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Abstract 
 

In recent years, it has been argued and experimentally shown that ion channel noise in neurons can have profound 

effects on the neuron’s dynamical behavior. Most profoundly, ion channel noise was seen to be able to cause 

spontaneous firing and stochastic resonance. It has been recently found that a non-trivially persistent cross correlation 

takes place between the transmembrane voltage fluctuations and the component of open channel fluctuations attributed 

to gate multiplicity. This non-trivial phenomenon was found to play a major augmentative role for the elevation of 

excitability and spontaneous firing in the small size cell. In addition, the same phenomenon was found to significantly 

enhance the spike coherence. In this paper, statistics of the coefficient of variation, to be obtained from the colored 

stochastic Hodgkin-Huxley equations using voltage clamps techniqueswill be studied. The simulation result shows the 

coefficient of variation; enhance the agreement with the microscopeinthe case of the noisy currents. 
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1. Introduction 

Neurons show that electrical activity is under the effect of the noise of external and internal types [4]. Internal and 

external noise types produce synaptic transmission and network influences, this neuron appointee generates stochastic 

etiquette at the level of neuronal dynamics. This is the main source of internal noise because there is an limitable 

number of a voltage-gated ion channel in the neural membrane patch. Channels are two open or close; the number of 

open channels fluctuates in apparently random style [18], which indicates fluctuation in conducting membrane which in 

turn refers to fluctuation in transmembrane voltage. The membrane zone is very large when the number of ion channels 

is big, dynamic voltage is presented by the famed Hodgkin-Huxley [11], equations. When the membrane patches are 

small, anyway, the effect of conductance fluctuation on cell voltage activity is truly deep and not trivial. in neural 

membrane patches, spontaneous activity phenomenon occurs  (in the case of repeating spikes or bursts) and the reason 

about that is the internal noise from ion channels; these present during numerical simulations of channel dynamics and 

theoretical investigations besides [3], [14], [2], [12], [10], [16], [6-9], [1] ,those experiments  have shown the happening 

of stochastic resonance and the coherence of the procreated spike trains [13], [19], [15]. Even when the numbers of ion 

channels are large, channel fluctuations might become critical near to the action potential threshold [21], [17], small 

number of ion channels that are open at the action potential threshold assigned the accuracy of timing of action 

potential. ). The renormalization of the fluctuations in a number of open gates not only affects the neuron behavior, but 

also the attendance of a multiple number of gates in every ion channel. Moreover, this effect may indicate to an 

important act in cell activity in the state of having coherence membrane in size [9], [1]. 

http://creativecommons.org/licenses/by/3.0/
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2. Background 

2.1. The hodgkin-huxley model 
 

By using space and voltage clamps techniques  depending on experimental investigation on giant squid axon, it  was 

shown by Hodgkin-Huxley [11], that two prime ionic components were from the current fluxing through the squid axon 

membrane, which are Ina and Ik (sodium and potassium channels on a par with components) these currents are 

powerfully affected via membrane potential Vm. As a result of their observation, a mathematical model has been 

developed to make a significant model based on which many realistic neural models have been developed.  

The differential equation corresponding to the electrical circuit is as follows: 

 

 Cm
dVm

dt
+ Iion =                                                                                                                                                               (1) 

 

Where Cm is membrane capacitance, Vm is membrane capacitance, I ext. is an external current and I ion is the ionic 

current fluxing through the membrane and can be obtained from these equations: 

 

Iion = ∑ Iii                                                                                                                                                                           (2) 

 

Ii = gi(Vm − Ei)                                                                                                                                                                 (3) 

 

Where Ii here represents every ionic component having a joined conductance gi and obvers ion potential Ei. 

The three Ii terms in the squid giant axon model are: sodium current INa, potassium current IK and a small leakage 

current IL and the equation that represents those three currents is: 

 Iion = INa + IK + IL = gNa(Vm − Ena) + gK(Vm − EK) + gL(Vm − EL)                                                                         (4) 

 

The combined influence of many numbers of microscopic ion channels in the membrane originates the microscopic 

gi(gL, gK, gNa)Conductance. Ion channel may contain a small number of physical gates that organize ion influx within 

the channel. Ions can go across channel when all of the gates are in the permissive state while the channel is open. 

Intoa permissive state, all of the gates for a specific channel ion can go within a channel while the channel is open. The 

potassium and sodium conductance’s empirically described by the formal assumption, which is attained by voltage 

clamp experiments are: 

 

gk = g̅kn4 ,                                                                                                                                                                         (5) 

 

gna = g̅nam3h ,                                                                                                                                                                  (6) 

 

Where 

 
n
m
h

}Is ion channel gate variables dynamics 

 

g̅iIs a constant with the dimensions of conductance per cm2 (mention that n between 0 and 1). In order to normalize the 

result, a maximum value of conductance(g̅i)  is required. 

n , m Andh dynamically are as follows: 

 

 ṅ =
dn

dt
= αn(1 − n) − βnn                                                                                                                                               (7) 

 

ṁ =
dn

dt
= αm(1 − m) − βmm                                                                                                                                           (8) 

 

ḣ =
dh

dt
= αh(1 − h) − βhh                                                                                                                                                (9) 

 

nIs a dimensionless variable (varies between 0 and 1), add-on, represents the probability of a single gate being in the 

permissive state. 

