

International Journal of Basic and Applied Sciences, 4 (2) (2015) 156-161 www.sciencepubco.com/index.php/IJBAS ©Science Publishing Corporation doi: 10.14419/ijbas.v4i2.4182 Research Paper

Influence of minimal subgroups on the product of smooth groups

A. M. Elkholy *, M. H. Abd El-Latif

Mathematics Department, Faculty of Science, Beni Suef University, Beni-Suef 62511, Egypt *Corresponding author E-mail: aelkholy9@yahoo.com

Copyright ©2015 A. M. Elkholy and M. H. Abd El-Latif. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A maximal chain in a finite lattice L is called smooth if any two intervals of the same length are isomorphic. We say that a finite group G is totally smooth if all maximal chains in its subgroup lattice L(G) are smooth. In this article, we study the product of finite groups which have a permutable subgroup of prime order under the assumption that the maximal subgroups are totally smooth.

 ${\it Keywords:}\ Permutable\ subgroups;\ Smooth\ groups;\ Subgroup\ lattices.$

1. Introduction

Only finite groups will be considered in this paper. Notation is standard and is taken mainly from Doerk and Hawkes [2]. In addition, for a fixed group G, the maximal length of the subgroup lattice L(G) will be denoted by n, and $\pi(G)$ will denote the set of all distinct primes dividing |G|.

A subgroup H of a group G is permutable in G if it permutes with every subgroup of G. A subgroup H of a group G is said to be permutable in a subgroup K of G if it permutes with every subgroup of K. This concept was introduced by Asaad and Shaalan [3]. A group G is called smooth if G has a maximal chain of subgroups in which any two intervals of the same length are isomorphic. Finite smooth groups have been studied by Schmidt [4, 5]. A group G is said to be totally smooth if every maximal chain of subgroups is smooth. Finite totally smooth groups have been studied in [1].

A lattice L is said to be complemented if every element of L has a complement in L. Recall that a P-group is either an elementary abelian group of order p^n for a prime p, or a semidirect product of an elementary abelian normal subgroup P of order p^{n-1} for a prime p and a cyclic q-group inducing a power automorphism group on P, where p and q are different primes (see [6; p. 49]).

The purpose of this article is studying the product of finite totally smooth groups which have a permutable subgroup of prime order under the assumption that the maximal subgroups are totally smooth. Clearly, the structure of groups with $n \leq 2$ is well known. So we assume that $n \geq 3$.

2. Main results

The following Lemma will be used in the sequel:

Lemma 2.1 A group G is totally smooth if and only if one of the following holds:

(i) G is cyclic of prime power order.

(ii) G is a P-group.

(iii) G is cyclic of square free order (See [1]; Theorem 1).

In this article, we will deal only with groups whose order is divided at least by two primes. So we assume firstly that $|\pi(G)| = 2$.

Theorem 2.2 Let G = HK be the product of its proper subgroups H and K with $n \ge 3$ and $|\pi(G)| = 2$. Assume that all maximal subgroups of G are totally smooth. Let N be a minimal normal subgroup of H. If N is permutable in K, then one of the following holds:

(i) G is a nonabelian P-group.

(ii) n = 3 and $|G| = p^2 q$, where p and q are distinct primes in $\pi(G)$.

(iii) G = PQ, where P is a cyclic Sylow p-subgroup of order p^2 and Q is an elementary abelian normal subgroup of G of order $q^e(e > 1)$.

Proof. Since all maximal subgroups of G are totally smooth, it follows by Lemma 2.1, that H and K are cyclic of prime power orders, P-groups, or cyclic of square free order. Let P be a Sylow p-subgroup of G and Q be a Sylow q-subgroup of G. We have the following cases:

case 1. *H* is cyclic. It follows by Lemma 2.1 that either $|H| = p^{\alpha}$ with $\alpha \ge 1$ or |H| = pq with $p \ne q$. Assume that $|H| = p^{\alpha}$ with $\alpha \ge 1$. Hence |N| = p.

