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Abstract 

Many authors have developed models on two units’ cold standby 
system, but little or no attention is paid on series-parallel system 
involving four types of failures. In this study, measures of system 
effectiveness such as mean time to system failure (MTSF), steady state 
availability, busy period and profit function were discussed. The 
system is analyzed using Kolmogorov’s forward equations method. 
The result has shown that MTSF, steady state availability and profit 
function increases with repair and decreases with failure rate. 
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1 Introduction 

Due to the importance of series-parallel systems in various industries, 

determination of their availability has become an increasingly important issue. 

System availability represents the percentage of time the system is available to 

users. Failure is an unavoidable phenomenon which can be dangerous and costly 

and bring about less production and profit. Proper maintenance planning plays a 

role in achieving high system reliability, availability and production output. It is 
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therefore important to keep the equipments/systems always available and to lay 

emphasis on system availability at the highest order. 

A large volume of literature exists on the issue of predicting performance 

evaluation of various systems. Kumar et al [1] discussed the reliability analysis of 

the Feeding system in the paper industry, Kumar el al.[2] discussed the 

availability analysis of the washing system in the paper industry, Kumar el al. [3] 

deal with reliability, availability and operational behavior analysis for different 

systems in paper plant. Kumar el al. [4] discussed the behavior analysis of Urea 

decomposition in the fertilizer industry under the general repair policy. Kumar et 

al.[5] studied the design and cost analysis of a refining system in a Sugar industry. 

Srinath [6] has explained a Markov model to determine the availability expression 

for a simple system consisting of only one component. Gupta el al. [7] has 

evaluated the reliability parameters of butter manufacturing system in a diary 

plant considering exponentially distributed failure rates of various components. 

Gupta et al. [8] studied the behavior of Cement manufacturing plant. Arora and 

Kumar [9] studied the availability analysis of the cool handling system in paper 

plant by dividing it into three subsystems. Singh and Garg [10] perform the 

availability analysis of the core veneer manufacturing system in a plywood 

manufacturing system under the assumption of constant failure and repair rates.       

In the present paper, we study a series-parallel system consisting of five different 

subsystems arranged in series. Through the transition diagram obtained in this 

study, systems of differential equations are developed and solved recursively via 

probabilistic approach. Availability matrices for each subsystem have been 

developed to provide various performance values for different combinations of 

failure and repair rates of all subsystems. Performance of each subsystem of 

series-parallel system is evaluated. 

 

 

Fig. 1: schematic diagram of the system 
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2 Mean Time to System Failure for System  

Let ( )P t  be the probability row vector at time t , then the initial conditions for 

this problem are as follows: 

 

   0 1 2 3 4 5 6 7 8(0) (0), (0), (0), (0), (0), (0), (0), (0), (0) 1,0,0,0,0,0,0,0,0 P P P P P P P P P P

0 1 2 3 4 0 1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( ) ( ) ( )P t P t P t P t P t P t                  

1 1 1 1 0( ) ( ) ( )P t P t P t      

2 2 2 2 0( ) ( ) ( )P t P t P t      

3 3 3 3 0( ) ( ) ( )P t P t P t      

4 4 1 2 3 4 4 4 0 1 5 2 6 3 7 4 8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P t P t P t P t P t P t P t                    

5 1 5 1 4( ) ( ) ( )P t P t P t      

6 2 6 2 4( ) ( ) ( )P t P t P t      

7 3 3 3 4( ) ( ) ( )P t P t P t      

8 4 8 4 4( ) ( ) ( )P t P t P t                                                                                          (1) 

 

1 2 3 4 1 2 3 4

1 1

2 2

3 3

4 4 1 2 3 4 1 2 3 4

1 1

2 2

3 3

4 4

( ) 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 ( )

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

A

       

 

 

 

         

 

 

 

 

    
 


 
 
 

 
      
 

 
 
 

 
  

 

It is difficult to evaluate the transient solutions hence following El-said[14], and 

Haggag [15] we delete the rows and columns of absorbing state of matrix A and 

take the transpose to produce a new matrix, say Q . 

The expected time to reach an absorbing state is obtained from  

1

(0) ( )

1

(0)( ) 1

1

P P absorbingE T P Q



 
 

      
 
 

 

1

1

(0)( ) 1

1

MTSF P Q

 
 

   
 
 

                                                                                       (2) 
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where 

 

1 2 3 4 4

4 4 1 2 3 4

( )

( )
Q

    

     

    
  

     
 

 

4 1 3 4

2 2 2 2

4 1 1 1 2 1 3 1 4 4 2 2 2 3 2 4 4 3 3 3 4 4

2

2 2 2 2 2 2
MTSF

   

                     

  


           

 

3 Steady state availability Analysis for System  

For the availability case of Fig. 1 following El-said and El-Hamid (2006), the 

initial conditions for this system are: 