 

2.2. Dynamics of the membrane 
 

This differential equation determines the evaluation of the transmembrane voltage V in time 
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C 
dV

dt
= −gK(Vm − EK) − gNa(Vm − Ena) − gL(Vm − EL) + I                                                                                       (10) 

 

Where ψK and ψNa are dynamic channel variables.ψK corresponds to the proportion of open potassium channels to the 

total number of potassium channels in the membrane; similarly, ψNa denotes the proportion of open sodium channels. 

There exist four n-gates in a potassium channel, and three m-gates and one h-gate in a sodium channel. A channel is 

open when all its gates are open; otherwise, it is closed. In the limit of infinite membrane size, the channel variables 

attain their deterministic HH values, that is, ψK = n4 and ψNa = m3h, where n, m, and h are the gating variables. 

The colored stochastic Hodgkin Huxley equations (Güler, 2013) are given by: 

 

CV̇= −  gkψK(V − EK ) − gNaψNa(V−ENa) − gL(V−EL) + I                                                                                             (11) 

 

ψK = n4 + √
n4(1−n4)

NK
qK                                                                                                                                                  (12) 

 

ψNa = m3h + √
m3(1−n4)

NNa
hqNa                                                                                                                                        (13) 

 

The equations that describe the dynamics of qK are specified accordingly as follows: 

 

τqK̇ = pK                                                                                                                                                                           (14) 

 

τpK̇ = −γKpK−wK
2[αn(1 − n) + βnn]gK + ξK                                                                                                                  (15) 

 

The equations that describe the dynamics of qNaare specified accordingly as follows: 

 

τq̇Na =  pNa                                                                                                                                                                     (16) 

 

τṗNa = − γNapNa− wNa
2 [αm(1 − m) + βmm]gNa + ξNa                                                                                                 (17) 

 

The gate noise model: 

 

ṅ =
dn

dt
= αn(1 − n) − βnn + ηn                                                                                                                                     (18) 

 

ṁ =
dn

dt
= αm(1 − m) − βmm+ηm                                                                                                                                 (19) 

 

ḣ =
dh

dt
= αh(1 − h) − βhh+ηh                                                                                                                                       (20) 

 

The Gaussian white noise terms with zero means: 

 

⟨ξK(t)ξK(t,)⟩ = γKTK[αn(1 − n) + βnn]δ(t − t ,)                                                                                                           (21) 

 

⟨ξNa(t)ξNa(t,)⟩ = γNaTNa[αm(1 − m) + βmm]δ(t − t ,)                                                                                                (22) 

 

⟨ηn(t)ηn(t,)⟩ =
αn(1−n)+βnn

4NK
δ(t − t ,)                                                                                                                              (23) 

 

⟨ηm(t)ηm(t,)⟩ =
αm(1−m)+βmm

3NNa
δ(t − t ,)                                                                                                                         (24) 

 

⟨ηh(t)ηh(t ,)⟩ =
αh(1−h)+βhh

NNa
δ(t − t ,)                                                                                                                              (25) 

 

2.3. Spike coherence 
 

A sensitively regular measure of spike train is called the coefficient of variation (CV),   or the comparative difference in 

the interspike interval distribution. This regularity measure is given by, 

 

CV ≔
√〈T2〉−〈T〉2

〈T〉
.                                                                                                                                                               (26) 
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〈T〉: The mean interspike interval is 〈T〉 =  limN→∞
1

N
∑ Tii  

〈T2〉: The mean squared interval〈T2〉 ≔  limN→∞ ∑(ti+1 − ti)
2/N. 

CV = 1 if the sequence of spikes, which corresponds to the Poisoning spike train, is discrete. 

CV<1 if the spike train is more ordered. 

CV=0 for a purely deterministic response. 

The increasing system size A is against to the coefficient of variation. While the firing rate reduces monotonically with 

regard to the patch area, it has been proved that the coefficient of variation (CV) shows a discriminate minimum for an 

optimal patch size for which the spike train is mostly regular at the same value. The phenomenon is called an intrinsic 

coherence resonance [19]. At optimal dosage of internal noise,  whose optimal size of the cell membrane patch 

approximately A = 1μm2 , the CV shows a minimum, where the spiking becomes prevalently more ordered. The 

external disturbances withstand by internal rhythm which is possessed through the spiking activity [20]. 