Suppose, further, that K is cyclic of prime power order. Since $|\pi(G)| = 2$, $|K| = q\beta$ with $q \neq p$. It follows that H is complemented in G. Let K_1 be a proper subgroup of K. If |H| = p, then H = N is permutable in K and HK_1 is a proper subgroup of G. By hypothesis, HK_1 is totally smooth and hence Lemma 2.1 shows that HK_1 is a nonabelian P-group or cyclic of square free order. Since H and K are cyclic, it follows that $|HK_1| = pq$. Hence K would be of order q^2 as K_1 is any proper subgroup of K. Then $|G| = pq^2$ and (ii) holds. So assume that |H| > p. Hence H has a permutable subgroup N in K. By hypothesis, NK would be a proper subgroup of G and by using Lemma 2.1, it is cyclic of order pq or a nonabelian P-group. Since K is cyclic, |K| = q.

Let p be the largest prime in $\pi(G)$. Since K is cyclic, we get HG. If H_1 is a maximal subgroup of H, it follows that H_1G and hence $H_1K < G$. Since H_1 is cyclic, it follows by hypothesis and Lemma 2.1 that H_1K would be of order pq. Then $|G| = p^2q$ and we are done. So let q be the largest prime in $\pi(G)$. Then KG and hence $|G| = p^2q$. Now suppose that K is cyclic of order pq, Hence |Q| = q. If n = 3, $|G| = p^2q$ and we are done. So let $n \ge 4$. It follows that $|H| \ge p^2$. As H is cyclic and P is totally smooth, P would be cyclic. If p > q, PG which implies that every subgroup of P is normal in G. Then there exists a proper subgroup L of G with $|L| = p^2q$ which is not totally smooth, a contradiction. Thus p < q. Since P is cyclic, QG. Once again, $|G| = p^2q$ and n = 3, a contradiction. Final, suppose that K is a P-group. It follows that K is elementary abelian or a nonabelian P-group. Assume that

K is elementary abelian of order q^{β} with $\beta > 1$.

If |H| = p, H is permutable in K and hence HK_1 is a maximal subgroup of G where K_1 is a maximal subgroup of K. Since HK_1 is totally smooth, we have by Lemma 2.1, that HK_1 is cyclic of order pq or a nonabelian P-group. If $|HK_1| = pq$, then n = 3 and G would be of order pq^2 . Otherwise, HK_1 is a nonabelian P-group with p < q. Hence KG. Since K_1 is any maximal subgroup of K and HK_1 is a nonabelian P-group, H does not centralize any subgroup of K. Then G is a nonabelian P-group of order $pq^{\beta}(\beta > 1)$ and (i) holds. So assume that |H| > p. Hence H has a permutable subgroup N in K. By Lemma 2.1, NK would be cyclic of order pq or a nonabelian P-group with p < q. If NK would be of order pq, |K| = p which contradicts that $\beta > 1$. Thus NK would be a nonabelian P-group with p < q. Since H is cyclic, KG. If H_1 is a maximal subgroup of H, H_1K is totally smooth proper subgroup of G. Since $\beta > 1$, H_1K would be a nonabelian P-group which implies that $|H_1| = p$ and hence $|H| = p^2$. If K has a normal subgroup in G, H would be of order p, we get a contradiction since |H| > p. Thus K is a minimal normal subgroup of G and (iii) holds. Now assume that K is a nonabelian P-group.

If n = 3, $|G| = p^2 q$ and we are done. So assume that $n \ge 4$. Obviously, Q < K. If p > q, PG. We get by Lemma 2.1, P is cyclic or elementary abelian. If P is cyclic, n = 3 which contradicts that $n \ge 4$. Thus P is elementary abelian. Then H would be of order p. Since K is a nonabelian P-group, there exists a proper subgroup L of K with |L| = p and LK. As P is elementary abelian, LP and hence LG. Since $n \ge 4$, we get $p^2 \parallel || |G/L|$. As G/L is totally smooth, G/L would be a nonabelian P-group. Then Q does not centralize any subgroup of P and every subgroup of P is normal in G. Therefore, Q induces a nontrivial power automorphism on P and hence G is a nonabelian P-group. So let p < q.

