant. Equation (138) provides

3n=-2d.cy0

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)
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z2"=d,2'+d,Z

whered, is a constant
Equation (138) on utilizing equation (134) and integrating once gives

rCin + 2 4, ¢, =4,
whered, is a constant. The solution of equation (140) is

C.(1)= 2 v, r

1

whered, is constant.

On substituting equation (136) in equation (139) and integrating once, we obtain

$;(v) —d; S;(v) —d, S,(v) = ds

whered, is a constant. Now inserting equation (141) and equation (142) in equation (134), we obtain

2
C, {s;—d Sé'*‘% $;}=0
AsCj(r)=0, equation (143) gives

d?

Sy~ dy 8y +2-5,=0

which can be rewritten as

’ 2
(57-4,81) + %% 5;=0

Employing equation (141) in equation (145), we find

Inserting equations (145) and (146) in equation (132), we get
r(rci'), =- 4Cz ds +d6
whose solution is

C.(r) = - 4d, jHjCZT(”dr}dr +d, (M4 +d Inr +d,
r

whered,, d,,d, , and d, are constants.
Now the equations (142), (143) and (146) must satisfy equation (131), and therefore we get

dq

5,= =% [{][8520)-d,5,0)]dv}dv —%VZ +d,v+d,,

The solution of equation (145) is

441

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)
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S,(v)=dy, Exp

(150)

13

which is the solution of equation (143). In above equationsd,, ..,d,,, d,, and d,, are constants of integration.
On substituting the valuesc,(r), C,(r), S,(v), S,(v) and D(r) in equation (120) we get

2
A= 3d3d5(lnr) gﬂ“?*‘r*""“ds anr) *+d;Inr +d, —d? J{J[9S;(v>—dlsz(v)]dv}dv—%Vz+d9v+dm

3d i} 3++/5 3-5 od
+{2—dS+d4r @83 Ld, Exp[( 6J_)d1V]+d13 Exp[( 6\/_)d1v]+ df
. 1

e {D r(e+z\l‘)+D (6 2¢/€)+[ -R, ](i]} (151)

1lc

The viscosity distribution from equation (57) or (58) is

2 v
=(77r = }[ Bl (1nry: - Xl 205+, O, nr +4, % f{j[es10) - 5. 0)Jdv]dv — vt + dyv +d,
1

+H{ 3+d r’z"’3}{d12Exp[(3+\/_)d V]+d,, Expl = “/_)d v+ gdn

+e (6+245) (6~ wﬁ)
{0,126 ,p [ﬂc j( j}] (152)
The solution of equations (53-54), utilizing equations (112-113), (116),(126) and (152) is
R, L =—[Cy(r) +5,(v) +C,(r) S,(v) +2D(r) ] — 45, Inr — 45, j%dr +8e’2vj[%ir +(d, + 6d,) v f%v% D, (153)

provided
d,=0, d,=d, (154)

Now for this case the equation for T is

2
reT,, +2r T, + ?TW )+ r[l—Le i e"/]Tr
c

4

+d,Inr+d, } e {—=2+*

(3++5)
6

10E.P. ¢ _, Inr)?
= 1085 [ g, 20

d
c, 8

+ dsV +d10}
(3-15)
6

+eiv{d4rizd1/3}{d12 Expl[ d1"]}

+e,3v£—Re J( 1 j +e ¥ {D r (6:25) +D,r® zf)} (155)
11c2

d,v]+d, Exp[

It is obvious from the equation (155) that it is extremely difficult to determine the exact solution of equation (155).
However, we obtained by setting

T =7 T,(r)+S,(v) +r°S,(v) (156)
in the temperature equation (155). Inserting equation (156) in equation (155) and arranging the terms we get

e [r71,/(r)~rT,(r)+2T,(n) ] +rb{b(b—1)84(v)+2b8:[(v)+284’(v)+brb{l—ﬁe’vj&,(v)} +25!(v) - CP e 2 rT,(r)

4 4

2
= 205P o g, 00 4 inr 4o, } +e %0+ dyrtd, )}
4

+e v {d, r**Hd, Exp[@dlvhdm Exp[@dlv] }

+efsv[*Re ]( 1)+e’3V{D r©29 D, 26} (157)
11c?
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Comparing terms of right-hand side and left-hand side of equation (157) we get