3.  Result and discussion 

The series of experiments that actually defined efficiency of the colored noise by comparing colored noise models with 

the microscopic simulations.The simulation model eqns. (21, 22) numerically was developed by using C++ programing 

language and MATLAB. The input current was time independent which was modified based on the program to handle 

time dependent current. 

 
Table 1: Show The Experiments’dataare Displayed by a Different Membrane Patch, with Different Noise Varianceand  IBase . 

 Membrane Value 

1 Potassium channels 300,900,1800,2700,3210 

2 Sodium channels 1000,3000,6000,9000,10700 

3  Ibase  0,2,4,6,8 

4 Input Current 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

 

The ratio between potassium and sodium channels is: K+ channel: Na- channel=1: 3.33. 

The coefficient of variation to be extracted from the colored noise model will be explained through a sequence of 

experiments by comparing the colored noise model with the microscopic simulations. So, our concern will be the 

complete stochastic actual dynamics. The microscopic simulation scheme represents the simple stochastic method[22]. 

The Markovian process is applied by this method to simulate each individual gate and go on for the rest of the gates. 

The noise variance in my simulation was changed to obtain the coefficient of variation for this investigation.The aim of 

this is to see the effect of the cross-correlation persistency placed in the trans-membrane voltage fluctuation by adding 

the colored noise terms [9], [1], into the conductance of the stochastic Hodgkin Huxley equations. Series of experiments 

were used to assess the colored noise model effectiveness, in a comparative manner with the Microscopic simulation as 

mentioned before [22], by firstly running the experiments without include the colored noise model into the stochastic of 

the Hodgkin Huxley equations, and secondly running again the experiments with the same parameters but at this time, 

the colored noise model is included in the stochastic of the HH equations. By changing the variable (noise variance) for 

investigation purpose and measure the coefficient of variation, comparison with the microscopic simulation. A compute 

of the spike coherence is the coefficient of variation given by the formula (26). 

 

 
Fig. 1: The Membrane Size for Potassium Is 300, for Sodium Is 1000 and I Base = 0, in 5 Seconds Time Window. 
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Fig. 2: The Coefficient of Variation Against the Noise Variance, the Membrane Size for Potassium Is 900, for Sodium Is 3000 and I Base = 2, in 5 

Seconds Time Window. 

 
Fig. 3: The Membrane Patch Comprised of 1,800 Potassium Channels and 6,000 Sodium Channels. The Completely Stochastic Actual Dynamics 

were used. The Averages were Computed over a 5 Second Time Window. 

 

 
Fig. 4: The Membrane Size for Potassium Is 2700, for Sodium Is 9000 and IBase= 6, In 5 Seconds Time Window. 
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Fig. 5: Showed by a Membrane Patch of 3210 Potassium Channels and 10700 Sodium Channels. I Base =4, in 5 Seconds Time Window. 

 

In above results it is clear that at the very beginning there is difference in spikes’ frequencies, but when there is an 

addition in noise variance mostly around (4, 6 and 8), the coefficient of variation of the microscopic simulation with the 

stochastic HH equation and the colored term is getting smaller. 

4.  Conclusion 

In this paper, statistics of the coefficient of variation were obtained from the colored stochastic Hodgkin-Huxley 

equations; in recent work [9], [1], the experiments improve that ion channel noise in neurons can have profound impacts 

on the neuron's dynamical behavior. In particular, the ion channel noise ability was found to make that a non-trivial 

persistent (NCCP) is placed between the trans-membrane voltage fluctuations and component of open channel 

fluctuations attributed to the gate multiplicity. The non-trivially phenomenon plays a prime augmentative role in the 

elevation of excitability and spontaneous firing in the small size cell. Furthermore, the phenomenon is very effective in 

enhancing the spike coherence.  

Through the experiment results, the colored noise model processes the phenomenon of the NCCP accurately, and NCCP 

was discovered to improve the spike coherence. The experiments show that the coherence of spike on the stochastic HH 

equation without colored noise is far clearer for coherence of the microscopic simulation scheme, a large value of the 

coefficient of variation significantly shown by the HH equation without colored noise spikes. But when the colored 

noise model is embedded to the Hodgkin-Huxley equation, it is seen that the spike coherence in this model is about the 

same level as coherence of microscopic simulation, that indicates more coherent as the smallest value of coefficient of 

variation. Moreover, these experiments denoted that the increasing membrane size in both stochastic HH equations 

without colored and colored noise model may lead to the absence of the difference between them. Most of the recent 

studies on this model were under varying input currents, the input current is periodic with constant noise. Perhaps, 

investigating the coefficient of variation using different kinds of noise over the input current to shed more light on the 

colored stochastic model behavior in non-periodic. 
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