Assume that |H| > p. Then P would be cyclic and hence QG. Clearly, $L_1Q < G$ where L_1 is a maximal subgroup of P. Since q > p, |L| = p and hence $|P| = p^2$. If Q has a proper subgroup Q_1 such that Q_1G , we get $Q_1P < G$. By hypothesis, Q_1P is totally smooth. By applying Lemma 2.1, |P| = p, a contradiction. Thus Q is a minimal normal subgroup of G and (iii) holds. So assume that |H| = p. It follows that HQ < G as G = HK is a product of its proper subgroups H and K. If Q has a proper subgroup Q_1 , we get Q_1HQ . Since Q_1K , it follows that Q_1G . Clearly, Q_1H is a totally smooth proper subgroup of G. By Lemma 2.1, H would be of order p, a contradiction. Thus Q would be of order q and hence n = 3 which contradicts that $n \ge 4$.

Thus H is cyclic of order pq. Then every minimal subgroup of H is permutable in K. It is clear that if n = 3, we are done. So assume that $n \ge 4$.

Suppose that K is of prime power order and let N < H with (|N|, |K|) = 1. So we can assume that $|K| = p^{\beta}$ and hence |N| = q. Clearly, $NK \leq G$. Since $n \geq 4$, $|K| \geq p^2$. If G = NK, we get a proper subgroup U of G containing H with $p^2 \mid |U|$ which is not smooth since H is cyclic of order pq, a contradiction. Thus NK < G. By hypothesis and Lemma 2.1, NK would be nonabelian P-group of order p^eq ($e \geq 2$). Hence P would be elementary abelian and |Q| = q. Similar, there exists a non-totally smooth subgroup V of G containing H with $p^2 \mid |V|$ which contradicts our hypothesis. Thus K is a nonabelian P-group of order $p^{\alpha}q$ or cyclic of order pq.

Suppose that K is cyclic of order pq. Since G = HK is a product of its proper subgroups H and K, it follows that n = 3 which contradicts that $n \ge 4$. Thus K is a nonabelian P-group of order $p^{\alpha}q$ (p > q). Since G = HK, we get a normal subgroup N of H with NK. By hypothesis, $NK \le G$. If NK = G and since H is cyclic, we get n = 3 which contradicts our assumption that $n \ge 4$. Thus NK < G. If $q^2 \mid |NK|$, then [NK/1] is not smooth since K is a nonabelian P-group which contradicts our hypothesis. Thus N would be of order p. It follows that N would be normal in NK as K is a nonabelian P-group. Once again, there exists a subgroup of G containing H which is not smooth, a contradiction.

case 2. H is a P-group.

It follows that H is elementary abelian or a nonabelian P-group. Suppose, first, that H is elementary abelian of order p^{α} with $\alpha > 1$. Then H has a permutable subgroup N in K. It is clear that if n = 3, then $|G| = p^2 q$ and we are done. So let $n \ge 4$.

Assume that K is cyclic of order q^{β} , $\beta \ge 1$. Since $n \ge 4$, we get by hypothesis that NK is a totally smooth proper subgroup of G. It follows by lemma 2.1 that NK is cyclic of order pq or a nonabelian P-group. If NK is cyclic, NNK and |K| = q. Hence NG. Since $n \ge 4$, we get $|H| > p^2$. By hypothesis and lemma 2.1, G/N would be a nonabelian P-group with p > q. Since $|H| > p^2$, it follows that H has a permutable subgroup N_1 in K with N_1G . Then there is a subgroup of G containing NN_1 and K which is not smooth, a contradiction. Thus NK is a nonabelian P-group for any minimal normal subgroup N of H, |K| = q, and every subgroup of H is normal in G. Since K does not centralize any subgroup of H, it follows that G is a nonabelian P-group and we are done.

Let K be cyclic of order pq. Since |H| > p and $n \ge 4$, there exists a permutable subgroup N of H with NK. It follows that [NK/1] is not smooth, a contradiction. Thus K is a P-group. If K is elementary abelian group of order q^{β} with $\beta > 1$. Since H has a permutable subgroup N in K, it follows that NK is a proper subgroup of G. Our hypothesis and lemma 2.1 show that NK would be a nonabelian P-group with q > p as $\beta > 1$. Since N is any minimal normal subgroup of H, there exists a subgroup Q_1 of Q of order q which is normal in G. Then HQ_1 is a proper subgroup of G. Since |H| > p, it follows by lemma 2.1 that [HQ1/1] is not smooth; a contradiction as p < q. Thus K is a nonabelian P-group.