1 2 3 4 5 6 7 8(0) [ (0), (0), (0), (0), (0), (0), (0), (0)] [1,0,0,0,0,0,0,0,0]P P P P P P P P P   

The system of differential equations in for System 1 above can be expressed as: 
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  
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In the steady state the derivatives of state probabilities become zero which enable 

us to compute steady state probabilities. Thus, the availability for System is 

 

0 4( ) ( )AV P P                                                                                              (3) 

and     

 

( ) 0AP                                                                                                                (4) 

which in matrix form as  



 

 

 

 527 

 

 

 

01 2 3 4 1 2 3 4

11 1

22 2

33 3

44 4 1 2 3 4 1 2 3 4

51 1

62 2

73 3

84 4

( ) 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 ( )

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

P
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P

P

P

P
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P

P

       

 
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      
 


 
 
 

  
     
 

  
 
 

  
   

0

0

0

0

0

0

0

0

0

 
  
  
  
  
  
  
  
  
  
  
  
  

 

 

using the normalizing condition 

0 1 2 3 4 5 6 7 8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1P P P P P P P P P                        (5) 

we substitute (5) in one of the redundant rows of  (4). The resulting matrix is 

 

01 2 3 4 1 2 3 4

11 1

22 2

33 3

44 4 1 2 3 4 1 2 3 4

51 1

62 2

3 3

( )( ) 0 0 0 0

( )0 0 0 0 0 0 0

( )0 0 0 0 0 0 0

( )0 0 0 0 0 0 0

( )0 0 0 ( )

( )0 0 0 0 0 0 0

( )0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1
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P
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       
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    
  
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  
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 
 
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P

P

   
   
   
   
   
   
   
   
   
   
   

   
      

 

We solve the system of linear equations in matrix above to obtain the state 

probabilities 0 4( ), ( )P P   

Expression for AV  thus is 

1

1

N
AV

D
  

2

1 1 2 3 4 1 2 3 4 4N            
2 2

1 1 2 3 3 4 3 1 2 4 4 1 2 3 1 2 3 4 4 1 3 4 2 4    D                         

     2 2 2

1 2 3 4 1 3 4 2 2 3 4 1 4 2 3 4 1                    

 

4 Busy Period Analysis for System  

Using the same initial condition in System1 above as for the reliability case: 

1 2 3 4 5 6 7 8(0) [ (0), (0), (0), (0), (0), (0), (0), (0)] [1,0,0,0,0,0,0,0,0]P P P P P P P P P   



 

 

 

528  

 

Using the system of differential equations above, in the steady state, the 

derivatives of the state probabilities become zero. 

The system of differential equations in for System 1 above can be expressed as: 

 

0

1 2 3 4 1 2 3 41

1 1
2

2 2

3
3 3

4 4 1 2 3 4 1 2 3 4
4

1 1

5
2 2

6 3 3

7

8

( ) 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 ( )

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0

P

P

P

P

P

P

P

P

P

       
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
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and     

 

( ) 0AP    

 

 Which in matrix form as  
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0 0 0 0 0 0 0
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       
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     
 
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   
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 
  
  
  
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  
  
  
  
  

 

 

Using the normalizing condition 

0 1 2 3 4 5 6 7 8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1P P P P P P P P P                   

We substitute () in one of the redundant rows of (). The resulting matrix is 
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We solve the system of linear equations in matrix above to obtain the state 

probabilities 0 4( ), ( )P P   

and this will enable us to compute steady state busy : 
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2
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5 Profit Analysis 

 

Following El-said (2008) and Haggag (2009) the expected profit per unit time 

incurred to the system in the steady-state is given by: 

Profit=total revenue generated – cost incurred for repairing the failed units. 

                                    

PF  = 1 2( ) ( )C AV C B                                                                                       (7) 

Where PF : is the profit incurred to the system 

              1C : is the revenue per unit up time of the system 

              2C : is the cost per unit time which the system is under repair 
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6 Results 
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Fig. 2: plot of availability vs 1  
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Fig. 3: plot of MTSF versus 1  
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Fig. 4: plot of profit versus 1  
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Fig. 5: Plot of profit versus 1  

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

Effect of 
1
 on MTSF


1

M
T

S
F

 
Fig. 6: Plot of MTSF versus 1  
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Fig. 7: plot of availability versus 1  
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From Fig. 2 to 7 above, it is clear profit, system availability and MTSF decreases 

as 1  increase, while profit and system availability increases with increase in the 

value of 1  and constant with MTSF as can be observe from Fig. 3. 

 

7 Conclusion 

In this paper, we developed explicit expressions for measures of system 

effectiveness such as MTSF, system availability and profit function. Graphs were 

plotted to highlight important results. Results have shown that measures of system 

effectiveness such MTSF, system availability and profit increases with repair rates 

and decreases with failure rates. 
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