T(r)= MeEef (158)
80)= 2P (dyv +dy e (159)
and
@), ), _
S;'(v)72S£(V)+[2+£G’VJS4(V) =5EP § fde ? +dge ? }+e’3“( R;J (160)
c, Cc, lic,

provided

D,=D,=d;=d,=0,d,=3,b=-2, (161)

Solution of equation (159) and (160) is

S,(v) = SECC P jd,v+dg)e dv +sys, (162)

4

S,(v) = %e" Gamma[1-2i]Bessell[-2i ,2,/Ale™ ] + %ev Gamma[1+ 2i]Bessel[2i , 2\/Ale™ ]
+ 'Ee" Gamma[1-2i]Gamma[l+ 2i]

{BesseIJ[Zi 2 Ale ] Je* {A4+A3e”"’g)"’2 +A2e(7*"g"”2} Besseld[-2i, 2\/Ale "]dv

~Bessell[-2i, 2JAle "] [e™ {A4+ A% 4 A 26O} Besseli[2i, Z«IAle’V]dv} (163)
where
Al= Re Pr , A2:5Ecprd4d12 , A3= 5EcPrd4d13 , Ad=— Re2 (164)
C, c, c, 1lc,

The solution (163) of equation (160) is obtained using Mathematica.
We know that equation (118) does not hold form =1. To determine the solution we have to use equation (112) and
(113) which on substitutingm =1, give

B -0 (165)

A -2 (166)

rZVr

Equation (56), utilizing equation (165) and M =1 becomes

r’A,—2rA,+r A =R, [eiva [_—?) (167)

c, r
Following the previous case M =1, we seek a solution of the form
A=N(r,v)+e? D,(r) (168)

Inserting Equation (168) in equation (167) gives

£rN, —2 F N, +r N, e {r’D/45rD/ }=R, [ETJ (i‘j (169)

4
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Which on comparing left hand side and right hand side give

-4
r2 DH 5rD/_
[cf} [rzj

N,—2rN,+r N, =0
The solution of equation of (171) is

R.(1) 4d
Dl(r)=ﬁ(?J rM +d15

4

Left- hand side of equation (172) suggest to seek a solution of the form

N =C,(r)+S;()+C,(r)Ss(v)

which on substituting in equation (171) gives

{rc;+rcy}+s,{rc;/+rC,}-2rc;s; =0

Differentiating equation (175) with respect to v and rearranging the terms of r and v we get

rC,(r)+(1-d)C,(r)=0
" d ’
Se(V)f%Ss(V) =0
whered,, is a separation constant. Solution of equations (175) and (176) are

C (r) d17 dm +d18

16

-2
19 +d, e““ vi2

16

Sy(v)=— ;

To obtain the solution of equation (175) we insert equation (176) and (177) in equation (174) and we get
r’ci+rc;=2d,, d,,r'
Solution of equation (179) is

Cy(r) =2 57 G pu d,, Inv +d,
16

Substituting equation (177-178) and equation (180) in equation (168), we get

Zdésdw il Inr +5,(v) +dydet? + 20t e by "‘{d gt 2;’19}+e’2"{&(i]—4d“+dﬁ}

2 2 4
16 16 16 16 CA r r

A=d,, -

The viscosity is obtained from equation (167) by substituting equation (114) and equation (181) which is

20V
ur.v) = [‘;e ][dzz Hille g, Inr +5,() +dydye” + 2o o Sy {d g 2%}
c4

16 16 16 d 16

R (1) 4d
re {8 ]2 00, )]

¢, \r r

The solution of equations (61) and (62), utilizing equations (165) and equation (181), is

(170)

(171)

(172)

(173)

(174)

(175)

(176)

a77)

(178)

(179)

(180)

(181)

(182)
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R.L=R, [ﬁe’“]ﬂ [e30) v+ei) [5,0)dv +(% | Dl A +adyinr 2, *fle s, (183)

4 16

where p, is constant.