Suppose first that $|K| = p^{\beta}q$, (p > q). It follows that p is the largest prime dividing |G| and hence Q would be of order q. Then PG and P is elementary abelian. Then G has a normal subgroup P_1 of order p with $P_1 < K$. By hypothesis and lemma 2.1, G/P_1 would be a nonabelian P-group. Since P_1 is any minimal subgroup of P, G would be a nonabelian P-group.

Now consider $|K| = q^{\beta}p$. Hence Q < K and p is the smallest prime dividing |G|. Since |H| > p, H has a permutable subgroup N of H. Among all such minimal normal subgroups N of H, choose N such that NK. Hence NQ is a proper subgroup of G which is totally smooth. Applying lemma 2.1, NQ is cyclic of order pq or a nonabelian P-group (q > p). Then QNQ for each N < H as H is elementary abelian. Hence QG.

If |Q| = q and since $n \ge 4$, then G has a proper subgroup U containing Q such that $p^2 ||U|$ which is not totally smooth. Since p < q, we get a contradiction. Thus |Q| > q and hence NQ is a nonabelian P-group. Let Q_1 be a maximal subgroup of Q. Clearly, Q_1NQ for each N < H and so Q_1G . Similar, we get a contradiction since $p^2||G/Q_1|$ and $[G/Q_1]$ is not totally smooth. Thus assume that H is a nonabelian P-group of order $p^{\alpha}q$ with $\alpha \ge 1$. It follows that H has a normal subgroup N of order p.

If K would be cyclic of order q^{β} , we get n = 3 and $|G| = pq^2$ since G = HK. Thus assume that K is cyclic of order p^{β} . Clearly, |Q| = q and so PG. If P is cyclic, $|G| = p^2q$ and we are done. So suppose that $n \ge 4$ and P is elementary abelian. Hence |K| = p. Since G/N is totally smooth, G/N would be nonabelian P-group and hence Q does not centralize any subgroup of P. Therefore, G is a nonabelian P-group. So assume that K is cyclic of order pq. Since G = HK is the product of its proper subgroups H and K, there exists a minimal normal subgroup N of H such that NK. Hence NK < G and by lemma 2.1 we get [NK/1] is not totally smooth, a contradiction. Thus

n = 3 and (ii) holds.

ocmFinal, consider K is a P-group. Hence K is elementary abelian or a nonabelian P-group of order $p^{\beta}q$. Assume that K is elementary abelian of order q^{β} with $\beta > 1$. As H is a nonabelian P-group, H has a normal subgroup N of order p and by hypothesis NK is a subgroup of G. Since G = HK is a product of its proper subgroup H and K, NK would be a proper subgroup of G which is totally smooth. Since p > q, it follows by lemma 2.1 that |K| = q which contradicts our assumption that $\beta > 1$. Thus K is elementary abelian of order p^{β} . Similar, we get |Q| = q and P is elementary abelian normal Sylow p-subgroup of G. Therefore, G/N is a nonabelian P-group and Q does not centralize any p-subgroup of P. Hence Q induces a nontrivial power automorphism on P. Then G is a nonabelian P-group and we are done. To complete the proof, K would be a nonabelian P-group of order $p^{\beta}q$. Hence NNK and so NG. Similar, G/N is a nonabelian P-group and consequently Q would be of order q. Once again, G would be a nonabelian P-group. This completes our proof.

Now we are in a position to prove the case when $|\pi(G)| \ge 3$.

Theorem 2.3 Let G = HK be the product of its proper subgroups H and K with $n \ge 3$ and $|\pi(G)| \ge 3$. Assume that all maximal subgroups of G are totally smooth. If every minimal normal subgroup of H is permutable in K, then one of the following holds:

(i) G is cyclic of square free order.

(ii) n = 3 and |G| = pqr, where p, q, and r are distinct primes in $\pi(G)$.

Proof.

As all maximal subgroups of G are totally smooth, we get by Lemma 2.1, that H and K are cyclic of prime power orders, P-groups, or cyclic of square free order. Let N be a minimal normal subgroup of H. We have the following cases:

case 1. H is cyclic.

It follows that either $|H| = p^{\alpha}$ with $\alpha \ge 1$ or H is of order $p_1p_2...p_m$ where $p_i \ne p_j$ $(i \ne j)$ and i, j = 1, 2, ...m. Let $|H| = p^{\alpha}$ with $\alpha \ge 1$. Since $|\pi(G)| \ge 3$, $|\pi(K)| \ge 2$. So we can assume that either K is cyclic of square free order or a nonabelian P-group of order $q^{\beta}r$, (q > r).

