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Abstract

A maximal chain in a finite lattice L is called smooth if any two intervals of the same length are isomorphic. We say
that a finite group G is totally smooth if all maximal chains in its subgroup lattice L(G) are smooth. In this article,
we study the product of finite groups which have a permutable subgroup of prime order under the assumption that
the maximal subgroups are totally smooth.

Keywords: Permutable subgroups; Smooth groups; Subgroup lattices.

1. Introduction

Only finite groups wiil be considered in this paper. Notation is standard and is taken mainly from Doerk and
Hawkes [2]. In addition, for a fixed group G, the maximal length of the subgroup lattice L(G) will be denoted by
n, and π(G) will denote the set of all distinct primes dividing |G|.
A subgroup H of a group G is permutable in G if it permutes with every subgroup of G. A subgroup H of a group
G is said to be permutable in a subgroup K of G if it permutes with every subgroup of K. This concept was
introduced by Asaad and Shaalan [3]. A group G is called smooth if G has a maximal chain of subgroups in which
any two intervals of the same length are isomorphic. Finite smooth groups have been studied by Schmidt [4, 5]. A
group G is said to be totally smooth if every maximal chain of subgroups is smooth. Finite totally smooth groups
have been studied in [1].
A lattice L is said to be complemented if every element of L has a complement in L. Recall that a P -group is either
an elementary abelian group of order pn for a prime p, or a semidirect product of an elementary abelian normal
subgroup P of order pn−1 for a prime p and a cyclic q-group inducing a power automorphism group on P , where p
and q are different primes (see [6; p. 49]).
The purpose of this article is studying the product of finite totally smooth groups which have a permutable subgroup
of prime order under the assumption that the maximal subgroups are totally smooth. Clearly, the structure of groups
with n ≤ 2 is well known. So we assume that n ≥ 3.

2. Main results

The following Lemma will be used in the sequel:
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Lemma 2.1 A group G is totally smooth if and only if one of the following holds:
(i) G is cyclic of prime power order.
(ii) G is a P -group.
(iii) G is cyclic of square free order (See [1]; Theorem 1).
In this article, we will deal only with groups whose order is divided at least by two primes. So we assume firstly that
|π(G)| = 2.

Theorem 2.2 Let G = HK be the product of its proper subgroups H and K with n ≥ 3 and |π(G)| = 2. Assume
that all maximal subgroups of G are totally smooth. Let N be a minimal normal subgroup of H. If N is permutable
in K, then one of the following holds:
(i) G is a nonabelian P -group.
(ii) n = 3 and |G| = p2q, where p and q are distinct primes in π(G).
(iii) G = PQ, where P is a cyclic Sylow p-subgroup of order p2 and Q is an elementary abelian normal subgroup of
G of order qe(e > 1).

Proof. Since all maximal subgroups of G are totally smooth, it follows by Lemma 2.1, that H and K are cyclic of
prime power orders, P -groups, or cyclic of square free order. Let P be a Sylow p-subgroup of G and Q be a Sylow
q-subgroup of G. We have the following cases:

case 1 . H is cyclic. It follows by Lemma 2.1 that either |H| = pα with α ≥ 1 or |H| = pq with p 6= q.
Assume that |H| = pα with α ≥ 1. Hence |N | = p.
Suppose, further, that K is cyclic of prime power order. Since |π(G)| = 2, |K| = qβ with q 6= p. It follows that H is
complemented in G. Let K1 be a proper subgroup of K. If |H| = p, then H = N is permutable in K and HK1 is a
proper subgroup of G. By hypothesis, HK1 is totally smooth and hence Lemma 2.1 shows that HK1 is a nonabelian
P -group or cyclic of square free order. Since H and K are cyclic, it follows that |HK1| = pq. Hence K would be
of order q2 as K1 is any proper subgroup of K. Then |G| = pq2 and (ii) holds. So assume that |H| > p. Hence H
has a permutable subgroup N in K. By hypothesis, NK would be a proper subgroup of G and by using Lemma 2.1,
it is cyclic of order pq or a nonabelian P -group. Since K is cyclic, |K| = q.
Let p be the largest prime in π(G). Since K is cyclic, we get HG. If H1 is a maximal subgroup of H, it follows
that H1G and hence H1K < G. Since H1 is cyclic, it follows by hypothesis and Lemma 2.1 that H1K would be of
order pq. Then |G| = p2q and we are done. So let q be the largest prime in π(G). Then KG and hence |G| = p2q.
Now suppose that K is cyclic of order pq, Hence |Q| = q. If n = 3, |G| = p2q and we are done. So let n ≥ 4. It
follows that |H| ≥ p2. As H is cyclic and P is totally smooth, P would be cyclic. If p > q, PG which implies that
every subgroup of P is normal in G. Then there exists a proper subgroup L of G with |L| = p2q which is not totally
smooth, a contradiction. Thus p < q. Since P is cyclic, QG. Once again, |G| = p2q and n = 3, a contradiction.
Final, suppose that K is a P -group. It follows that K is elementary abelian or a nonabelian P -group. Assume that
K is elementary abelian of order qβ with β > 1.
If |H| = p, H is permutable in K and hence HK1 is a maximal subgroup of G where K1 is a maximal subgroup of
K. Since HK1 is totally smooth, we have by Lemma 2.1, that HK1 is cyclic of order pq or a nonabelian P -group.
If |HK1| = pq, then n = 3 and G would be of order pq2. Otherwise, HK1 is a nonabelian P -group with p < q.
Hence KG. Since K1 is any maximal subgroup of K and HK1 is a nonabelian P -group, H does not centralize any
subgroup of K. Then G is a nonabelian P -group of order pqβ(β > 1) and (i) holds. So assume that |H| > p. Hence
H has a permutable subgroup N in K. By Lemma 2.1, NK would be cyclic of order pq or a nonabelian P -group.
If NK would be of order pq, |K| = p which contradicts that β > 1. Thus NK would be a nonabelian P -group with
p < q. Since H is cyclic, KG. If H1 is a maximal subgroup of H, H1K is totally smooth proper subgroup of G.
Since β > 1, H1K would be a nonabelian P -group which implies that |H1| = p and hence |H| = p2. If K has a
normal subgroup in G, H would be of order p, we get a contradiction since |H| > p. Thus K is a minimal normal
subgroup of G and (iii) holds. Now assume that K is a nonabelian P -group.
If n = 3, |G| = p2q and we are done. So assume that n ≥ 4. Obviously, Q < K. If p > q, PG. We get by Lemma
2.1, P is cyclic or elementary abelian. If P is cyclic, n = 3 which contradicts that n ≥ 4. Thus P is elementary
abelian. Then H would be of order p. Since K is a nonabelian P -group, there exists a proper subgroup L of K
with |L| = p and LK. As P is elementary abelian, LP and hence LG. Since n ≥ 4, we get p2 ||| |G/L|. As G/L
is totally smooth, G/L would be a nonabelian P -group. Then Q does not centralize any subgroup of P and every
subgroup of P is normal in G. Therefore, Q induces a nontrivial power automorphism on P and hence G is a
nonabelian P -group. So let p < q.
Assume that |H| > p. Then P would be cyclic and hence QG. Clearly, L1Q < G where L1 is a maximal subgroup
of P . Since q > p, |L| = p and hence |P | = p2. If Q has a proper subgroup Q1 such that Q1G, we get Q1P < G.
By hypothesis, Q1P is totally smooth. By applying Lemma 2.1, |P | = p, a contradiction. Thus Q is a minimal
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normal subgroup of G and (iii) holds. So assume that |H| = p. It follows that HQ < G as G = HK is a product
of its proper subgroups H and K. If Q has a proper subgroup Q1, we get Q1HQ. Since Q1K, it follows that Q1G.
Clearly, Q1H is a totally smooth proper subgroup of G. By Lemma 2.1, H would be of order p, a contradiction.
Thus Q would be of order q and hence n = 3 which contradicts that n ≥ 4.

Thus H is cyclic of order pq. Then every minimal subgroup of H is permutable in K. It is clear that if n = 3, we
are done. So assume that n ≥ 4.

Suppose that K is of prime power order and let N < H with (|N |, |K|) = 1. So we can assume that |K| = pβ and
hence |N | = q. Clearly, NK ≤ G. Since n ≥ 4, |K| ≥ p2. If G = NK, we get a proper subgroup U of G containing
H with p2 | |U | which is not smooth since H is cyclic of order pq, a contradiction. Thus NK < G. By hypothesis
and Lemma 2.1, NK would be nonabelian P -group of order peq (e ≥ 2). Hence P would be elementary abelian and
|Q| = q. Similar, there exists a non-totally smooth subgroup V of G containing H with p2 | |V | which contradicts
our hypothesis. Thus K is a nonabelian P -group of order pαq or cyclic of order pq.