The equation (64) of temperature distribution, on substituting equations (165) and equation (181), becomes

r’t,, -2r T, + %Tw )+ r[l—ﬁe"}Tr
c

4

dig di
= 2EPRdny o 2EPy L 2ER g 0o 4B Ryt 2E, Py o[52  2E,Pdydyy o, 0[50
CA CA c4 CAdlﬁ C4 04d16
2E,P, 5 gR (1) 4d
I G EY (184)
c, c,i\r r

It is obvious from equation (184) the general solution is extremely difficult to obtain, however the terms in equation
(184) suggests to seek a solution of the form

T =e'T,(r)+S,(v) +r’S,(v) (185)
On substituting equation (185) in equation (184) we get

e [T () +3T(r)+2T,(r)] +r° {255"(1/) —2bS,(v) +b’S,(v) - Rz i

eivbss(")} +257(v) —%e*wz’(r)

4

G ),
:e,{ZECP,dMInr} ov| 2EcP. [d22_2d19d18]+2Ec P, v+ 2E: P,y (%)
C, C, le C, 4

d157 v
J2E Pl o, (30 4 2EP R*(ij p2EePra) My gy (186)
c,dy c, c, \r c, r

4

On comparing the right-hand side and left-hand side, we get

Ed.d,(r?
T.(r)=Zctr—20f " 187
)= Eiln 1) (187)
e ),

237”(1/) - ZE:; Prdzze*‘/ + 2Ec P, e 35(1/) _4Ec Prdlgdlﬂe*'/ + 2Ec Prd1sd20 e( 2 1] (188)
Cy C, C4d16 C,

and

SI(r) +25.(v) +[2+Qe*VJse(v) = By v ERP o (189)

c, 2R, C,

provided

d, =0, dy =0 dyg =2 d, =0, b=-2 (190)

Solution of equation (188) is

S-,(V) = {Ec Prdzz _ 2Ec Prd19d18 }ef\/ + Ec Pr J’J’e’vss(v)dv + Ec Prdlﬂdzo e72v + S3V+54 (191)
C, C4d16 (A 204

The solution of equation (189) is
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Sg(v) = C,A5e " BesselJ[-2i, 2, }A 5e "] Gamma[l- 2i]
+ C,A5e ™ BesselJ[ 2i, ZJA 5e™ ] Gamma[l+ 2i]

+ 'Ee ~ Gamma[l-2i]Gamma[l+ 2i]

{ BesselJ[2i, 2«/A5e"’]je (A7 +A6e?)Bessell[-2i, 2«/A5e dv
—BesselJ[-2i, 2,/A5e "] e (A7+ABe?)Bessel[2i, 2,/A5e " 1d v} (192)

wherecC, and C, are constant and

AS:RE Pr , A6:Ec d17d20 , A7:Ec PrzRe (193)
c, 2R, c,
Case II:
For this case g(r)=1 and basic flow equations are
_Jl+(M +Nv)? (194)
- rgv’

W{f'(r)g"(r)_Zf '(r)g'(r)M 1 ){g'(rhg"(r)_z{g'(r)}ﬂ(v(w)]

rg(r) g(r) 9%(r) Vi(y) rg(r) g g’ V'(y)
+[ 1 '(r)}ZM V() j L 2A MYV ) | {9 (¥ VW) v'(w) (195)
rrgir)  g’(n) | {e)¥ 9>V W)Y 9’ NV'W¥
-Rw =R, VL, — (rgv)A, + (M +NWV)VA +vB, (196)
_ A, (2-E) (M +Nv)B
0=-RL+~"—2+A (M+Ny) - —"x 197
Lt ) (M +Nv) ) (197)
, , [1-(M +Nv) ]
rgviA, —2M+Nv)VA — ———— " =“(V'A, +v?A)
rgv
+ gV A —VA M +NV) fv'{s,f(f'”;ﬁ} = Rw, (198)
, L [1+ M N7 [1+(M +Nv)*]
T _ T [7 n2 N v _
(V)T —2M +NW) T, v+ sl i, () +{<rgv), R P,]T,
+[[2NM +N v)]_(M N ) [1+M N Jrgv) +[1+(|v| +Nv)? | (V—j y
(r9) (rgv')’ (rgv) v
_ (rgv)E.P (2 2
__7"4# (B?+4A?) (199)
where
_ s =209), (M ANY) L (@M N
A(r,p) = (o) ) +(M'+N") —T] (200)
4
BIY) = gy V() (1), + (M +NY) (v ] (201)
M (r)=rf'(r) and N(r)=rg’(r) (202)

The above system of equations indicates that its solutions strongly depend on the function v(w) and its derivatives.
Since v'(w) =0, following the Case I, we consider the following cases