Suppose first that K is a nonabelian P-group of order $q^{\beta}r$, (q > r) and let K = QR where Q is a Sylow q-subgroup of K and R is a Sylow r-subgroup of K. If |H| > p, we get by hypothesis that NK < G where N is a normal subgroup of H of order p. Furthermore, $|\pi(NK)| = 3$. Since K is a nonabelian P-group, we have by lemma 2.1 that [NK/1] is not totally smooth which contradicts our hypothesis. Thus H would be of order p. Since all maximal subgroups of G are supersolvable, it follows that G is solvable and so G has a Sylow basis. Hence HQ < G.

If |Q| = q, then |G| = pqr and (ii) holds. So let |Q| > q. Hence by lemma 2.1, HQ would be a nonabelian P-group (q > p). Then there exists a proper subgroup Q_1 of Q which is normal in HQ. Since K is a nonabelian P-group, Q_1K . Therefore, Q_1G . Clearly, HR < G. Then $Q_1HR < G$. Since R does not centralize Q_1 and $|\pi(Q_1HR)| = 3$, we get $[Q_1HR/1]$ is not totally smooth which contradicts our hypothesis. Thus K is cyclic of square free order. Let P_i be a Sylow p_i -subgroup of G with $p \neq p_i$. By the solvability of G and since $|H| = p^{\alpha}$, HP_i is a subgroup of G. By hypothesis and lemma 2.1, H would be of order p as H is cyclic. Hence the Sylow subgroups of G are of prime orders. If G is abelian, then G is cyclic. Otherwise, $|\pi(G)| = 3$ and G would be of order pqr.

Now assume that H is a cyclic of order $p_1p_2...p_m$ with $(m \ge 2)$. Then there exists a minimal normal subgroup N of H with NK such that $NK \le G$. Since $|\pi(G)| \ge 3$, K would be a P-group or cyclic of square free order or cyclic of prime power order.

Suppose first that K is cyclic of order p^{α} . It follows that NK is a totally smooth proper subgroup of G. By lemma 2.1, NK would be cyclic of square free order or a nonabelian P-group. As K is cyclic, |K| = p. If n = 3, then G is cyclic or (ii) holds. Thus assume that $n \ge 4$. Since G is solvable, $PP_j < G$ where P is a Sylow p-subgroup of G and P_j is a Sylow p_j -subgroup of G $(p \ne p_j)$. We argue that |P| = p.

Suppose for a contradiction that |P| > p. We have by lemma 2.1 that PP_j is a nonabelian P-group $(p > p_j)$. Then there exists a proper subgroup L of P which is normal in PP_j and hence it is normal in G as P_j is any Sylow p_j -subgroup of G $(p \neq p_j)$. Since $|\pi(G)| \geq 3$, it follows that $LP_iP_j < G$ where $p_j \neq p_i \neq p$. We get by hypothesis and lemma 2.1 that LP_iP_j is cyclic, a contradiction since P_j does not centralize L. Thus |K| = |P| = p and so the Sylow subgroups of G are of prime orders. As $n \geq 4$, $|\pi(G)| \geq 4$. Hence PP_1P_2 is a proper subgroup of G and by lemma 2.1, it would be cyclic. Thus P_iG , i = 1, 2. By applying lemma 2.1, G/P_i would be cyclic as $|\pi(G/P_i)| \geq 3$. Then $G \leq P_1 \cap P_2 = 1$ hence G is abelian. Therefore G is cyclic of square free order.

Now Let K be a cyclic of square free order such that $|\pi(K)| \ge 2$. Since G = HK is a product of its proper subgroups H and K, it follows that there exists a minimal subgroup N of H with NK. Hence $NK \le G$. Obviously, if $p^2 | |G|$ for some prime $p \in \pi(G)$ and since G is solvable, we get a normal subgroup L of order p. Similar, LP_1P_j is a cyclic

subgroup of G. Then by lemma 2.1, $[PP_j/1]$ is not smooth, a contradiction. Thus the Sylow subgroups of G are of prime orders.