Suppose that K is cyclic of order pq. Since G = HK is a product of its proper subgroups H and K, it follows that
n = 3 which contradicts that n ≥ 4. Thus K is a nonabelian P -group of order pαq (p > q). Since G = HK, we get
a normal subgroup N of H with NK. By hypothesis, NK ≤ G. If NK = G and since H is cyclic, we get n = 3
which contradicts our assumption that n ≥ 4. Thus NK < G. If q2 | |NK|, then [NK/1] is not smooth since K
is a nonabelian P -group which contradicts our hypothesis. Thus N would be of order p. It follows that N would be
normal in NK as K is a nonabelian P -group. Once again, there exists a subgroup of G containing H which is not
smooth, a contradiction.

case 2. H is a P -group.

It follows that H is elementary abelian or a nonabelian P -group. Suppose, first, that H is elementary abelian of
order pα with α > 1. Then H has a permutable subgroup N in K. It is clear that if n = 3, then |G| = p2q and we
are done. So let n ≥ 4.

Assume that K is cyclic of order qβ, β ≥ 1. Since n ≥ 4, we get by hypothesis that NK is a totally smooth proper
subgroup of G. It follows by lemma 2.1 that NK is cyclic of order pq or a nonabelian P -group. If NK is cyclic,
NNK and |K| = q. Hence NG. Since n ≥ 4, we get |H| > p2. By hypothesis and lemma 2.1, G/N would be
a nonabelian P -group with p > q. Since |H| > p2, it follows that H has a permutable subgroup N1 in K with
N1G. Then there is a subgroup of G containing NN1 and K which is not smooth, a contradiction. Thus NK is a
nonabelian P -group for any minimal normal subgroup N of H, |K| = q, and every subgroup of H is normal in G.
Since K does not centralize any subgroup of H, it follows that G is a nonabelian P -group and we are done.

Let K be cyclic of order pq. Since |H| > p and n ≥ 4, there exists a permutable subgroup N of H with NK. It
follows that [NK/1] is not smooth, a contradiction. Thus K is a P -group. If K is elementary abelian group of
order qβ with β > 1. Since H has a permutable subgroup N in K, it follows that NK is a proper subgroup of G.
Our hypothesis and lemma 2.1 show that NK would be a nonabelian P -group with q > p as β > 1. Since N is any
minimal normal subgroup of H, there exists a subgroup Q1 of Q of order q which is normal in G. Then HQ1 is a
proper subgroup of G. Since |H| > p, it follows by lemma 2.1 that [HQ1/1] is not smooth; a contradiction as p < q.
Thus K is a nonabelian P -group.

Suppose first that |K| = pβq, (p > q). It follows that p is the largest prime dividing |G| and hence Q would be of
order q. Then PG and P is elementary abelian. Then G has a normal subgroup P1 of order p with P1 < K. By
hypothesis and lemma 2.1, G/P1 would be a nonabelian P -group. Since P1 is any minimal subgroup of P , G would
be a nonabelian P -group.

Now consider |K| = qβp. Hence Q < K and p is the smallest prime dividing |G|. Since |H| > p, H has a permutable
subgroup N of H. Among all such minimal normal subgroups N of H, choose N such that NK. Hence NQ is
a proper subgroup of G which is totally smooth. Applying lemma 2.1, NQ is cyclic of order pq or a nonabelian
P -group (q > p). Then QNQ for each N < H as H is elementary abelian. Hence QG.

If |Q| = q and since n ≥ 4, then G has a proper subgroup U containing Q such thatp2 | |U | which is not totally
smooth. Since p < q, we get a contradiction. Thus |Q| > q and hence NQ is a nonabelian P -group. Let Q1 be
a maximal subgroup of Q. Clearly, Q1NQ for each N < H and so Q1G. Similar, we get a contradiction since
p2||G/Q1| and [G/Q1] is not totally smooth. Thus assume that H is a nonabelian P -group of order pαq with α ≥ 1.
It follows that H has a normal subgroup N of order p.

If K would be cyclic of order qβ, we get n = 3 and |G| = pq2 since G = HK. Thus assume that K is cyclic of
order pβ. Clearly, |Q| = q and so PG. If P is cyclic, |G| = p2q and we are done. So suppose that n ≥ 4 and P is
elementary abelian. Hence |K| = p. Since G/N is totally smooth, G/N would be nonabelian P -group and hence Q
does not centralize any subgroup of P . Therefore, G is a nonabelian P -group. So assume that K is cyclic of order
pq. Since G = HK is the product of its proper subgroups H and K, there exists a minimal normal subgroup N of
H such that NK. Hence NK < G and by lemma 2.1 we get [NK/1] is not totally smooth, a contradiction. Thus
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n = 3 and (ii) holds.
ocmFinal, consider K is a P -group. Hence K is elementary abelian or a nonabelian P -group of order pβq.