Case ll(a) V'(y)=0 Or v'(y)=a
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Case I1(b) V'(p) =0

Case 11(a):
For this case the equations(197-204) becomes

J1+(M +Nv)?

arg

w {f’(r) Lfrn 2 '(rz)g'(r)} (;} +{ g'(n) +g"<r>72{g;(r)}1 [MJ
rg() 9 o' Jla) [rem o) ¢’ a

-Rw =aR,L,— (arg)A, + a(M +Nv)A +aB,

A,(2-E)
(r9)

(M +Nv)B,

0=—R L +
e (r9)

+A (M +Nv) —

a[1-(M +N v)2]A

argA,,— 2a(M +Nv)A,, — g

+ agA, —a(M’+NV)A, —a{Br—M} = Rw,
g ,

a[l+(M +N v)2] a[1+(M +Nv)*]
T T 42T RV L B b b £ T
(arg) rr 2a(M +NV) vr rg TVV [(arg)r 2(M +N V) Re Pr r

_(arg)E P,

2N (M +Nv) 2 2
+a|:[ V] 4# (B +4A)

—(M"+N" T, =
=) M+ v)}],

_u o [200M ) (200N
A(r“”)'(arg)[{ (r9) +M}_V{ ) _N}]

—dau

BUW) = gy

(rg),

447

(203)

(204)

(205)

(206)

(207)

(208)

(209)

(210)

It is obvious from equation (207), it is extremely difficult to obtain its exact solutions. However, we see that by setting

A =0 OF B =0 We can reduce the equation (207) to simple whose solutions are determinable.
For

A=0

On substituting equations (202) and (209) in equation (211) and comparing the coefficient of v, we get

2(0). 9" _ (1 gy =0
9

_z(rg)rf '+(I’f /)/:O
9

The solution of equation (212) is

-1
ey
Utilizing equation (215) in equation (213) we get
r(C,r2+C)f "+(C,r2-C,)f '=0

The equation (215) possesses trivial and non-trivial solutions. For trivial solution

(211)

(212)

(213)

(214)

(215)
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f (r)=0 (216)

The equation (209), becomes

B, —(%jv B, _(%] g, = ReLovy. (217)

This suggests to seek a solution of the form
B =1Q(r) (218)

On substituting equation (218) in equation (217) we get

Q- 2[ ]Q—%g’ (219)

a

whose solution is
Q(r)= —52g+C,g° (220)

On substituting equation (220) in equation (218) we get

ZRC

B=v'{<5%g+C,0°} (221)

Equation (204) gives the value of u
—a(rg) 2R, C
AR S R 0 (222)

Solution of equations (197) and (198) utilizing equation (212) and (213) is

N 2N
ar,L={-R (NI 20000} )+, (223)

The energy equation for this is

@m)T,, —2agy) T, + 2O [(arg)r el oo ]T,
rg 2(rg'v)

ol PUI) ey, 1.2, R )0 1000 (224)
We seek a solution of equation (224) of the form

T(r,v) =v2R(r)+S(r) (225)

Inserting equation (225) in (224) we find
ar’g’R" +rg{ag-R, P, —4arg'}R'+2a{3(rg")’ -rg(rg’)}R = E,P, (rg’ +g){2Relog 4,07} (226)

ar’g?s"+mg{ag-R,P,}S'= —2aR(r) (227)

On substituting the value of g(r) from equation (214) in equation (226) we get
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ar’(Cor® +C.)*R" +r(Cor* +C,){a(9C,r* +C,) +R, P, (Cor” +C,)* R’ +8aC,r*(2C,r* +C,)R

2
=—EPC,r2+C){ ZRanC° re+ ZReaS°C1 -C,} (228)
wherec,, C,and C, are arbitrary constants. Equation (228) suggests that a solution can be determined by setting
c,=0 (229)

Equation (228) on substituting ¢, =0, becomes

2
ar’R"+r{9a+R,P,C,r’|R'~16aR = E, P, { ZRanCo _Cczrz } (230)
0

The equation suggest to seek a solution of the form
R(r)=B,+B,r (231)