Assume first that G = NK and let K_1 be a maximal subgroup of K. Hence $NK_1 < G$. By hypothesis and lemma 2.1, NK_1 is a nonabelian P-group or cyclic. If $|\pi(G)| = 3$, we are done since NK_1 is of square free order. So let $|\pi(G)| \ge 4$. It follows that NK_1 would be cyclic and hence every Sylow subgroup of K centralizes N as K_1 is any maximal subgroup of K. Then G is abelian and hence it is cyclic of square free order. Now assume that NK < G. Since the Sylow subgroups of G are of prime orders and $|\pi(K)| \ge 2$, NK would be cyclic of square free order and $|\pi(G)| \ge 4$. Once again, G is cyclic.

Consider K is a P-group. Hence it is elementary abelian or a nonabelian P-group. Suppose first that K is a nonabelian P-group of order $p^{\alpha}q$, p > q. If NK < G, we have a contradiction since K is a nonabelian P-group and $|\pi(NK)| = 3$. Thus NK = G and hence $|\pi(G)| = 3$.

Suppose, for a contradiction, that $n \ge 4$. Since N is of prime order and (|N|, |K|) = 1, it follows that |G| would be divided by p^2 where p is the largest prime in $\pi(K)$. Let K_1 be a maximal nonabelian P-subgroup of K. It follows that NK_1 is a proper subgroup of G. As $|\pi(NK_1)| = 3$, we have by lemma 2.1 that NK_1 would be cyclic. Since K_1 is a nonabelian P-group, we get a contradiction. Thus n = 3 and we are done. So assume that K is elementary abelian of order p^β , $\beta > 1$. It follows NK is a totally smooth proper subgroup of G where N is a minimal subgroup of H. Since |K| > p, we get by lemma 2.1 that NK would be a nonabelian P-group where p is the largest prime in $\pi(NK)$. Let L < K. Then LNK and hence LG as N is any minimal subgroup of H. Let N_1 and N_2 be minimal subgroups of H such that $N_1 \neq N_2$. Clearly, $LN_1N_2 < G$. Since $|\pi(LN_1N_2)| = 3$, LN_1N_2 would be cyclic which contradicts that N_i does not centralize L (i = 1, 2). Thus |K| = p, a contradiction as $\beta > 1$.

case 2. H is a P-group. Hence H is elementary abelian or a nonabelian P-group.

Suppose, first, that H is elementary abelian of order p^{α} with $\alpha > 1$. Therefore H has a permutable subgroup N in K. Hence K is a nonabelian P- group or cyclic of square free order. Suppose that K is a nonabelian P-group. We get $|\pi(G)| = 3$ and (|N|, |K|) = 1. Then NK would be cyclic which contradicts our choice of K. Thus K is cyclic of square free order. Let P be a Sylow p-subgroup of G. As P is totally smooth and H is elementary abelian p-subgroup, it follows that P would be elementary abelian. If p would be dividing |K|, we get G has a normal subgroup N of order p. Hence $|\pi(G/N)| \ge 3$ which implies that G/N would be cyclic of square free order since G/N is totally smooth. Then $|P| = p^2$. Let Q be a Sylow q-subgroup of G with $q \neq p$. Since G is solvable, PQ is a subgroup of G. Since Q centralizes N, [PQ/1] is not smooth which contradicts our hypothesis. Thus p|K|. It follows that NK < G. Similar, we get a contradiction as |H| > p. Thus H is a nonabelian P-group of order $p\alpha p_1$, $p > p_1$. Hence |N| = p.

Consider, first, that K is a nonabelian P-group. Then $|\pi(G)| \leq 4$. Let P_i be a Sylow p_i -subgroups of G with $p_i \neq p$. Since G is solvable, we have PP_i is a totally smooth proper subgroup of G which is a nonabelian P-group or cyclic. If |P| > p, PP_i would be a nonabelian P-group and NPP_i . Then NG as P_i is any Sylow p_i -subgroups of G. Hence $NP_1P_2 < G$, for i = 1, 2. Since P_i does not centralize N, it follows by lemma 2.1 that $[NP_1P_2/1]$ is not smooth which contradicts our hypothesis. Thus |P| = p.