Assume that K is elementary abelian of order qβ with β > 1. As H is a nonabelian P -group, H has a normal
subgroup N of order p and by hypothesis NK is a subgroup of G. Since G = HK is a product of its proper subgroup
H and K, NK would be a proper subgroup of G which is totally smooth. Since p > q, it follows by lemma 2.1 that
|K| = q which contradicts our assumption that β > 1. Thus K is elementary abelian of order pβ. Similar, we get
|Q| = q and P is elementary abelian normal Sylow p-subgroup of G. Therefore, G/N is a nonabelian P -group and
Q does not centralize any p-subgroup of P . Hence Q induces a nontrivial power automorphism on P . Then G is a
nonabelian P -group and we are done. To complete the proof, K would be a nonabelian P -group of order pβq. Hence
NNK and so NG. Similar, G/N is a nonabelian P -group and consequently Q would be of order q. Once again, G
would be a nonabelian P -group. This completes our proof.

Now we are in a position to prove the case when |π(G)| ≥ 3.

Theorem 2.3 Let G = HK be the product of its proper subgroups H and K with n ≥ 3 and |π(G)| ≥ 3. Assume
that all maximal subgroups of G are totally smooth. If every minimal normal subgroup of H is permutable in K,
then one of the following holds:
(i) G is cyclic of square free order.
(ii) n = 3 and |G| = pqr, where p, q, and r are distinct primes in π(G).

Proof.

As all maximal subgroups of G are totally smooth, we get by Lemma 2.1, that H and K are cyclic of prime power
orders, P -groups, or cyclic of square free order. Let N be a minimal normal subgroup of H. We have the following
cases:

case 1. H is cyclic.
It follows that either |H| = pα with α ≥ 1 or H is of order p1p2...pm where pi 6= pj (i 6= j) and i, j = 1, 2, ...m.
Let |H| = pα with α ≥ 1. Since |π(G)| ≥ 3, |π(K)| ≥ 2. So we can assume that either K is cyclic of square free
order or a nonabelian P -group of order qβr, (q > r).
Suppose first that K is a nonabelian P -group of order qβr, (q > r) and let K = QR where Q is a Sylow q-subgroup
of K and R is a Sylow r-subgroup of K. If |H| > p, we get by hypothesis that NK < G where N is a normal
subgroup of H of order p. Furthermore, |π(NK)| = 3. Since K is a nonabelian P -group, we have by lemma 2.1
that [NK/1] is not totally smooth which contradicts our hypothesis. Thus H would be of order p. Since all maximal
subgroups of G are supersolvable, it follows that G is solvable and so G has a Sylow basis. Hence HQ < G.
If |Q| = q, then |G| = pqr and (ii) holds. So let |Q| > q. Hence by lemma 2.1, HQ would be a nonabelian P -group
(q > p). Then there exists a proper subgroup Q1 of Q which is normal in HQ. Since K is a nonabelian P -group,
Q1K. Therefore, Q1G. Clearly, HR < G. Then Q1HR < G. Since R does not centralize Q1 and |π(Q1HR)| = 3,
we get [Q1HR/1] is not totally smooth which contradicts our hypothesis. Thus K is cyclic of square free order. Let
Pi be a Sylow pi-subgroup of G with p 6= pi. By the solvability of G and since |H| = pα, HPi is a subgroup of G.
By hypothesis and lemma 2.1, H would be of order p as H is cyclic. Hence the Sylow subgroups of G are of prime
orders. If G is abelian, then G is cyclic. Otherwise, |π(G)| = 3 and G would be of order pqr.
Now assume that H is a cyclic of order p1p2...pm with (m ≥ 2). Then there exists a minimal normal subgroup N
of H with NK such that NK ≤ G. Since |π(G)| ≥ 3, K would be a P -group or cyclic of square free order or cyclic
of prime power order.
Suppose first that K is cyclic of order pα. It follows that NK is a totally smooth proper subgroup of G. By lemma
2.1, NK would be cyclic of square free order or a nonabelian P -group. As K is cyclic, |K| = p. If n = 3, then G
is cyclic or (ii) holds. Thus assume that n ≥ 4. Since G is solvable, PPj < G where P is a Sylow p-subgroup of G
and Pj is a Sylow pj-subgroup of G (p 6= pj). We argue that |P | = p.
Suppose for a contradiction that |P | > p. We have by lemma 2.1 that PPj is a nonabelian P -group (p > pj). Then
there exists a proper subgroup L of P which is normal in PPj and hence it is normal in G as Pj is any Sylow
pj-subgroup of G (p 6= pj). Since |π(G)| ≥ 3, it follows that LPiPj < G where pj 6= pi 6= p. We get by hypothesis
and lemma 2.1 that LPiPj is cyclic, a contradiction since Pj does not centralize L. Thus |K| = |P | = p and so the
Sylow subgroups of G are of prime orders. As n ≥ 4, |π(G)| ≥ 4. Hence PP1P2 is a proper subgroup of G and by
lemma 2.1, it would be cyclic. Thus PiG, i = 1, 2. By applying lemma 2.1, G/Pi would be cyclic as |π(G/Pi)| ≥ 3.
Then G ≤ P1 ∩ P2 = 1 hence G is abelian. Therefore G is cyclic of square free order.
Now Let K be a cyclic of square free order such that |π(K)| ≥ 2. Since G = HK is a product of its proper subgroups
H and K, it follows that there exists a minimal subgroup N of H with NK. Hence NK ≤ G. Obviously, if p2 | |G|
for some prime p ∈ π(G) and since G is solvable, we get a normal subgroup L of order p. Similar, LP1Pj is a cyclic
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subgroup of G. Then by lemma 2.1, [PPj/1] is not smooth, a contradiction. Thus the Sylow subgroups of G are of
prime orders.