On substituting equation (231) in (230) we get

B]. — Ec PrzRe [1_'_ PrCZJ (232)
8a a 28
and
_—E,RC, (233)
2" 28aC,

Inserting equation (232) and (233) in equation (231) we get

R(r) = EcPrzRe [1_'_ Prczj _EcPrCZ r72 (234)
8a a 28 28aC,

Employing equation (234) in equation (227) we get

r

—CoReP: 2 “CoRePr 2
a CoRePr 2 2a
S(r)=-2C¢C; j{e ’ rie 2= R(r)dr}r + C, Iefdr +C, (235)

r

On substituting equation (234) and (235) in equation (225) we get the temperature distribution. The above solutions are
when the functiona =o.
Now when the function B is zero equation (208) gives

g- (236)

wherec is a non-zero constant.
Inserting equation (236) in equation (205) we get

_ _ 2
achrrf 2a (M _gy)Arvf M
Cc

A, + agA, +aAv(—(M ’—g’v)+W)

’

- [&][M B2 R (237)

ac r ar

The right hand side suggests seeking a solution of the form

A(r,w) =R(r)+ P(r) v (238)
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Equation (237) employing equation (238) become

2gM
acR"”—2amMP’ + agR’+aP(—M ’——i

Since v and r independent variables, equation (239) yields

r’P"+3rP'+pP :—ZZRE
awcr

and

'

o= 2
r

a’c? c c r
The solution of equations (240) and (241) are

s,Inr R (Inr)?
r a’cr

P(r) ="+
r
and
_ 1.1
R(r)= T j{?jzl(r)dr}dr +C,Inr +C,

where

’

2,0= (L 2] + 20 e 2 e

On substituting equation (238) in equation (207) we get the value of » which is

= ac (RM)+P()v)
(M'~g'v)

where the function R(r) and P(r) are given by equations (243) and (232) respectively.

The solution of equation (203) and (204) using equation (236), is

aR, L= [‘R; +acP'(r)+agP(r)][v—z] +{[‘Re j[m (ry+ 2M ) (r)}
ar 2 r

ac

+acR'(r)—aM (r)P(r)}v+%j(1—M (r)?)P(r)dr + [M (r)R'(r)dr +p,

Which gives the generalized energy function L for the case whens =o.
The equation (206) for temperature distribution utilizing equation (236) becomes

aCTrr _Za(M —gV) Tvr + a|:1+(MC_gV) :'TVV +[?_Re PTJTr +(7 2(M :—N V) 7(M ,79"/)] aTv
=—E,P[RM'+(PM'—gR)v-Pg'v*]

The right-hand side of equation (247) suggests to seek solution of the form

T(ry) =Ry(N)+R, (r)v +Ry(r)v?

Inserting equation (248) in equation (247) we get

" . 29% )=
+ acP"+3agP'taP|g’ = L
J i 9 [g e j} (&][M/+M} Tar

(239)

(240)

(241)

(242)

(243)

(244)

(245)

(246)

(247)

(248)
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2aR,g°
v:[acRy + 4agR; + Cag

+[%_ Re P’]Rzyv +a{_2R3(M ,+ﬁJ+ Rz(g'*'zfg}}v]
r r

20R,(1+M ?
+ acR; ~2aMR) + aRa(: )+(%_ReprjR;+(,a(Mf+¥)R2]

2R, (g'+22) +[§—Re PrjRa’] +v [acRy) —4aMR]v + 2agvR; -
r

=—E.P,[RM'+(PM'-gR)v-Pg'v’]
Equation (249) on comparing the coefficients of v*, v* and v* we get

r2Ry +[5r—ﬂrz]R3’ +4R,= Z,(r)
ac

2
r2Ry +(3r—%}RZ’ R, = Z,(1)

and
1 RP
R+ (L _RP\pi= 5
1 {r ac ) 1 .(r)
where
’ 2
Zz(r):ZMRZ+5(M'+2ﬂij—(2a+l\" )]Ra_EcPrMR R
C C r C ac

Z,(r) =4dar’M R, +2ar2R3[M ”’MJ—EC F’r(rzF’ M 4c R)
r

zA(r):%P(r)