If $|\pi(G)| = 4$, we get by hypothesis and lemma 2.1 that PK is a cyclic subgroup of G and hence PPK. Since PH, we get PG. Once again $[PP_1P_2/1]$ is not smooth, a contradiction. Therefore $|\pi(G)| = 3$ and p would be the largest prime in $\pi(G)$ which implies that n = 3 and (ii) holds.

Assume that K is elementary abelian of order p_2^{β} . Once again, if n = 3, we get $|G| = pp_1p_2$ and we are done. So let $n \ge 4$. By hypothesis, NK is a totally smooth subgroup of G. Suppose that p is the largest prime in $\pi(G)$. Then NNK and $|K| = p_2$. Hence NG. As G/N is totally smooth, it follows by lemma 2.1 that G/N is a nonabelian P-group or cyclic of square free order. If G/N is a nonabelian P-group, $|\pi(G)| = 3$ which implies that n = 3, a contradiction. Thus G/N is cyclic with $|\pi(G/N)| \ge 3$ as $n \ge 4$. Since P_1 does not centralize N, [NP1K/1] is not smooth which contradicts our hypothesis. Therefore p_2 is the largest prime in $\pi(G)$ which implies that |P| = p since PP_2 is a totally smooth subgroup of G. Suppose, for a contradiction, that $|K| > p_2$. Since G is solvable, we have that G has a Sylow basis and since $|K| > p_2$, it follows that K has a normal subgroup L in G. Hence LH < G. Since H is a nonabelian P-group, [LH/1] is not smooth which contradiction as $n \ge 4$.

To complete the proof, assume that K is cyclic. Suppose first that K is a cyclic of square free order and let P_j be Sylow p_j -subgroups of G with $p_j \neq p$ (j = 1, 2, ..., m). The solvability of G shows that, $PP_j < G$. We argue that |P| = p. If |P| > p, then PP_j is a nonabelian P-group and $|P_j| = p_j$ for each j = 1, 2, ..., m. Then NPP_j and hence NG. It follows that $NP_1P_2 < G$. Then by lemma 2.1, it is cyclic; a contradiction since P_1 does not centralize N. Thus |P| = p. Suppose, for a contradiction, that $n \ge 4$. Since H is a nonabelian P-group, G has a proper subgroup M containing H with $|\pi(M)| = 3$ which is not smooth. Thus n = 3, $|G| = pp_1p_2$ and we are done. Now assume K is cyclic of prime power order. Then (|N|, |K|) = 1. Since NK is a totally smooth proper subgroup of G, K would be of prime order. If KG, we get |P| = p where P is a Sylow p-subgroup of G. Then n = 3 and (ii) holds. Otherwise, p is the largest prime in $\pi(G)$. Once again if N < P, we get a contradiction. Thus |P| = p and n = 3. This completes our proof.

3. Conclusion

In this paper, we proved the following result:

Theorem 3.1 Let G = HK be the product of its proper subgroups H and K with $n \ge 3$ and $|\pi(G)| \ge 2$. Assume that all maximal subgroups of G are totally smooth. If every minimal normal subgroup of H is permutable in K, then one of the following holds:

(i) G is a nonabelian P-group.

(ii) G is cyclic of square free order.

(iii) n = 3 and |G| = pqr, where p and q are not necessary distinct primes in $\pi(G)$.

(iv) G = PQ, where P is a cyclic Sylow p-subgroup of order p^2 and Q is an elementary abelian normal subgroup of G of order $q^e(e > 1)$.

Clearly, the proof of Theorem 3.1 is included in both Theorem 2.2 and Theorem 2.3.

References

- [1] A. M. Elkholy, "On totally smooth groups", Int. J. Algebra, Vol.1, No.2, (2007), pp.63-70.
- [2] K. Doerk, T. Hawkes, Finite soluble groups. Walter de Gruyter, Berlin-New York, (1992).
- [3] M. Asaad, Shaalan, "On the supersolvability of finite groups", Arch. Math, 53, (1989), pp.318-326.
- [4] R. Schmidt, "Smooth groups", Geometriae Dedicata, 84, (2001), pp.183-206.
- [5] R. Schmidt, "Smooth p-groups", J. Algebra, 234, (2000), pp.533-5390.
- [6] R. Schmidt, Subgroup lattices of groups. Walter de Gruyter, Berlin-New York, Berlin-New York, (1994).