Assume first that G = NK and let K1 be a maximal subgroup of K. Hence NK1 < G. By hypothesis and lemma
2.1, NK1 is a nonabelian P -group or cyclic. If |π(G)| = 3, we are done since NK1 is of square free order. So let
|π(G)| ≥ 4. It follows that NK1 would be cyclic and hence every Sylow subgroup of K centralizes N as K1 is any
maximal subgroup of K. Then G is abelian and hence it is cyclic of square free order. Now assume that NK < G.
Since the Sylow subgroups of G are of prime orders and |π(K)| ≥ 2, NK would be cyclic of square free order and
|π(G)| ≥ 4. Once again, G is cyclic.

Consider K is a P -group. Hence it is elementary abelian or a nonabelian P -group. Suppose first that K is a
nonabelian P -group of order pαq, p > q. If NK < G, we have a contradiction since K is a nonabelian P -group and
|π(NK)| = 3. Thus NK = G and hence |π(G)| = 3.

Suppose, for a contradiction, that n ≥ 4. Since N is of prime order and (|N |, |K|) = 1, it follows that |G| would be
divided by p2 where p is the largest prime in π(K). Let K1 be a maximal nonabelian P -subgroup of K. It follows
that NK1 is a proper subgroup of G. As |π(NK1)| = 3, we have by lemma 2.1 that NK1 would be cyclic. Since K1

is a nonabelian P -group, we get a contradiction. Thus n = 3 and we are done. So assume that K is elementary
abelian of order pβ, β > 1. It follows NK is a totally smooth proper subgroup of G where N is a minimal subgroup
of H. Since |K| > p, we get by lemma 2.1 that NK would be a nonabelian P -group where p is the largest prime in
π(NK). Let L < K. Then LNK and hence LG as N is any minimal subgroup of H. Let N1 and N2 be minimal
subgroups of H such that N1 6= N2. Clearly, LN1N2 < G. Since |π(LN1N2)| = 3, LN1N2 would be cyclic which
contradicts that Ni does not centralize L (i = 1, 2). Thus |K| = p, a contradiction as β > 1.

case 2. H is a P -group. Hence H is elementary abelian or a nonabelian P -group.

Suppose, first, that H is elementary abelian of order pα with α > 1. Therefore H has a permutable subgroup N
in K. Hence K is a nonabelian P - group or cyclic of square free order. Suppose that K is a nonabelian P -group.
We get |π(G)| = 3 and (|N |, |K|) = 1. Then NK would be cyclic which contradicts our choice of K. Thus K
is cyclic of square free order. Let P be a Sylow p-subgroup of G. As P is totally smooth and H is elementary
abelian p-subgroup, it follows that P would be elementary abelian. If p would be dividing |K|, we get G has a normal
subgroup N of order p. Hence |π(G/N)| ≥ 3 which implies that G/N would be cyclic of square free order since
G/N is totally smooth. Then |P | = p2. Let Q be a Sylow q-subgroup of G with q 6= p. Since G is solvable, PQ
is a subgroup of G. Since Q centralizes N , [PQ/1] is not smooth which contradicts our hypothesis. Thus p|K|. It
follows that NK < G. Similar, we get a contradiction as |H| > p. Thus H is a nonabelian P -group of order pαp1,
p > p1. Hence |N | = p.