The solution of equation (252) is

R, P, (ReP:
r r
ac Re Py ac

¢ jre’[?]rzz(r)dr dr+c, [{¢

Ry(r) =] dr +C,

r

The solutions of equations (250) and (251) using Mathematica is

R =, 11+ C.MelerGHD 13} 6L~ D 0~ ALY
+% { AL(-1+A1r) Je™™ r MeijerGI{{ } {13} {{-1-1.{3}.-ALr] Z,(r)dr
+ r MeijerGH{{ } {1} {{-L 3.0} -Alr] [AL1-ALr)e " Z (r)dr }
Ra(r):C1[1—2+ ! 2]
2 Alr (Alr)
+ C, MeijerGI{{}, {1}}.{{-2-2}.{3},— Alr1]
+ri2 { A 2-4A1r+ATr?) [e7 r® MeijerGH{{ }{1}}.{{-2,-2},{3},-AL1] Z,(r)dr

+ r*MeijerGI{{ } {13} {{~2- 2}.3},- Alr] jAlz(—2+ 4A1r AL rz) re ™z, (rydr }

where

48R Mgv

451

(249)

(250)

(251)

(252)

(253)

(254)

(255)

(256)

(257)

(258)
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R.P

—_e r 2
Al - (259)
Using R,(r), R,(r) and R,(r) in equation (248) we get temperature distribution.
Case lI(b):
When g(r)=1 and v"(») =0 the system of equations (195-200) is extremely difficult to solve in general. However the
system simplifies into a very simple system if we assume

viy)=e” (260)

On utilizing equation (260) in equations (198) and (199) we get

A :rszZVZ[VZ[rg N'+NZ-2N (N +g)] +[rgM'-2Mg] -1-M?) ] (261)
_ Au

B= g (M —gv)] (262)

where

M (r)=rf'(r) and N(r)=rg'(r) (263)

On eliminating » from equations (262) and (263) we get

" R [Rﬁ Mng]mo

B g Mo #oy
where

R,(r) =rgN'+N2—-2N (N +g) (265)
R,(r) = rgM’'—2Mg (266)
R,(r)=—-(1-M?) (267)
On setting

R, =0 (268)
and

(R1+ Mngjzo (269)

We can further simplify equation (264) leading to achieve exact solution. Equation R, =0, provides
M =+1. (270)

When M =1, we found that the equation (196) admits exact solution. For M =-1, the temperature distribution equation
is not exactly solvable, therefore this case is discarded.

rf'(r)=1 (271)
whose solution is

f(r)=Inr+m, (272)



International Journal of Basic and Applied Sciences 453

where m, is constant.

Now equation (269) utilizing equation (266) and (267) becomes

rK'—rK —2=0 (273)

where

K = 9;] 274
; e

The equation (273) admits two solutions. One is particular and another is general. The particular and general solutions
are

. :% (275)
and
g= re2 ™™ (276)

where m,, m, are constants
Equation (264) employing equation (260) and (269) becomes

B= 2 (277)

ce”

Inserting equations (274), (275) and (277) in equation (199) we get

2 2 3 2 4r
cVA,, + (72V+2CV +£JA”,+(—2—;+£—ZL+%]AW + [C—V—Z—rjA, +[—Q+CLZ+#]AV -——A=0 (278)
roc ¢ ¢ r r r cv roor? ch ctv

The variable coefficients of equation (278) suggest to seek solution of the form
A(r,y)=Dr"y" (279)

where D is constant.
Utilizing equation (279) in (278) we find

Dr"y" [Lz{cn (n-1)+2cnm +cm (M —1)+nc+cm} + E{ZnTerw_zcﬁn}
r v

+ Lianm-am(n-9-am) + %{_Z‘“(CL;%‘%T_%}] =0 (280)
Equation (280) is identically satisfied provided
nn-D+2nm+m(m-1)+n+m =0 (281)
nm+m(m-1)—n=0 (282)
nm+m@m-1)+m=0 (283)
m(m-1)-2m+2 =0 (284)

The solution of equations (281-284) is



454 International Journal of Basic and Applied Sciences

m=1 2
and
n=-m

For (m,n)=(,-1) the equation (262) and (279) gives

(3 (2 e
and
A=D (;) (286)

The solution of equation (194) and (195) when (m,n)=(,-1) is

REL:( fezj—D(KJ+ P, (287)

c'v r

where p, is constant.
The energy equation is

2.3

c 2.2 2.2 2
Cvy T, _2(1_%) CRT, + 1 {2_2cv+c v }TW + [c Y ouR, PrJ T+ [_ZCV Y jTV
r r

r2 r r
- ZDECR{l_(chcv) _(cv” (288)
C r r r
In the light of the coefficient of equation (288) we seek solution of the form
T =alnr+blnv+T, +T1(%j+Tz(%] (289)
Inserting equation (289) in equation (288) we get

(%} [ (6T,) + 207 (~4T,) +¢7(2T,) +¢7 (2T ,) +¢*(2T )}

+ [KT CZ(ZT1) + 202(_T1) _ZC(_4T2) -2 (2T2)
r +CZ(_T1)_CRePr (—ZTZ)-{—CZ(Tl)—ZC(ZTZ)

+ [ij c?(-a)—2c(-T,) +c*(-b) +2(2T,) +¢?(a) —cR,P, (-T,)
r +c*(b) - 2c(T,)

r r r

+[%) [-26(-b) ~CR.P, (@) - 2c(0)} + {2(-b)} = ZEC% {1_(WJ+[°V}2_(CV}3} (290)

Equation (290) on comparing the similar coefficients yields

A ED b EPD 7,2 2EPDRP +2) T, ~CE.D (291)
R c (R.P) R

r

On inserting equation (291) in equation (289) we get

2
r =2D _EPD Iy +T, + 2ECPrD(REE’,+2) (K) _CE,D (K] (292)
cR c (R.P,) r R r

r e
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For (m,n)=(2,-2) the function A, » and the generalized pressure distribution L are

acm=o (¥ (293)
=3 ) 9
R, L :[c?§2] 7(232}{25:} [i—?jlnr + 1y (295)

The energy equation is

22 2,2 2 2 3
Ccvy’T,, —2(1—(:?‘/} cV T, + v {272(;7V+Cr12/ }Tvv + [C rV VR, Prj T + [7201/ Lo ]TV
2 3 4
= [(VHVJ WH _CSH } (296)
Cc r r r r

which on substituting

2 3
T =alnr +T, +T1(%]+TZ($) +T3GJ (297)
yields
a=—2'fcD : T,=EPfy, 4 8 T, =500, 4 and T,= 25D (298)
R, cR, R.P. (R.P) R, R.P, 3R,

Substituting equation (298) in equation (297) we get

T =(—ZECDJ Inr +TO+(_ECDJ[1+ 4 __ 8 zj (K) +[ECD][1+ 4 j(ij +[_2ECD] [1) (299)
R, cR, R.P. (RP))\r R, RP J\r 3R, r

4. Results and discussion

For the flows under consideration the streamlines are given by

o-f ()r) =Const. for case I, g(r)=1 the streamlines are

o—f (r)=Const. When f (r) is arbitrary we can construct an infinite set of streamlines and also an infinite set of velocity
components. This indicates an infinite set of solutions to the flow equations. When f (r) is not arbitrary there are two
values of f (r), and therefore, two solutions to flow equations. The streamlines for case | are plotted in Fig. (1-16). The
Fig. (1-16) shows the effect of different chosen forms of f (r).

-1

2
of " +Cy

For case Il whenf (r)=0, g(r)= the streamlines are presented through Fig.(17-25) and the influence of various

parameters are also indicated. When f (r) is non-zero and g(r) :% , We can construct infinite set of velocity components

and streamlines since f (r) is arbitrary. This indicates an infinite set of solutions to flow equations. The Fig. (26-50)
clearly indicate the effect on streamlines for different forms of f (r).

When v(y)=e* there are two values of g(r). When g(r):c? the function f (r)=Inr+m,. The streamlines for g(r):%

and f (r)=Inr +m, are presented through Fig.(51-56).

5. Conclusion

The aim of this paper is to indicate a class of new exact solutions of the equations governing the steady plane flows of
incompressible fluid of variable viscosity in the absence of external force. To achieve our aim, we first transformed the
flow equation into Martin system (4,»), and then setting ¢ defined in equation (34). The exact solutions are determined
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whenf (r)is arbitrary and f (r) is not arbitrary. When f (r) is arbitrary an infinite set of velocity component implying an
infinite solution to flow equations. When f (r)is not arbitrary, there are solutions of the flow equation. We see that in
case Il f (r)=0, and there is solution and when f (r)=0, we find that f (r)is arbitrary, and therefore, we can construct an
infinite set of solutions. The influences of various chosen forms of f (r) on the streamlines are also presented.
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