Consider, first, that K is a nonabelian P -group. Then |π(G)| ≤ 4. Let Pi be a Sylow pi-subgroups of G with pi 6= p .
Since G is solvable, we have PPi is a totally smooth proper subgroup of G which is a nonabelian P -group or cyclic.
If |P | > p, PPi would be a nonabelian P -group and NPPi. Then NG as Pi is any Sylow pi-subgroups of G. Hence
NP1P2 < G, for i = 1, 2. Since Pi does not centralize N , it follows by lemma 2.1 that [NP1P2/1] is not smooth
which contradicts our hypothesis. Thus |P | = p.

If |π(G)| = 4, we get by hypothesis and lemma 2.1 that PK is a cyclic subgroup of G and hence PPK. Since PH,
we get PG. Once again [PP1P2/1] is not smooth, a contradiction. Therefore |π(G)| = 3 and p would be the largest
prime in π(G) which implies that n = 3 and (ii) holds.

Assume that K is elementary abelian of order pβ2 . Once again, if n = 3, we get |G| = pp1p2 and we are done. So
let n ≥ 4. By hypothesis, NK is a totally smooth subgroup of G. Suppose that p is the largest prime in π(G). Then
NNK and |K| = p2. Hence NG. As G/N is totally smooth, it follows by lemma 2.1 that G/N is a nonabelian
P -group or cyclic of square free order. If G/N is a nonabelian P -group, |π(G)| = 3 which implies that n = 3, a
contradiction. Thus G/N is cyclic with |π(G/N)| ≥ 3 as n ≥ 4. Since P1 does not centralize N , [NP1K/1] is not
smooth which contradicts our hypothesis. Therefore p2 is the largest prime in π(G) which implies that |P | = p since
PP2 is a totally smooth subgroup of G. Suppose, for a contradiction, that |K| > p2. Since G is solvable, we have
that G has a Sylow basis and since |K| > p2, it follows that K has a normal subgroup L in G. Hence LH < G.
Since H is a nonabelian P -group, [LH/1] is not smooth which contradicts our hypothesis. Therefore |K| = p2 and
hence n = 3, a contradiction as n ≥ 4.

To complete the proof, assume that K is cyclic. Suppose first that K is a cyclic of square free order and let Pj be
Sylow pj-subgroups of G with pj 6= p (j = 1, 2, ...,m). The solvability of G shows that, PPj < G. We argue that
|P | = p. If |P | > p, then PPj is a nonabelian P -group and |Pj | = pj for each j = 1, 2, ...,m. Then NPPj and hence
NG. It follows that NP1P2 < G. Then by lemma 2.1, it is cyclic; a contradiction since P1 does not centralize N .
Thus |P | = p. Suppose, for a contradiction, that n ≥ 4. Since H is a nonabelian P -group, G has a proper subgroup
M containing H with |π(M)| = 3 which is not smooth. Thus n = 3, |G| = pp1p2 and we are done. Now assume
K is cyclic of prime power order. Then (|N |, |K|) = 1. Since NK is a totally smooth proper subgroup of G, K
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would be of prime order. If KG, we get |P | = p where P is a Sylow p-subgroup of G. Then n = 3 and (ii) holds.
Otherwise, p is the largest prime in π(G). Once again if N < P , we get a contradiction. Thus |P | = p and n = 3.
This completes our proof.

3. Conclusion

In this paper, we proved the following result:

Theorem 3.1 Let G = HK be the product of its proper subgroups H and K with n ≥ 3 and |π(G)| ≥ 2. Assume
that all maximal subgroups of G are totally smooth. If every minimal normal subgroup of H is permutable in K,
then one of the following holds:
(i) G is a nonabelian P -group.
(ii) G is cyclic of square free order.
(iii) n = 3 and |G| = pqr, where p and q are not necessary distinct primes in π(G).
(iv) G = PQ, where P is a cyclic Sylow p-subgroup of order p2 and Q is an elementary abelian normal subgroup of
G of order qe(e > 1).

Clearly, the proof of Theorem 3.1 is included in both Theorem 2.2 and Theorem 2.3.
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